Journal Home > Volume 15 , Issue 10

Rechargeable sodium ion battery (SIB) has attracted much attention recently. However, the deficiency of high-performance electrode materials limits its commercial development. Exploring new cost-effective, high safe electrode materials and full battery matching technology is an important direction of future research. In this work, a novel watermelon-like multicore-shell Fe(PO3)2@C nanocapsule anode material is designed via a facile and eco-friendly process for high performance SIB. Fe(PO3)2@C composite anode exhibits remarkable electrochemical performances for SIB, showing high sodium storage capacity (452 mAh·g–1 at 0.2 A·g–1), good rate (235 mAh·g–1 at 10 A·g–1), stable long-term cycling life (210 mAh·g–1 over 2,000 cycles under 5 A·g–1), and superior high-low temperature performance. Furthermore, a new type all iron-based phosphate full battery with high specific capacity is constructed, which can output initial capacity of 309 mAh·g–1 and a high energy density of 254, 107, and 82 Wh·kg–1 at the power density of 186, 917, and 1,640 W·kg–1 at room temperature. The exceptional performance of multicore-shell Fe(PO3)2@C nanocapsule structure can be ascribed to the large specific surface, good structure stability, high conductivity, as well as the multiple layer protection for superior electron/ion transportation.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Watermelon-like multicore-shell Fe(PO3)2@carbon nanocapsule anode to construct an all iron phosphate-based sodium ion battery

Show Author's information Lu Yue1Jingyu Zhang1Meng Kong1Kai Li1Wenhui Zhang1( )Xiaotian Guo2Mengmeng Xiao1Feng Zhang1Huan Pang2( )
Key Laboratory for Advanced Technology in Environmental Protection of Jiangsu Province, Yancheng Institute of Technology, Yancheng 224051, China
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China

Abstract

Rechargeable sodium ion battery (SIB) has attracted much attention recently. However, the deficiency of high-performance electrode materials limits its commercial development. Exploring new cost-effective, high safe electrode materials and full battery matching technology is an important direction of future research. In this work, a novel watermelon-like multicore-shell Fe(PO3)2@C nanocapsule anode material is designed via a facile and eco-friendly process for high performance SIB. Fe(PO3)2@C composite anode exhibits remarkable electrochemical performances for SIB, showing high sodium storage capacity (452 mAh·g–1 at 0.2 A·g–1), good rate (235 mAh·g–1 at 10 A·g–1), stable long-term cycling life (210 mAh·g–1 over 2,000 cycles under 5 A·g–1), and superior high-low temperature performance. Furthermore, a new type all iron-based phosphate full battery with high specific capacity is constructed, which can output initial capacity of 309 mAh·g–1 and a high energy density of 254, 107, and 82 Wh·kg–1 at the power density of 186, 917, and 1,640 W·kg–1 at room temperature. The exceptional performance of multicore-shell Fe(PO3)2@C nanocapsule structure can be ascribed to the large specific surface, good structure stability, high conductivity, as well as the multiple layer protection for superior electron/ion transportation.

Keywords: electrochemical performance, sodium ion battery, watermelon-like, multicore-shell composite, Fe(PO3)2 anode

References(57)

1

Xia, H.; Zhu, X. H.; Liu, J. Z.; Liu, Q.; Lan, S.; Zhang, Q. H.; Liu, X. Y.; Seo, J. K.; Chen, T. T.; Gu, L. et al. A monoclinic polymorph of sodium birnessite for ultrafast and ultrastable sodium ion storage. Nat. Commun. 2018, 9, 5100.

2

Chang, X. Q.; Ma, Y. F.; Yang, M.; Xing, T.; Tang, L. Y.; Chen, T. T.; Guo, Q. B.; Zhu, X. H.; Liu, J. Z.; Xia, H. In-situ solid-state growth of N, S-codoped carbon nanotubes encapsulating metal sulfides for high-efficient-stable sodium ion storage. Energy Storage Mater. 2019, 23, 358–366.

3

Liu, Y. C.; Liu, X. B.; Wang, T. S.; Fan, L. Z.; Jiao, L. F. Research and application progress on key materials for sodium-ion batteries. Sustain. Energy Fuels 2017, 1, 986–1006.

