Journal Home > Volume 15 , Issue 12

Driven by the serious ecological problems, it is urgent to explore high-efficiency sustainable energy technologies. Oxygen electrocatalysis acts as important half-reactions in the emerging electrochemical energy techniques including electrolysis and batteries. Gel composites exhibit the merits of rich porous, superior hydrophilic, and large specific surface area, which can significantly improve the electrolyte penetration and boost the kinetics process of oxygen electrocatalysis. In this invited contribution, the advances and challenges of a novel gel materials for oxygen electrocatalysis are summarized. Starting from the structure–activity–performance relationship of gel materials, synthetic routes of nanostructured gel materials, namely, radical polymerization, sol-gel method, hydrothermal/solvothermal reactions, and ligand-substitution method, are introduced. Afterward, the gel composites are divided into polymer-based, metal-based, and carbon-based materials in turn, and their applications in oxygen electrocatalysis are discussed respectively. At the end, the perspective and challenges for advanced gel oxygen electrocatalysts are proposed.


menu
Abstract
Full text
Outline
About this article

Progress on nanostructured gel catalysts for oxygen electrocatalysis

Show Author's information Huan Yang1Huilin Hu1Chenfeng Xia2Feng You1Junlong Yao1Xueliang Jiang1( )Bao Yu Xia2( )
Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, Wuhan 430205, China
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), Hubei Key Laboratory of Material Chemistry and Service Failure, Wuhan National Laboratory for Optoelectronics, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, China

Abstract

Driven by the serious ecological problems, it is urgent to explore high-efficiency sustainable energy technologies. Oxygen electrocatalysis acts as important half-reactions in the emerging electrochemical energy techniques including electrolysis and batteries. Gel composites exhibit the merits of rich porous, superior hydrophilic, and large specific surface area, which can significantly improve the electrolyte penetration and boost the kinetics process of oxygen electrocatalysis. In this invited contribution, the advances and challenges of a novel gel materials for oxygen electrocatalysis are summarized. Starting from the structure–activity–performance relationship of gel materials, synthetic routes of nanostructured gel materials, namely, radical polymerization, sol-gel method, hydrothermal/solvothermal reactions, and ligand-substitution method, are introduced. Afterward, the gel composites are divided into polymer-based, metal-based, and carbon-based materials in turn, and their applications in oxygen electrocatalysis are discussed respectively. At the end, the perspective and challenges for advanced gel oxygen electrocatalysts are proposed.

Keywords: carbon, polymer, metal, oxygen electrocatalysis, gel materials

References(120)

[1]

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

[2]

Wan, S.; Zhang, T.; Chen, H. K.; Liao, B. K.; Guo, X. P. Kapok leaves extract and synergistic iodide as novel effective corrosion inhibitors for Q235 carbon steel in H2SO4 medium. Ind. Crops Prod. 2022, 178, 114649.

[3]

Yang, H.; Gong, L. Q.; Wang, H. M.; Dong, C. L.; Wang, J. L.; Qi, K.; Liu, H. F.; Guo, X. P.; Xia, B. Y. Preparation of nickel-iron hydroxides by microorganism corrosion for efficient oxygen evolution. Nat. Commun. 2020, 11, 5075.

[4]

Zhang, J.; Zhang, Q. Y.; Feng, X. L. Support and interface effects in water-splitting electrocatalysts. Adv. Mater. 2019, 31, 1808167.

[5]

Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Atomic modulation and structure design of carbons for bifunctional electrocatalysis in metal-air batteries. Adv. Mater. 2019, 31, 1803800.

[6]

Zaman, S.; Huang, L.; Douka, A. I.; Yang, H.; You, B.; Xia, B. Y. Oxygen reduction electrocatalysts toward practical fuel cells: Progress and perspectives. Angew. Chem., Int. Ed. 2021, 60, 17832–17852.

[7]

Chen, H.; Zhou, Y. S.; Guo, W.; Xia, B. Y. Emerging two-dimensional nanocatalysts for electrocatalytic hydrogen production. Chin. Chem. Lett. 2022, 33, 1831–1840.

[8]

Zhao, D.; Zhuang, Z. W.; Cao, X.; Zhang, C.; Peng, Q.; Chen, C.; Li, Y. D. Atomic site electrocatalysts for water splitting, oxygen reduction and selective oxidation. Chem. Soc. Rev. 2020, 49, 2215–2264.

