Journal Home > Volume 15 , Issue 12

It is well known that the low-valent Cu species are important catalytically active centers in the reduction of CO2 to hydrocarbon products. However, the Cu(I)-based catalysts are easily reduced during the electroreduction of CO2, which causes phase transformation of catalysts and leads to a decrease of intrinsic catalytic activity. Therefore, it is of great significance to synthesize Cu(I)-based catalysts with specific interactions that can keep the catalytically active Cu sites stable in the electrocatalytic process. Based on the above considerations, a hexanuclear Cu cluster with strong cuprophilic interactions has been designed and utilized as a secondary building unit (SBU) to construct a stable metal-organic framework (MOF) electrocatalyst (NNU-50). As expected, the NNU-50 has served as an effective electrocatalyst for the CO2-to-CH4 conversion by exhibiting a high Faradaic efficiency for CH4 (FE CH4) of 66.40% and a large current density of ~ 400 mA·cm−2 at −1.0 V vs. reversible hydrogen electrode (RHE), which is one of the best catalytic performances among the stable MOF electrocatalysts until now. This work contributes more ideas for the design of stable and efficient MOF-based electrocatalysts for CO2 reduction reaction.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Porous copper cluster-based MOF with strong cuprophilic interactions for highly selective electrocatalytic reduction of CO2 to CH4

Show Author's information Long-Zhang Dong1,2,§Yun-Feng Lu2,§Rui Wang2Jie Zhou1Yu Zhang2Lei Zhang1Jiang Liu1,2Shun-Li Li1,2Ya-Qian Lan1,2( )
National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG (GHEI), School of Chemistry, South China Normal University, Guangzhou 510006, China
Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China

§ Long-Zhang Dong and Yun-Feng Lu contributed equally to this work.

Abstract

It is well known that the low-valent Cu species are important catalytically active centers in the reduction of CO2 to hydrocarbon products. However, the Cu(I)-based catalysts are easily reduced during the electroreduction of CO2, which causes phase transformation of catalysts and leads to a decrease of intrinsic catalytic activity. Therefore, it is of great significance to synthesize Cu(I)-based catalysts with specific interactions that can keep the catalytically active Cu sites stable in the electrocatalytic process. Based on the above considerations, a hexanuclear Cu cluster with strong cuprophilic interactions has been designed and utilized as a secondary building unit (SBU) to construct a stable metal-organic framework (MOF) electrocatalyst (NNU-50). As expected, the NNU-50 has served as an effective electrocatalyst for the CO2-to-CH4 conversion by exhibiting a high Faradaic efficiency for CH4 (FE CH4) of 66.40% and a large current density of ~ 400 mA·cm−2 at −1.0 V vs. reversible hydrogen electrode (RHE), which is one of the best catalytic performances among the stable MOF electrocatalysts until now. This work contributes more ideas for the design of stable and efficient MOF-based electrocatalysts for CO2 reduction reaction.

Keywords: carbon dioxide, metal-organic framework, cuprophilic interactions, electroreduction

References(53)

[1]

van Soest, H. L.; den Elzen, M. G. J.; van Vuuren, D. P. Net-zero emission targets for major emitting countries consistent with the Paris Agreement. Nat. Commun. 2021, 12, 2140.

[2]

Wang, L. M.; Chen, W. L.; Zhang, D. D.; Du, Y. P.; Amal, R.; Qiao, S. Z.; Wu, J. B.; Yin, Z. Y. Surface strategies for catalytic CO2 reduction: From two-dimensional materials to nanoclusters to single atoms. Chem. Soc. Rev. 2019, 48, 5310–5349.

[3]

Long, C.; Li, X.; Guo, J.; Shi, Y. N.; Liu, S. Q.; Tang, Z. Y. Electrochemical reduction of CO2 over heterogeneous catalysts in aqueous solution: Recent progress and perspectives. Small Methods 2019, 3, 1800369.

[4]

Birdja, Y. Y.; Pérez-Gallent, E.; Figueiredo, M. C.; Göttle, A. J.; Calle-Vallejo, F.; Koper, M. T. M. Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels. Nat. Energy 2019, 4, 732–745.

[5]

Li, L.; Li, X. D.; Sun, Y. F.; Xie, Y. Rational design of electrocatalytic carbon dioxide reduction for a zero-carbon network. Chem. Soc. Rev. 2022, 51, 1234–1252.

[6]

Liu, X. J.; Yang, H.; He, J.; Liu, H. X.; Song, L. D.; Li, L.; Luo, J. Highly active, durable ultrathin MoTe2 layers for the electroreduction of CO2 to CH4. Small 2018, 14, 1704049.

[7]

Zhu, D. D.; Liu, J. L.; Qiao, S. Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide. Adv. Mater. 2016, 28, 3423–3452.