4
Gu, J.; Peng, Y.; Zhou, T.; Ma, J.; Pang, H.; Yamauchi Y. Porphyrin-based framework materials for energy conversion. Nano Res. Energy 2022, DOI: 10.26599/NRE.2022.9120009.
5

Luo, J.; Li, H. Y.; Yu, G.; Xu, W. Y.; Yin, H.; Hou, Z. H. Multifunctional sandwich-structured double-carbon-layer modified SnS nanotubes with high capacity and stability for Li-ion batteries. Mater. Adv. 2022, 3, 3631–3641.

6

Qu, H. Q.; Yin, H.; Wang, Y. L.; Fan, C.; Hui, K. N.; Li, C.; Zhu, M. Q. Vapor selenization produced Bi2Se3 nanoparticles in carbon fiber 3D network as binder-free anode for flexible lithium-ion batteries. Mater. Chem. Front. 2021, 5, 2832–2841.

7

Fang, Y.; Chen, Z.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Recent progress in iron-based electrode materials for grid-scale sodium-ion batteries. Small 2018, 14, 1703116.

8

Wang, X. J.; Chen, K.; Wang, G.; Liu, X. J.; Wang, H. Rational design of three-dimensional graphene encapsulated with hollow FeP@carbon nanocomposite as outstanding anode material for lithium ion and sodium ion batteries. ACS Nano 2017, 11, 11602–11616.

9

Liu, Z. M.; Lu, T. C.; Song, T.; Yu, X. Y.; Lou, X. W.; Paik, U. Structure-designed synthesis of FeS2@C yolk-shell nanoboxes as a high-performance anode for sodium-ion batteries. Energy Environ. Sci. 2017, 10, 1576–1580.

10

Zhang, L. G.; Ji, S. M.; Yu, L. T.; Xu, X. J.; Liu, L. Amorphous FeF3/C nanocomposite cathode derived from metal-organic frameworks for sodium ion batteries. RSC Adv. 2017, 7, 24004–24010.

11

Hariharan, S.; Saravanan, K.; Ramar, V.; Balaya, P. A rationally designed dual role anode material for lithium-ion and sodium-ion batteries: Case study of eco-friendly Fe3O4. Phys. Chem. Chem. Phys. 2013, 15, 2945–2953.

12

Dong, C. C. Carbon-coated FeS as an anode for lithium ion batteries. Asian J. Chem. 2013, 25, 8275–8277.

13

Hu, Z.; Zhu, Z. Q.; Cheng, F. Y.; Zhang, K.; Wang, J. B.; Chen, C. C.; Chen, J. Pyrite FeS2 for high-rate and long-life rechargeable sodium batteries. Energy Environ. Sci. 2015, 8, 1309–1316.

14

Li, Q. D.; Wei, Q. L.; Zuo, W. B.; Huang, L.; Luo, W.; An, Q. Y.; Pelenovich, V. O.; Mai, L. Q.; Zhang, Q. J. Greigite Fe3S4 as a new anode material for high-performance sodium-ion batteries. Chem. Sci. 2017, 8, 160–164.

15

Jin, A. H.; Kim, M. J.; Lee, K. S.; Yu, S. H.; Sung, Y. E. Spindle-like Fe7S8/N-doped carbon nanohybrids for high-performance sodium ion battery anodes. Nano Res. 2019, 12, 695–700.

16

Xu, Q. T.; Li, J. C.; Xue, H. G.; Guo, S. P. Effective combination of FeS2 microspheres and Fe3S4 microcubes with rGO as anode material for high-capacity and long-cycle lithium-ion batteries. J. Power Sources 2018, 396, 675–682.

17

He, K.; Zhou, Y. N.; Gao, P.; Wang, L. P.; Pereira, N.; Amatucci, G. G.; Nam, K. W.; Yang, X. Q.; Zhu, Y. M.; Wang, F. et al. Sodiation via heterogeneous disproportionation in FeF2 electrodes for sodium-ion batteries. ACS Nano 2014, 8, 7251–7259.