[9]

Seh, Z. W.; Kibsgaard, J.; Dickens, C. F.; Chorkendorff, I.; Nørskov, J. K.; Jaramillo, T. F. Combining theory and experiment in electrocatalysis: Insights into materials design. Science 2017, 355, eaad4998.

[10]

Xia, B. Y.; Ding, S. J.; Wu, H. B.; Wang, X.; Wen, X. Hierarchically structured Pt/CNT@TiO2 nanocatalysts with ultrahigh stability for low-temperature fuel cells. RSC Adv. 2012, 2, 792–796.

[11]

Wu, J. B.; Yang, H. Platinum-based oxygen reduction electrocatalysts. Acc. Chem. Res. 2013, 46, 1848–1857.

[12]

Zaman, S.; Tian, X. L.; Su, Y. Q.; Cai, W. W.; Yan, Y.; Qi, R. J.; Douka, A. I.; Chen, S. H.; You, B.; Liu, H. F. et al. Direct integration of ultralow-platinum alloy into nanocarbon architectures for efficient oxygen reduction in fuel cells. Sci. Bull. 2021, 66, 2207–2216.

[13]

Huang, L.; Su, Y. Q.; Qi, R. J.; Dang, D.; Qin, Y. Y.; Xi, S. B.; Zaman, S.; You, B.; Ding, S. J.; Xia, B. Y. Boosting oxygen reduction via integrated construction and synergistic catalysis of porous platinum alloy and defective graphitic carbon. Angew. Chem., Int. Ed. 2021, 60, 25530–25537.

[14]

Xia, B. Y.; Wu, H. B.; Yan, Y.; Wang, H. B.; Wang, X. One-pot synthesis of platinum nanocubes on reduced graphene oxide with enhanced electrocatalytic activity. Small 2014, 10, 2336–2339.

[15]

Li, Y. J.; Guo, S. J. Noble metal-based 1D and 2D electrocatalytic nanomaterials: Recent progress, challenges and perspectives. Nano Today 2019, 28, 100774.

[16]

Zhou, X. L.; Liu, H.; Xia, B. Y.; Ostrikov, K.; Zheng, Y.; Qiao, S. Z. Customizing the microenvironment of CO2 electrocatalysis via three-phase interface engineering. SmartMat 2022, 3, 111–129.

[17]

Fang, Z. W.; Li, P. P.; Yu, G. H. Gel electrocatalysts: An emerging material platform for electrochemical energy conversion. Adv. Mater. 2020, 32, 2003191.

[18]

Guo, Y. H.; Bae, J.; Zhao, F.; Yu, G. H. Functional hydrogels for next-generation batteries and supercapacitors. Trends Chem. 2019, 1, 335–348.

[19]

Wang, Y. Q.; Shi, Y.; Pan, L. J.; Ding, Y.; Zhao, Y.; Li, Y.; Shi, Y.; Yu, G. H. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 2015, 15, 7736–7741.

[20]

Fang, Z. W.; Wu, P.; Yu, K.; Li, Y. F.; Zhu, Y.; Ferreira, P. J.; Liu, Y. Y.; Yu, G. H. Hybrid organic–inorganic gel electrocatalyst for stable acidic water oxidation. ACS Nano 2019, 13, 14368–14376.

[21]

Yang, J.; Wang, X.; Li, B.; Ma, L.; Shi, L.; Xiong, Y. J.; Xu, H. X. Novel iron/cobalt-containing polypyrrole hydrogel-derived trifunctional electrocatalyst for self-powered overall water splitting. Adv. Funct. Mater. 2017, 27, 1606497.

[22]

Liu, W.; Herrmann, A. K.; Bigall, N. C.; Rodriguez, P.; Wen, D.; Oezaslan, M.; Schmidt, T. J.; Gaponik, N.; Eychmüller, A. Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 2015, 48, 154–162.

[23]

Yang, H.; Dong, C. L.; Wang, H. M.; Qi, R. J.; Gong, L. Q.; Lu, Y. R.; He, C. H.; Chen, S. H.; You, B.; Liu, H. F. et al. Constructing nickel-iron oxyhydroxides integrated with iron oxides by microorganism corrosion for oxygen evolution. Proc. Natl. Acad. Sci. USA 2022, 119, e2202812119.

[24]

Cai, B.; Eychmüller, A. Promoting electrocatalysis upon aerogels. Adv. Mater. 2019, 31, 1804881.

