AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Spin-flop transition and Zeeman effect of defect-localized bound states in the antiferromagnetic topological insulator MnBi2Te4

Guojian Qian1,§Mengzhu Shi3,§Hui Chen1,2,§( )Shiyu Zhu1Jiawei Hu1Zihao Huang1Yuan Huang4Xian-Hui Chen3Hong-Jun Gao1,2( )
Institute of Physics, Chinese Academy of Sciences and University of Chinese Academy of Sciences, Beijing 100190, China
Songshan Lake Materials Laboratory, Dongguan 523808, China
Hefei National Laboratory for Physical Sciences at Microscale and Department of Physics, and Chinese Academy of Sciences Key Laboratory of Strongly-Coupled Quantum Matter Physics, University of Science and Technology of China, Hefei 230026, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China

§ Guojian Qian, Mengzhu Shi, and Hui Chen contributed equally to this work.

Show Author Information

Graphical Abstract

A bound state localized around Mn-Bi antisite is observed by scanning tunneling microscope. Remarkably, the bound state shows the spin-flop transition and Zeeman effect at magnetic fields perpendicular to the sample surface. The Zeeman effect demonstrates the magnetic moment of the intrinsic Mn-Bi antisite defect, while the spin-flop transition indicates that the defect state correlates to the magnetic surface state of bulk MnBi2Te4.

Abstract

The correlation of surface impurity states with the antiferromagnetic ground states is crucial for understanding the formation of the topological surface state in the antiferromagnetic topological insulators MnBi2Te4. By using low-temperature scanning tunneling microscopy and spectroscopy, we observed a localized bound state around the Mn-Bi antisite defect at the Te-terminated surface of the antiferromagnetic topological insulator MnBi2Te4. When applying a magnetic field perpendicular to the surface (Bz) from –1.5 to 3.0 T, the bound state shifts linearly to a lower energy with increasing Bz, which is attributed to the Zeeman effect. Remarkably, when applying a large range of Bz from –8.0 to 8.0 T, the magnetic field induced reorientation of surface magnetic moments results in an abrupt jump in the local density of states (LDOS), which is characterized by LDOS-change-ratio dσ~/dB quantitatively. Interestingly, two asymmetric critical field, –2.0 and 4.0 T determined by the two peaks in dσ~/dB are observed, which is consistent with simulated results according to a Mills-model, describing a surface spin flop transition (SSF). Our results provide a new flatform for studying the interplay between magnetic order and topological phases in magnetic topological materials.

Electronic Supplementary Material

Download File(s)
12274_2022_4685_MOESM1_ESM.pdf (631.6 KB)

References

[1]

Tokura, Y.; Yasuda, K.; Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 2019, 1, 126–143.

[2]

Li, J. H.; Li, Y.; Du, S. Q.; Wang, Z.; Gu, B. L.; Zhang, S. C.; He, K.; Duan, W. H.; Xu, Y. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 2019, 5, eaaw5685.

[3]

Otrokov, M. M.; Klimovskikh, I. I.; Bentmann, H.; Estyunin, D.; Zeugner, A.; Aliev, Z. S.; Gaß, S.; Wolter, A. U. B.; Koroleva, A. V.; Shikin, A. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 2019, 576, 416–422.

[4]

Yan, J. Q.; Zhang, Q.; Heitmann, T.; Huang, Z. L.; Chen, K. Y.; Cheng, J. G.; Wu, W. D.; Vaknin, D.; Sales, B. C.; McQueeney, R. J. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 2019, 3, 064202.

[5]

Rienks, E. D. L.; Wimmer, S.; Sánchez-Barriga, J.; Caha, O.; Mandal, P. S.; Růžička, J.; Ney, A.; Steiner, H.; Volobuev, V. V.; Groiss, H. et al. Large magnetic gap at the Dirac point in Bi2Te3/MnBi2Te4 heterostructures. Nature 2019, 576, 423–428.

[6]

Lee, D. S.; Kim, T. H.; Park, C. H.; Chung, C. Y.; Lim, Y. S.; Seo, W. S.; Park, H. H. Crystal structure, properties and nanostructuring of a new layered chalcogenide semiconductor, Bi2MnTe4. CrystEngComm 2013, 15, 5532–5538.

[7]

Zhang, D. Q.; Shi, M. J.; Zhu, T. S.; Xing, D. Y.; Zhang, H. J.; Wang, J. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 2019, 122, 206401.

[8]

Mong, R. S. K.; Essin, A. M.; Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 2010, 81, 245209.

[9]

Fang, C.; Gilbert, M. J.; Bernevig, B. A. Topological insulators with commensurate antiferromagnetism. Phys. Rev. B 2013, 88, 085406.

[10]

Otrokov, M. M.; Rusinov, I. P.; Blanco-Rey, M.; Hoffmann, M.; Vyazovskaya, A. Y.; Eremeev, S. V.; Ernst, A.; Echenique, P. M.; Arnau, A.; Chulkov, E. V. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 2019, 122, 107202.