18

Wei, S. Y.; Wang, X. Y.; Jiang, M. L.; Zhang, R.; Shen, Y. Q.; Hu, H. The FeF3·0.33H2O/C nanocomposite with open mesoporous structure as high-capacity cathode material for lithium/sodium ion batteries. J. Alloys Compd. 2016, 689, 945–951.

19

Fan, X. L.; Zhu, Y. J.; Luo, C.; Suo, L. M.; Lin, Y.; Gao, T.; Xu, K.; Wang, C. S. Pomegranate-structured conversion-reaction cathode with a built-in Li source for high-energy Li-ion batteries. ACS Nano 2016, 10, 5567–5577.

20

Wang, Y.; Wu, C. J.; Wu, Z. G.; Cui, G. W.; Xie, F. Y.; Guo, X. D.; Sun, X. P. FeP nanorod arrays on carbon cloth: A high-performance anode for sodium-ion batteries. Chem. Commun. 2018, 54, 9341–9344.

21

Yang, X.; Zhang, S. M.; Zhang, J. X. Synthesis and modification of iron-based cathode materials: Iron phosphate for lithium secondary batteries. Arab. J. Sci. Eng. 2014, 39, 6687–6691.

22

Yu, Y. D.; Zhu, Y. J.; Wu, J. Glycerin-assisted solvothermal synthesis of Fe3(PO4)2(OH)2 microspheres. Mater. Lett. 2017, 205, 158–161.

23

Masquelier, P.; Reale, C.; Wurm, M.; Morerette, L.; Dupont, D. L. Hydrated iron phosphates FePO4·nH2O and Fe4(P2O7)3·nH2O as 3 V positive electrodes in rechargeable lithium batteries. J. Electrochem. Soc. 2002, 149, A1037–A1044.

24

Liu, Y.; Xu, S. J.; Zhang, S. M.; Zhang, J. X.; Fan, J. C.; Zhou, Y. R. Direct growth of FePO4/reduced graphene oxide nanosheet composites for the sodium-ion battery. J. Mater. Chem. A 2015, 3, 5501–5508.

25

Zhang, Z. Z.; Han, Y.; Xu, J. M.; Ma, J. H.; Zhou, X. S.; Bao, J. C. Construction of amorphous FePO4 nanosheets with enhanced sodium storage properties. ACS Appl. Energy Mater. 2018, 1, 4395–4402.

26

Li, C.; Wang, X. H.; Li, J. Y.; Wang, H. Y. FePO4 as an anode material to obtain high-performance sodium-based dual-ion batteries. Chem. Commun. 2018, 54, 4349–4352.

27
Jiang, L.; Dong, D.; Lu, Y.-C. Design strategies for low temperature aqueous electrolytes. Nano Res. Energy 2022, DOI: 10.26599/NRE.2022.9120003.
28

Sebai, S.; Hammami, S.; Megriche, A.; Zambon, D.; Mahiou, R. Synthesis, structural characterization and VUV excited luminescence properties of LixNa(1–x)Sm(PO3)4 polyphosphates. Opt. Mater. 2016, 62, 578–583.

29

Guo, S.; Zhang, G. K.; Yu, J. C. Enhanced photo-Fenton degradation of rhodamine B using graphene oxide-amorphous FePO4 as effective and stable heterogeneous catalyst. J. Colloid Interf. Sci. 2015, 448, 460–466.

30

Jouini, A.; Ferid, M.; Trabelsi-Ayadi, M. Study of the solid-liquid equilibria in the LiPO3-Y(PO3)3 binary system. Mater. Res. Bull. 2003, 38, 437–443.

31

Yue, L.; Zhang, W. H.; Yang, J. F.; Zhang, L. Z. Designing Si/porous-C composite with buffering voids as high capacity anode for lithium-ion batteries. Electrochim. Acta 2014, 125, 206–217.

32

Zhang, L. Y.; Brow, R. K. A Raman study of iron-phosphate crystalline compounds and glasses. J. Am. Ceram. Soc. 2011, 94, 3123–3130.