[25]

Liu, X. E.; Dai, L. M. Carbon-based metal-free catalysts. Nat. Rev. Mater. 2016, 1, 16064.

[26]

Cheng, Y.; Pang, K. L.; Xu, X. H.; Yuan, P. F.; Zhang, Z. G.; Wu, X.; Zheng, L. R.; Zhang, J. N.; Song, R. Borate crosslinking synthesis of structure tailored carbon-based bifunctional electrocatalysts directly from guar gum hydrogels for efficient overall water splitting. Carbon 2020, 157, 153–163.

[27]

Chen, Z.; Zhang, S.; Yang, J.; Chen, C.; Song, Y. C.; Xu, C. L.; Wu, M. Q.; Liao, J. X. High loading of NiFe active sites on a melamine formaldehyde carbon-based aerogel towards efficient bi-functional electrocatalysis for water splitting. Sustainable Energy Fuels 2021, 5, 4973–4980.

[28]

Zhou, B. L.; Liu, L. Z.; Yang, Z. F.; Li, X. Q.; Wen, Z. H.; Chen, L. Porous organic polymer gel derived electrocatalysts for efficient oxygen reduction. ChemElectroChem 2019, 6, 485–492.

[29]

Danks, A. E.; Hall, S. R.; Schnepp, Z. The evolution of “sol-gel” chemistry as a technique for materials synthesis. Mater. Horiz. 2016, 3, 91–112.

[30]

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

[31]

Fang, Z. W.; Zhang, A. P.; Wu, P.; Yu, G. H. Inorganic cyanogels and their derivatives for electrochemical energy storage and conversion. ACS Mater. Lett. 2019, 1, 158–170.

[32]

Yin, Z. G.; Zheng, Q. D. Controlled synthesis and energy applications of one-dimensional conducting polymer nanostructures: An overview. Adv. Energy Mater. 2012, 2, 179–218.

[33]

Pan, L. J.; Yu, G. H.; Zhai, D. Y.; Lee, H. R.; Zhao, W. T.; Liu, N.; Wang, H. L.; Tee, B. C. K.; Shi, Y.; Cui, Y. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl. Acad. Sci. USA 2012, 109, 9287–9292.

[34]

Shanmugam, S.; Xu, S. H.; Adnan, N. N. M.; Boyer, C. Heterogeneous photocatalysis as a means for improving recyclability of organocatalyst in “living” radical polymerization. Macromolecules 2018, 51, 779–790.

[35]

Cuthbert, J.; Balazs, A. C.; Kowalewski, T.; Matyjaszewski, K. Stem gels by controlled radical polymerization. Trends Chem. 2020, 2, 341–353.

[36]

Esposito, S. “Traditional” sol-gel chemistry as a powerful tool for the preparation of supported metal and metal oxide catalysts. Materials 2019, 12, 668.

[37]

Abdelwahab, A.; Carrasco-Marín, F.; Pérez-Cadenas, A. F. Binary and ternary 3D nanobundles metal oxides functionalized carbon xerogels as electrocatalysts toward oxygen reduction reaction. Materials 2020, 13, 3531.

[38]

Zhao, X. L.; Yao, W. Q.; Gao, W. W.; Chen, H.; Gao, C. Wet-spun superelastic graphene aerogel millispheres with group effect. Adv. Mater. 2017, 29, 1701482.

[39]

Xu, X.; Zhang, Q. Q.; Yu, Y. K.; Chen, W. L.; Hu, H.; Li, H. Naturally dried graphene aerogels with superelasticity and tunable poisson's ratio. Adv. Mater. 2016, 28, 9223–9230.

[40]

Dong, D. P.; Guo, H. T.; Li, G. Y.; Yan, L. F.; Zhang, X. T.; Song, W. H. Assembling hollow carbon sphere-graphene polylithic aerogels for thermoelectric cells. Nano Energy 2017, 39, 470–477.

[41]

Xu, Z.; Gao, C. Graphene in macroscopic order: Liquid crystals and wet-spun fibers. Acc. Chem. Res. 2014, 47, 1267–1276.

[42]

Yang, H. S.; Li, Z. L.; Lu, B.; Gao, J.; Jin, X. T.; Sun, G. Q.; Zhang, G. F.; Zhang, P. P.; Qu, L. T. Reconstruction of inherent graphene oxide liquid crystals for large-scale fabrication of structure-intact graphene aerogel bulk toward practical applications. ACS Nano 2018, 12, 11407–11416.