[8]

Liang, Z. Z.; Wang, H. Y.; Zheng, H. Q.; Zhang, W.; Cao, R. Porphyrin-based frameworks for oxygen electrocatalysis and catalytic reduction of carbon dioxide. Chem. Soc. Rev. 2021, 50, 2540–2581.

[9]

Wang, G. X.; Chen, J. X.; Ding, Y. C.; Cai, P. W.; Yi, L. C.; Li, Y.; Tu, C. Y.; Hou, Y.; Wen, Z. H.; Dai, L. M. Electrocatalysis for CO2 conversion: From fundamentals to value-added products. Chem. Soc. Rev. 2021, 50, 4993–5061.

[10]

Jung, H.; Lee, S. Y.; Lee, C. W.; Cho, M. K.; Won, D. H.; Kim, C.; Oh, H. S.; Min, B. K.; Hwang, Y. J. Electrochemical fragmentation of Cu2O nanoparticles enhancing selective C–C coupling from CO2 reduction reaction. J. Am. Chem. Soc. 2019, 141, 4624–4633.

[11]

Kim, J.; Choi, W.; Park, J. W.; Kim, C.; Kim, M.; Song, H. Branched copper oxide nanoparticles induce highly selective ethylene production by electrochemical carbon dioxide reduction. J. Am. Chem. Soc. 2019, 141, 6986–6994.

[12]

Reske, R.; Mistry, H.; Behafarid, F.; Roldan Cuenya, B.; Strasser, P. Particle size effects in the catalytic electroreduction of CO2 on Cu nanoparticles. J. Am. Chem. Soc. 2014, 136, 6978–6986.

[13]

Kim, D.; Kley, C. S.; Li, Y. F.; Yang, P. D. Copper nanoparticle ensembles for selective electroreduction of CO2 to C2-C3 products. Proc. Natl. Acad. Sci. USA 2017, 114, 10560–10565.

[14]

Weng, Z.; Jiang, J. B.; Wu, Y. S.; Wu, Z. S.; Guo, X. T.; Materna, K. L.; Liu, W.; Batista, V. S.; Brudvig, G. W.; Wang, H. L. Electrochemical CO2 reduction to hydrocarbons on a heterogeneous molecular Cu catalyst in aqueous solution. J. Am. Chem. Soc. 2016, 138, 8076–8079.

[15]

Lu, Y. F.; Dong, L. Z.; Liu, J.; Yang, R. X.; Liu, J. J.; Zhang, Y.; Zhang, L.; Wang, Y. R.; Li, S. L.; Lan, Y. Q. Predesign of catalytically active sites via stable coordination cluster model system for electroreduction of CO2 to ethylene. Angew. Chem., Int. Ed. 2021, 60, 26210–26217.

[16]

Wang, R.; Liu, J.; Huang, Q.; Dong, L. Z.; Li, S. L.; Lan, Y. Q. Partial coordination-perturbed Bi-copper sites for selective electroreduction of CO2 to hydrocarbons. Angew. Chem., Int. Ed. 2021, 60, 19829–19835.

[17]

Wang, Y. R.; Liu, M.; Gao, G. K.; Yang, Y. L.; Yang, R. X.; Ding, H. M.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Implanting numerous hydrogen-bonding networks in a Cu-porphyrin-based nanosheet to boost CH4 selectivity in neutral-media CO2 electroreduction. Angew. Chem., Int. Ed. 2021, 60, 21952–21958.

[18]

Wang, Y. R.; Ding, H. M.; Ma, X. Y.; Liu, M.; Yang, Y. L.; Chen, Y. F.; Li, S. L.; Lan, Y. Q. Imparting CO2 electroreduction auxiliary for integrated morphology tuning and performance boosting in a porphyrin-based covalent organic framework. Angew. Chem., Int. Ed. 2022, 61, e202114648.

[19]

Bushuyev, O. S.; De Luna, P.; Cao Thang, D.; Tao, L.; Saur, G.; van de lagemaat, J.; Kelley, S. O.; Sargent, E. H. What should we make with CO2 and how can we make it? Joule 2018, 2, 825–832.

[20]

Liu, J. J.; Song, X. Y.; Zhang, T.; Liu, S. Y.; Wen, H. R.; Chen, L. 2D conductive metal-organic frameworks: An emerging platform for electrochemical energy storage. Angew. Chem., Int. Ed. 2021, 60, 5612–5624.

[21]

Chen, S. H.; Su, Y. Q.; Deng, P. L.; Qi, R. J.; Zhu, J. X.; Chen, J. X.; Wang, Z. T.; Zhou, L.; Guo, X. P.; Xia, B. Y. Highly selective carbon dioxide electroreduction on structure-evolved copper perovskite oxide toward methane production. ACS Catal. 2020, 10, 4640–4646.