33

Li, M. J.; Wu, Z. L.; Ma, Z.; Schwartz, V.; Mullins, D. R.; Dai, S.; Overbury, S. H. CO oxidation on Au/FePO4 catalyst: Reaction pathways and nature of Au sites. J. Catal. 2009, 266, 98–105.

34

Jing, Z. H.; Zhan, J. H. Fabrication and gas-sensing properties of porous ZnO nanoplates. Adv. Mater. 2008, 20, 4547–4551.

35

Lin, Z. H.; Xiong, X. H.; Fan, M. N.; Xie, D.; Wang, G.; Yang, C. H.; Liu, M. L. Scalable synthesis of FeS2 nanoparticles encapsulated into N-doped carbon nanosheets as a high-performance sodium-ion battery anode. Nanoscale 2019, 11, 3773–3779.

36

Zhou, H. Q.; Yu, F.; Sun, J. Y.; He, R.; Chen, S.; Chu, C. W.; Ren, Z. F. Highly active catalyst derived from a 3D foam of Fe(PO3)2/Ni2P for extremely efficient water oxidation. Proc. Natl. Acad. Sci. USA 2017, 114, 5607–5611.

37

Razmjooei, F.; Singh, K. P.; Song, M. Y.; Yu, J. S. Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: A comprehensive study. Carbon 2014, 78, 257–267.

38

Tong, J. H.; Li, Y. L.; Bo, L. L.; Li, W. Y.; Li, T.; Zhang, Q.; Kong, D. Y.; Wang, H.; Li, C. Y. CoP/N-doped carbon hollow spheres anchored on electrospinning core-shell N-doped carbon nanofibers as efficient electrocatalysts for water splitting. ACS Sustainable Chem. Eng. 2019, 7, 17432–17442.

39
Liang J.; Liu, Q.; Alshehri, A. A.; Sun, X. Recent advances in nanostructured heterogeneous catalysts for N-cycle electrocatalysis. Nano Res. Energy 2022, DOI: 10.26599/NRE.2022.9120010.
40

Dai, S. G.; Liu, Z.; Zhao, B. T.; Zeng, J. H.; Hu, H.; Zhang, Q. B.; Chen, D. C.; Qu, C.; Dang, D.; Liu, M. L. A high-performance supercapacitor electrode based on N-doped porous graphene. J. Power Sources 2018, 387, 43–48.

41

Tan, Z. Q.; Ni, K.; Chen, G. X.; Zeng, W. C.; Tao, Z. C.; Ikram, M.; Zhang, Q. B.; Wang, H. J.; Sun, L. T.; Zhu, X. J. et al. Incorporating pyrrolic and pyridinic nitrogen into a porous carbon made from C60 molecules to obtain superior energy storage. Adv. Mater. 2017, 29, 1603414.

42

Orliukas, A. F.; Fung, K. Z.; Venckutė, V. ; Kazlauskienė, V. ; Miškinis, J.; Dindune, A.; Kanepe, Z.; Ronis, J.; Maneikis, A.; Šalkus, T. et al. SEM/EDX, XPS, and impedance spectroscopy of LiFePO4 and LiFePO4/C ceramics. Lith. J. Phys. 2014, 54, 106–113.

43

Liu, Y. C.; Zhang, N.; Wang, F. F.; Liu, X. B.; Jiao, L. F.; Fan, L. Z. Approaching the downsizing limit of maricite NaFePO4 toward high-performance cathode for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1801917.

44

Ye, H. L.; Wang, Y. Y.; Zhao, F. P.; Huang, W. J.; Han, N.; Zhou, J. H.; Zeng, M.; Li, Y. G. Iron-based sodium-ion full batteries. J. Mater. Chem. A 2016, 4, 1754–1761.

45

Agrawal, A.; Janakiraman, S.; Biswas, K.; Venimadhav, A.; Srivastava, S. K.; Ghosh, S. Understanding the improved electrochemical performance of nitrogen-doped hard carbons as an anode for sodium ion battery. Electrochim. Acta 2019, 317, 164–172.

46

Liu, H. C.; Ho, W. H.; Li, C. F.; Yen, S. K. Electrochemical synthesis of FePO4 for anodes in rechargeable lithium batteries. J. Electrochem. Soc. 2008, 155, E178–E182.