[43]

Sun, Y. Q.; Wu, Q.; Shi, G. Q. Supercapacitors based on self-assembled graphene organogel. Phys. Chem. Chem. Phys. 2011, 13, 17249–17254.

[44]

Liang, Q. W.; Ploychompoo, S.; Chen, J. D.; Zhou, T. T.; Luo, H. J. Simultaneous Cr(VI) reduction and bisphenol A degradation by a 3D Z-scheme Bi2S3-BiVO4 graphene aerogel under visible light. Chem. Eng. J. 2020, 384, 123256.

[45]

Liu, Z. Y.; Yang, X. Y.; Lu, B. Q.; Shi, Z. P.; Sun, D. M.; Xu, L.; Tang, Y. W.; Sun, S. H. Delicate topotactic conversion of coordination polymers to Pd porous nanosheets for high-efficiency electrocatalysis. Appl. Catal. B:Environ. 2019, 243, 86–93.

[46]

Shi, H. X.; Fang, Z. W.; Zhang, X.; Li, F.; Tang, Y. W.; Zhou, Y. M.; Wu, P.; Yu, G. H. Double-network nanostructured hydrogel-derived ultrafine Sn-Fe alloy in three-dimensional carbon framework for enhanced lithium storage. Nano Lett. 2018, 18, 3193–3198.

[47]

Yang, H.; Han, X. T.; Douka, A. I.; Huang, L.; Gong, L. Q.; Xia, C. F.; Park, H. S.; Xia, B. Y. Advanced oxygen electrocatalysis in energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2007602.

[48]

Li, T. Q.; Jin, H. R.; Liang, Z.; Huang, L.; Lu, Y. C.; Yu, H. M.; Hu, Z. M.; Wu, J. B.; Xia, B. Y.; Feng, G. et al. Synthesis of single crystalline two-dimensional transition-metal phosphides via a salt-templating method. Nanoscale 2018, 10, 6844–6849.

[49]

Jin, H. Y.; Guo, C. X.; Liu, X.; Liu, J. L.; Vasileff, A.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Emerging two-dimensional nanomaterials for electrocatalysis. Chem. Rev. 2018, 118, 6337–6408.

[50]

Hwang, J.; Rao, R. R.; Giordano, L.; Katayama, Y.; Yu, Y.; Shao-Horn, Y. Perovskites in catalysis and electrocatalysis. Science 2017, 358, 751–756.

[51]

Kawase, T.; Nishiyama, Y.; Nakamura, T.; Ebi, T.; Matsumoto, K.; Kurata, H.; Oda, M. Cyclic [5]paraphenyleneacetylene: Synthesis, properties, and formation of a ring-in-ring complex showing a considerably large association constant and entropy effect. Angew. Chem., Int. Ed. 2007, 46, 1086–1088.

[52]

Pan, L. J.; Chortos, A.; Yu, G. H.; Wang, Y. Q.; Isaacson, S.; Allen, R.; Shi, Y.; Dauskardt, R.; Bao, Z. N. An ultra-sensitive resistive pressure sensor based on hollow-sphere microstructure induced elasticity in conducting polymer film. Nat. Commun. 2014, 5, 3002.

[53]

Chen, Z.; To, J. W. F.; Wang, C.; Lu, Z. D.; Liu, N.; Chortos, A.; Pan, L. J.; Wei, F.; Cui, Y.; Bao, Z. N. A three-dimensionally interconnected carbon nanotube-conducting polymer hydrogel network for high-performance flexible battery electrodes. Adv. Energy Mater. 2014, 4, 1400207.

[54]

Kang, L.; Shi, L. J.; Zeng, Q.; Liao, B. K.; Wang, B.; Guo, X. P. Melamine resin-coated lignocellulose fibers with robust superhydrophobicity for highly effective oil/water separation. Sep. Purif. Technol. 2021, 279, 119737.

[55]

Altava, B.; Burguete, M. I.; García-Verdugo, E.; Luis, S. V. Chiral catalysts immobilized on achiral polymers: Effect of the polymer support on the performance of the catalyst. Chem. Soc. Rev. 2018, 47, 2722–2771.

[56]

Li, R.; Wei, Z. D.; Gou, X. L. Nitrogen and phosphorus dual-doped graphene/carbon nanosheets as bifunctional electrocatalysts for oxygen reduction and evolution. ACS Catal. 2015, 5, 4133–4142.