[11]

Shikin, A. M.; Estyunin, D. A.; Zaitsev, N. L.; Glazkova, D.; Klimovskikh, I. I.; Filnov, S. O.; Rybkin, A. G.; Schwier, E. F.; Kumar, S.; Kimura, A. et al. Sample-dependent Dirac-point gap in MnBi2Te4 and its response to applied surface charge: A combined photoemission and ab initio study. Phys. Rev. B 2021, 104, 115168.

[12]

Qi, X. L.; Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 2011, 83, 1057–1110.

[13]

He, K. MnBi2Te4-family intrinsic magnetic topological materials. npj Quantum Mater. 2020, 5, 90.

[14]

Qi, X. L.; Hughes, T. L.; Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 2008, 78, 195424.

[15]

Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 1987, 58, 1799–1802.

[16]

Essin, A. M.; Moore, J. E.; Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 2009, 102, 146805.

[17]

Liu, C. X.; Zhang, S. C.; Qi, X. L. The quantum anomalous hall effect: Theory and experiment. Annu. Rev. Condens. Matter Phys. 2016, 7, 301–321.

[18]

Yu, R.; Zhang, W.; Zhang, H. J.; Zhang, S. C.; Dai, X.; Fang, Z. Quantized anomalous hall effect in magnetic topological insulators. Science 2010, 329, 61–64.

[19]

Deng, Y. J.; Yu, Y. J.; Shi, M. Z.; Guo, Z. X.; Xu, Z. H.; Wang, J.; Chen, X. H.; Zhang, Y. B. Quantum anomalous hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 2020, 367, 895–900.

[20]

Liu, C.; Wang, Y. C.; Li, H.; Wu, Y.; Li, Y. X.; Li, J. H.; He, K.; Xu, Y.; Zhang, J. S.; Wang, Y. Y. Robust Axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 2020, 19, 522–527.

[21]

Ge, J.; Liu, Y. Z.; Li, J. H.; Li, H.; Luo, T. C.; Wu, Y.; Xu, Y.; Wang, J. High-Chern-number and high-temperature quantum hall effect without landau levels. Natl. Sci. Rev. 2020, 7, 1280–1287.

[22]

Li, J. H.; Wang, C.; Zhang, Z. T.; Gu, B. L.; Duan, W. H.; Xu, Y. Magnetically controllable topological quantum phase transitions in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2019, 100, 121103.

[23]

Klimovskikh, I. I.; Otrokov, M. M.; Estyunin, D.; Eremeev, S. V.; Filnov, S. O.; Koroleva, A.; Shevchenko, E.; Voroshnin, V.; Rybkin, A. G.; Rusinov, I. P. et al. Tunable 3D/2D magnetism in the (MnBi2Te4) (Bi2Te3)m topological insulators family. npj Quantum Mater. 2020, 5, 54.

[24]

Lee, S. H.; Graf, D.; Min, L. J.; Zhu, Y. L.; Yi, H. M.; Ciocys, S.; Wang, Y. X.; Choi, E. S.; Basnet, R.; Fereidouni, A. et al. Evidence for a magnetic-field-induced ideal type-II Weyl state in antiferromagnetic topological insulator Mn(Bi1−x Sbx)2Te4. Phys. Rev. X 2021, 11, 031032.

[25]

Li, H.; Gao, S. Y.; Duan, S. F.; Xu, Y. F.; Zhu, K. J.; Tian, S. J.; Gao, J. C.; Fan, W. H.; Rao, Z. C.; Huang, J. R. et al. Dirac surface states in intrinsic magnetic topological insulators EuSn2As2 and MnBi2nTe3n+1. Phys. Rev. X 2019, 9, 041039.

[26]

Swatek, P.; Wu, Y.; Wang, L. L.; Lee, K.; Schrunk, B.; Yan, J. Q.; Kaminski, A. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2020, 101, 161109.

[27]

Yan, C. H.; Sebastian F.-M.; Mei, R. B.; Lee, S. H.; Nikola P.; Rikuto F.; Yan, B. H.; Liu, C. X.; Mao, Z. Q.; Yang, S. L. Origins of electronic bands in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2021, 104, L041102.

[28]

Hao, Y. J.; Liu, P. F.; Feng, Y.; Ma, X. M.; Schwier, E. F.; Arita, M.; Kumar, S.; Hu, C. W.; Lu, R.; Zeng, M. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 2019, 9, 041038.

[29]

Chen, Y. J.; Xu, L. X.; Li, J. H.; Li, Y. W.; Wang, H. Y.; Zhang, C. F.; Li, H.; Wu, Y.; Liang, A. J.; Chen, C. et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 2019, 9, 041040.

[30]

Wu, X. F.; Li, J. Y.; Ma, X. M.; Zhang, Y.; Liu, Y. T.; Zhou, C. S.; Shao, J. F.; Wang, Q. M.; Hao, Y. J.; Feng, Y. et al. Distinct topological surface states on the two terminations of MnBi4Te7. Phys. Rev. X 2020, 10, 031013.