[22]

Yi, J. D.; Xie, R. K.; Xie, Z. L.; Chai, G. L.; Liu, T. F.; Chen, R. P.; Huang, Y. B.; Cao, R. Highly selective CO2 electroreduction to CH4 by in situ generated Cu2O single-type sites on a conductive MOF: Stabilizing key intermediates with hydrogen bonding. Angew. Chem., Int. Ed. 2020, 59, 23641–23648.

[23]

Zhu, H. L.; Huang, J. R.; Zhang, X. W.; Wang, C.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Highly efficient electroconversion of CO2 into CH4 by a metal-organic framework with trigonal pyramidal Cu(I)N3 active sites. ACS Catal. 2021, 11, 11786–11792.

[24]
Zhuo, L. L.; Chen, P.; Zheng, K.; Zhang, X. W.; Wu, J. X.; Lin, D. Y.; Liu, S. Y.; Wang, Z. S.; Liu, J. Y.; Zhou, D. D. et al. Flexible cuprous triazolate frameworks as highly stable and efficient electrocatalysts for CO2 reduction with tunable C2H4/CH4 selectivity. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202204967.
DOI
[25]

Zhang, L.; Li, X. X.; Lang, Z. L.; Liu, Y.; Liu, J.; Yuan, L.; Lu, W. Y.; Xia, Y. S.; Dong, L. Z.; Yuan, D. Q. et al. Enhanced cuprophilic interactions in crystalline catalysts facilitate the highly selective electroreduction of CO2 to CH4. J. Am. Chem. Soc. 2021, 143, 3808–3816.

[26]

Harisomayajula, N. V. S.; Makovetskyi, S.; Tsai, Y. C. Cuprophilic Interactions in and between Molecular Entities. Chem.—Eur. J. 2019, 25, 8936–8954.

[27]

Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 2013, 341, 1230444.

[28]

Zhou, J. W.; Li, R.; Fan, X. X.; Chen, Y. F.; Han, R. D.; Li, W.; Zheng, J.; Wang, B.; Li, X. G. Rational design of a metal-organic framework host for sulfur storage in fast, long-cycle Li-S batteries. Energy Environ. Sci. 2014, 7, 2715–2724.

[29]

Qiu, Y. L.; Zhong, H. X.; Zhang, T. T.; Xu, W. B.; Su, P. P.; Li, X. F.; Zhang, H. M. Selective electrochemical reduction of carbon dioxide using Cu based metal organic framework for CO2 capture. ACS Appl. Mater. Interfaces 2018, 10, 2480–2489.

[30]

Zhang, Y.; Dong, L. Z.; Li, S.; Huang, X.; Chang, J. N.; Wang, J. H.; Zhou, J.; Li, S. L.; Lan, Y. Q. Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4. Nat. Commun. 2021, 12, 6390.

[31]

Nam, D. H.; Bushuyev, O. S.; Li, J.; De Luna, P.; Seifitokaldani, A.; Dinh, C. T.; García de Arquer, F. P.; Wang, Y. H.; Liang, Z. Q.; Proppe, A. H. et al. Metal-organic frameworks mediate Cu coordination for selective CO2 electroreduction. J. Am. Chem. Soc. 2018, 140, 11378–11386.

[32]

Qiu, X. F.; Zhu, H. L.; Huang, J. R.; Liao, P. Q.; Chen, X. M. Highly selective CO2 electroreduction to C2H4 using a metal-organic framework with dual active sites. J. Am. Chem. Soc. 2021, 143, 7242–7246.

[33]

Yang, F.; Chen, A. L.; Deng, P. L.; Zhou, Y. Z.; Shahid, Z.; Liu, H. F.; Xia, B. Y. Highly efficient electroconversion of carbon dioxide into hydrocarbons by cathodized copper-organic frameworks. Chem. Sci. 2019, 10, 7975–7981.

[34]

Liu, Y. Z.; Li, S.; Dai, L.; Li, J. N.; Lv, J. N.; Zhu, Z. J. J.; Yin, A. X.; Li, P. F.; Wang, B. The synthesis of Hexaazatrinaphthylene-based 2D conjugated copper metal-organic framework for highly selective and stable electroreduction of CO2 to methane. Angew. Chem., Int. Ed. 2021, 60, 16409–16415.

[35]

Liu, Y. Y.; Zhu, H. L.; Zhao, Z. H.; Huang, N. Y.; Liao, P. Q.; Chen, X. M. Insight into the effect of the d-orbital energy of copper ions in metal-organic frameworks on the selectivity of electroreduction of CO2 to CH4. ACS Catal. 2022, 12, 2749–2755.

[36]

Almeida, Q. A. R. Synthesis of highly substituted pyrroles using ultrasound in aqueous media. Green Chem. Lett. Rev. 2013, 6, 129–133.