[57]

Wang, X. X.; Na, Z. L.; Yin, D. M.; Wang, C. L.; Wu, Y. M.; Huang, G.; Wang, L. M. Phytic acid-assisted formation of hierarchical porous CoP/C nanoboxes for enhanced lithium storage and hydrogen generation. ACS Nano 2018, 12, 12238–12246.

[58]

Sheets, B. L.; Botte, G. G. Electrochemical nitrogen reduction to ammonia under mild conditions enabled by a polymer gel electrolyte. Chem. Commun. 2018, 54, 4250–4253.

[59]

Hu, Q.; Li, G. M.; Liu, X. F.; Zhu, B.; Chai, X. Y.; Zhang, Q. L.; Liu, J. H.; He, C. X. Superhydrophilic phytic-acid-doped conductive hydrogels as metal-free and binder-free electrocatalysts for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 4318–4322.

[60]

Zhao, S. L.; Wang, D. W.; Amal, R.; Dai, L. M. Carbon-based metal-free catalysts for key reactions involved in energy conversion and storage. Adv. Mater. 2019, 31, 1801526.

[61]

Gao, S.; Lin, Y.; Jiao, X. C.; Sun, Y. F.; Luo, Q. Q.; Zhang, W. H.; Li, D. Q.; Yang, J. L.; Xie, Y. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel. Nature 2016, 529, 68–71.

[62]

Yan, D. F.; Xia, C. F.; He, C. H.; Liu, Q. Q.; Chen, G. D.; Guo, W.; Xia, B. Y. A substrate-induced fabrication of active free-standing nanocarbon film as air cathode in rechargeable zinc-air batteries. Small 2022, 18, 2106606.

[63]

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 6492–6499.

[64]

Liu, Q. Q.; Wang, Q. C.; Wang, J.; Li, Z. G.; Liu, J. J.; Sun, X. Y.; Li, J.; Lei, Y. P.; Dai, L. M.; Wang, P. S. TpyCo2+-based coordination polymers by water-induced gelling trigged efficient oxygen evolution reaction. Adv. Funct. Mater. 2020, 30, 2000593.

[65]

Wang, H. F.; Chen, L. Y.; Pang, H.; Kaskel, S.; Xu, Q. MOF-derived electrocatalysts for oxygen reduction, oxygen evolution and hydrogen evolution reactions. Chem. Soc. Rev. 2020, 49, 1414–1448.

[66]

Sutar, P.; Maji, T. K. Coordination polymer gels: Soft metal-organic supramolecular materials and versatile applications. Chem. Commun. 2016, 52, 8055–8074.

[67]

Wang, H.; Chen, B. H.; Liu, D. J. Metal-organic frameworks and metal-organic gels for oxygen electrocatalysis: Structural and compositional considerations. Adv. Mater. 2021, 33, 2008023.

[68]

He, L.; Peng, Z. W.; Jiang, Z. W.; Tang, X. Q.; Huang, C. Z.; Li, Y. F. Novel iron(III)-based metal-organic gels with superior catalytic performance toward luminol chemiluminescence. ACS Appl. Mater. Interfaces 2017, 9, 31834–31840.

[69]

Chen, Y. N.; Yang, Z. Q.; Hu, H. L.; Zhou, X. C.; You, F.; Yao, C.; Liu, F. J.; Yu, P.; Wu, D.; Yao, J. L. et al. Advanced metal-organic frameworks-based catalysts in electrochemical sensors. Front. Chem. 2022, 10, 881172.

[70]

Guo, H. L.; Feng, Q. C.; Xu, K. W.; Xu, J. S.; Zhu, J. X.; Zhang, C.; Liu, T. X. Self-templated conversion of metallogel into heterostructured TMP@carbon quasiaerogels boosting bifunctional electrocatalysis. Adv. Funct. Mater. 2019, 29, 1903660.

[71]

Cao, Z. M.; Jiang, Z. W.; Li, Y.; Huang, C. Z.; Li, Y. F. Metal-organic gel-derived multimetal oxides as effective electrocatalysts for the oxygen evolution reaction. ChemSusChem 2019, 12, 2480–2486.

[72]

Feng, X. Y.; Xiao, Y. L.; Huang, H. H.; Wang, Q. S.; Wu, J. Y.; Ke, Z. F.; Tong, Y. X.; Zhang, J. Y. Phytic acid-based FeCo bimetallic metal-organic gels for electrocatalytic oxygen evolution reaction. Chem.—Asian J. 2021, 16, 3213–3220.