[31]

Yuan, Y. H.; Wang, X. T.; Li, H.; Li, J. H.; Ji, Y.; Hao, Z. Q.; Wu, Y.; He, K.; Wang, Y. Y.; Xu, Y. et al. Electronic states and magnetic response of MnBi2Te4 by scanning tunneling microscopy and spectroscopy. Nano Lett. 2020, 20, 3271–3277.

[32]
Liang, Z. W. ; Luo, A. Y. ; Shi, M. Z. ; Zhang, Q. ; Nie, S. M. ; Ying, J. J. ; He, J. F. ; Wu, T. ; Wang, Z. J. ; Xu, G. et al. Mapping Dirac fermions in the intrinsic antiferromagnetic topological insulators (MnBi2Te4) (Bi2Te3)n (n = 0, 1). Phys. Rev. B 2020, 102, 161115(R).
[33]

Ko, W.; Kolmer, M.; Yan, J. Q.; Pham, A. D.; Fu, M. M.; Lüpke, F.; Okamoto, S.; Gai, Z.; Ganesh, P.; Li, A. P. Realizing gapped surface states in the magnetic topological insulator MnBi2−xSbxTe4. Phys. Rev. B 2020, 102, 115402.

[34]

Sass, P. M.; Ge, W. B.; Yan, J. Q.; Obeysekera, D.; Yang, J. J.; Wu, W. D. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. Nano Lett. 2020, 20, 2609–2614.

[35]

Sass, P. M.; Kim, J.; Vanderbilt, D.; Yan, J. Q.; Wu, W. D. Robust A-type order and spin-flop transition on the surface of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Lett. 2020, 125, 037201.

[36]

Cui, J. H.; Shi, M. Z.; Wang, H. H.; Yu, F. H.; Wu, T.; Luo, X. G.; Ying, J. J.; Chen, X. H. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 2019, 99, 155125.

[37]

Zeugner, A.; Nietschke, F.; Wolter, A. U. B.; Gaß, S.; Vidal, R. C.; Peixoto, T. R. F.; Pohl, D.; Damm, C.; Lubk, A.; Hentrich, R. et al. Chemical aspects of the candidate antiferromagnetic topological insulator MnBi2Te4. Chem. Mater. 2019, 31, 2795–2806.

[38]

Netsou, A. M.; Muzychenko, D. A.; Dausy, H.; Chen, T. S.; Song, F. Q.; Schouteden, K.; Van Bael, M. J.; Van Haesendonck, C. Identifying native point defects in the topological insulator Bi2Te3. ACS Nano 2020, 14, 13172–13179.

[39]
Huang, Z. L. ; Du, M. H. ; Yan, J. Q. ; Wu, W. D. Native defects in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Mater. 2020, 4, 121202(R).
[40]
Lee, I. ; Kim, C. K. ; Lee, J. ; Billinge, S. J. L. ; Zhong, R. D. ; Schneeloch, J. A. ; Liu, T. S. ; Valla, T. ; Tranquada, J. M. ; Gu, G. D. et al. Imaging Dirac-mass disorder from magnetic dopant atoms in the ferromagnetic topological insulator Crx(Bi0.1Sb0.9)2−xTe3. Proc. Natl. Acad. Sci. USA 2015, 112, 1316–1321.
[41]

Jeon, S.; Kim, S.; Kuk, Y. Zero-bias anomaly and role of electronic correlations in a disordered metal film. New J. Phys. 2020, 22, 083045.

[42]

Madhavan, V.; Chen, W.; Jamneala, T.; Crommie, M. F.; Wingreen, N. S. Local spectroscopy of a Kondo impurity: Co on Au(111). Phys. Rev. B 2001, 64, 165412.

[43]

Nagaoka, K.; Jamneala, T.; Grobis, M.; Crommie, M. F. Temperature dependence of a single Kondo impurity. Phys. Rev. Lett. 2002, 88, 077205.

[44]

Mills, D. L. Surface spin-flop state in a simple antiferromagnet. Phys. Rev. Lett. 1968, 20, 18–21.

[45]

Rößler, U. K.; Bogdanov, A. N. Reorientation in antiferromagnetic multilayers: Spin‐flop transition and surface effects. Phys. Stat. Sol. (c) 2004, 1, 3297–3305.

[46]

Bogdanov, A. N.; Rößler, U. K. Magnetic-field-induced reorientation in thin antiferromagnetic films: Spin-flop transition and surface-induced twist effects. Phys. Rev. B 2003, 68, 012407.

Nano Research
Pages 1101-1106
Cite this article:
Qian G, Shi M, Chen H, et al. Spin-flop transition and Zeeman effect of defect-localized bound states in the antiferromagnetic topological insulator MnBi2Te4. Nano Research, 2023, 16(1): 1101-1106. https://doi.org/10.1007/s12274-022-4685-8
Topics:

1228

Views

9

Crossref

7

Web of Science

8

Scopus

0

CSCD

Altmetrics

Received: 24 March 2022
Revised: 28 May 2022
Accepted: 21 June 2022
Published: 10 August 2022
© Tsinghua University Press 2022
Return