47

Chen, S.; Xin, Y. L.; Zhou, Y. Y.; Zhang, F.; Ma, Y. R.; Zhou, H. H.; Qi, L. M. Robust α-Fe2O3 nanorod arrays with optimized interstices as high-performance 3D anodes for high-rate lithium ion batteries. J. Mater. Chem. A 2015, 3, 13377–13383.

48

Yuan, X. Q.; Wu, L. S.; He, X. L.; Zeinu, K.; Huang, L.; Zhu, X. L.; Hou, H. J.; Liu, B. C.; Hu, J. P.; Yang, J. K. Separator modified with N, S co-doped mesoporous carbon using egg shell as template for high performance lithium-sulfur batteries. Chem. Eng. J. 2017, 320, 178–188.

49

Dai, H. Q.; Xu, W. Q.; Chen, Y. Y.; Li, M.; Chen, Z. H.; Yang, B. B.; Mei, S. L.; Zhang, W. L.; Xie, F. X.; Wei, W. et al. Narrow band-gap cathode Fe3(PO4)2 for sodium-ion battery with enhanced sodium storage. Colloids Surf. A Physicochem. Eng. Aspects 2020, 591, 124561.

50

Li, M.; Du, H. R.; Kuai, L.; Huang, K. F.; Xia, Y. Y.; Geng, B. Y. Scalable dry production process of a superior 3D net-like carbon-based iron oxide anode material for lithium-ion batteries. Angew. Chem., Int. Ed. 2017, 56, 12649–12653.

51

Luo, D.; Xu, J.; Guo, Q. B.; Fang, L. Z.; Zhu, X. H.; Xia, Q. Y.; Xia, H. Surface-dominated sodium storage towards high capacity and ultrastable anode material for sodium-ion batteries. Adv. Funct. Mater. 2018, 28, 1805371.

52

Chao, D. L.; Liang, P.; Chen, Z.; Bai, L. Y.; Shen, H.; Liu, X. X.; Xia, X. H.; Zhao, Y. L.; Savilov, S. V.; Lin, J. Y. et al. Pseudocapacitive Na-ion storage boosts high rate and areal capacity of self-branched 2D layered metal chalcogenide nanoarrays. ACS Nano 2016, 10, 10211–10219.

53

Lee, S. Y.; Kang, Y. C. Sodium-ion storage properties of FeS-reduced graphene oxide composite powder with a crumpled structure. Chem. -Eur. J. 2016, 22, 2769–2774.

54

Yue, L.; Shen, C.; Zhang, Y.; Song, Y. Q.; Huang, W. P.; Lu, Y.; Qian, Y.; Jin, Z. C.; Guan, R. F.; Zhang, W. H. Controlled synthesis of porous Co-Mn nanosheet composite with high performance for lithium-ion battery. J. Alloy Compd. 2019, 784, 29–40.

55

Ruan, J. F.; Zang, J. H.; Hu, J. M.; Che, R. C.; Fang, F.; Wang, F.; Song, Y.; Sun, D. L. Respective roles of inner and outer carbon in boosting the K+ storage performance of dual-carbon-confined ZnSe. Adv. Sci. 2022, 9, 2104822.

56

Li, H. J.; Hao, S. Y.; Tian, Z.; Zhao, Z. X.; Wang, X. M. Flexible self-supporting Ni2P@N-doped carbon anode for superior rate and durable sodium-ion storage. Electrochim. Acta 2019, 321, 134624.

57

Zhang, Z. Z.; Du, Y. C.; Wang, Q. C.; Xu, J. Y.; Zhou, Y. N.; Bao, J. C.; Shen, J.; Zhou, X. S. A yolk-shell-structured FePO4 cathode for high-rate and long-cycling sodium-ion batteries. Angew. Chem., Int. Ed. 2020, 59, 17504–17510.

File
12274_2022_4678_MOESM1_ESM.pdf (4.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2022
Revised: 14 June 2022
Accepted: 20 June 2022
Published: 05 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51802276 and 52072330), and The Scientific and Technological Plan of Guangdong Province, China (No. 2019B090905005).

Return