[37]

Boldog, I.; Rusanov, E. B.; Chernega, A. N.; Sieler, J.; Domasevitch, K. V. One- and two-dimensional coordination polymers of 3,3′,5,5′-tetramethyl-4,4′-bipyrazolyl, a new perspective crystal engineering module. Polyhedron 2001, 20, 887–897.

[38]

He, J.; Yin, Y. G.; Wu, T.; Li, D.; Huang, X. C. Design and solvothermal synthesis of luminescent copper(I)-pyrazolate coordination oligomer and polymer frameworks. Chem. Commun. 2006, 27, 2845–2847.

[39]
Bruker Inc. APEX2, SAINT and SADABS; Bruker AXS: Madison, USA, 2009.
[40]
SheldrickG. M. SHELXT—Integrated space-group and crystal-structure determinationActa Cryst.2015A713810.1107/S2053273314026370

Sheldrick, G. M. SHELXT—Integrated space-group and crystal-structure determination. Acta Cryst. 2015, A71, 3–8.

[41]

Sheldrick, G. M. Crystal structure refinement with SHELXL. Acta Cryst. 2015, C71, 3–8.

[42]

Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. OLEX2:A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341.

[43]
SpekA. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factorsActa Cryst.2015C7191810.1107/S2053229614024929

Spek, A. L. PLATON SQUEEZE: A tool for the calculation of the disordered solvent contribution to the calculated structure factors. Acta Cryst. 2015, C71, 9–18.

[44]

Blatov, V. A.; Shevchenko, A. P.; Proserpio, D. M. Applied topological analysis of crystal structures with the program package ToposPro. Cryst. Growth Des. 2014, 14, 3576–3586.

[45]
Delgado-Friedrichs, O. The GAVROG Project [Online]. http://www.gavrog.org/ (accessed Mar 10, 2022).
[46]

Wu, J. C. S.; Huang, C. W. In situ DRIFTS study of photocatalytic CO2 reduction under UV irradiation. Front. Chem. Eng. China 2010, 4, 120–126.

[47]

Li, X. D.; Sun, Y. F.; Xu, J. Q.; Shao, Y. J.; Wu, J.; Xu, X. L.; Pan, Y.; Ju, H. X.; Zhu, J. F.; Xie, Y. Selective visible-light-driven photocatalytic CO2 reduction to CH4 mediated by atomically thin CuIn5S8 layers. Nat. Energy 2019, 4, 690–699.

[48]
ZhuS. Q.LiT. H.CaiW. B.ShaoM. H. CO2 electrochemical reduction As probed through infrared spectroscopyACS Energy Lett.2019468268910.1021/acsenergylett.8b02525

Zhu, S. Q.; Li, T. H.; Cai, W. B.; Shao, M. H. CO2 electrochemical reduction As probed through infrared spectroscopy. ACS Energy Lett. 2019, 4, 682–689.

[49]

Firet, N. J.; Smith, W. A. Probing the reaction mechanism of CO2 electroreduction over Ag films via operando infrared spectroscopy. ACS Catal. 2017, 7, 606–612.

[50]

Pérez-Gallent, E.; Figueiredo, M. C.; Calle-Vallejo, F.; Koper, M. T. M. Spectroscopic observation of a hydrogenated CO dimer intermediate during CO reduction on Cu (100) electrodes. Angew. Chem., Int. Ed. 2017, 56, 3621–3624.

[51]

Stevens, R. W.; Chuang, S. S. C. In situ IR study of transient CO2 reforming of CH4 over Rh/Al2O3. J. Phys. Chem. B 2004, 108, 696–703.

[52]

Liu, Y. M.; Chen, S.; Quan, X.; Yu, H. T. Efficient electrochemical reduction of carbon dioxide to acetate on nitrogen-doped nanodiamond. J. Am. Chem. Soc. 2015, 137, 11631–11636.

[53]

Ewing, G. E.; Thompson, W. E.; Pimentel, G. C. Infrared detection of the formyl radical HCO. J. Chem. Phys. 1960, 32, 927–932.

File
12274_2022_4681_MOESM1_ESM.pdf (6.5 MB)
12274_2022_4681_MOESM2_ESM.pdf (113 KB)
12274_2022_4681_MOESM3_ESM.cif (729.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 May 2022
Revised: 04 June 2022
Accepted: 20 June 2022
Published: 22 July 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 21871141, 21871142, 22071109, 22105080, and 92061101), the Excellent Youth Foundation of Jiangsu Natural Science Foundation (No. BK20211593), Priority Academic Program Development of Jiangsu Higher Education Institutions, and the Foundation of Jiangsu Collaborative Innovation Center of Biomedical Functional Materials.

Return