[73]

Yan, S.; Zhong, M. X.; Wang, C.; Lu, X. F. Amorphous aerogel of trimetallic FeCoNi alloy for highly efficient oxygen evolution. Chem. Eng. J. 2022, 430, 132955.

[74]

Zhang, L. H.; Shi, Y. M.; Wang, Y.; Shiju, N. R. Nanocarbon catalysts: Recent understanding regarding the active sites. Adv. Sci. 2020, 7, 1902126.

[75]

Li, S. J.; Xie, Y.; Lai, B. L.; Liang, Y. M.; Xiao, K.; Ouyang, T.; Li, N.; Liu, Z. Q. Atomic modulation of Fe-Co pentlandite coupled with nitrogen-doped carbon sphere for boosting oxygen catalysis. Chin. J. Catal. 2022, 43, 1502–1510.

[76]

Zhang, B.; Yang, F.; Liu, X. D.; Wu, N.; Che, S.; Li, Y. F. Phosphorus doped nickel-molybdenum aerogel for efficient overall water splitting. Appl. Catal. B: Environ. 2021, 298, 120494.

[77]

Chervin, C. N.; DeSario, P. A.; Parker, J. F.; Nelson, E. S.; Miller, B. W.; Rolison, D. R.; Long, J. W. Aerogel architectures boost oxygen-evolution performance of NiFe2Ox spinels to activity levels commensurate with nickel-rich oxides. ChemElectroChem 2016, 3, 1369–1375.

[78]

Sutar, P.; Maji, T. K. Recent advances in coordination-driven polymeric gel materials: Design and applications. Dalton Trans. 2020, 49, 7658–7672.

[79]

Yang, M. S.; Liu, Y. F.; Sun, J. Q.; Zhang, S. S.; Liu, X. J.; Luo, J. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery. Sci. China Mater. 2022, 65, 1176–1186.

[80]

Zhang, B.; Zheng, X. L.; Voznyy, O.; Comin, R.; Bajdich, M.; García-Melchor, M.; Han, L. L.; Xu, J. X.; Liu, M.; Zheng, L. R. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 2016, 352, 333–337.

[81]

Zhou, X. L.; Jin, H. Y.; Xia, B. Y.; Davey, K.; Zheng, Y.; Qiao, S. Z. Molecular cleavage of metal-organic frameworks and application to energy storage and conversion. Adv. Mater. 2021, 33, 2104341.

[82]

Wu, K. Z.; Zhang, L.; Yuan, Y. F.; Zhong, L. X.; Chen, Z. X.; Chi, X.; Lu, H.; Chen, Z. H.; Zou, R.; Li, T. Z. et al. An iron-decorated carbon aerogel for rechargeable flow and flexible Zn-air batteries. Adv. Mater. 2020, 32, 2002292.

[83]

Karthik, V.; Selvakumar, P.; Kumar, P. S.; Vo, D. V. N.; Gokulakrishnan, M.; Keerthana, P.; Elakkiya, V. T.; Rajeswari, R. Graphene-based materials for environmental applications: A review. Environ. Chem. Lett. 2021, 19, 3631–3644.

[84]

Song, L.; Hu, C. G.; Xiao, Y.; He, J. P.; Lin, Y.; Connell, J. W.; Dai, L. M. An ultra-long life, high-performance, flexible Li-CO2 battery based on multifunctional carbon electrocatalysts. Nano Energy 2020, 71, 104595.

[85]

Fei, H. L.; Dong, J. C.; Feng, Y. X.; Allen, C. S.; Wan, C. Z.; Volosskiy, B.; Li, M. F.; Zhao, Z. P.; Wang, Y. L.; Sun, H. T. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 2018, 1, 63–72.

[86]

Tang, S. B.; Zhou, X. H.; Liu, T. Y.; Zhang, S. Y.; Yang, T. T.; Luo, Y.; Sharman, E.; Jiang, J. Single nickel atom supported on hybridized graphene-boron nitride nanosheet as a highly active bi-functional electrocatalyst for hydrogen and oxygen evolution reactions. J. Mater. Chem. A 2019, 7, 26261–26265.

[87]

Liu, J.; Bunes, B. R.; Zang, L.; Wang, C. Y. Supported single-atom catalysts: Synthesis, characterization, properties, and applications. Environ. Chem. Lett. 2018, 16, 477–505.

[88]

Deng, Q. M.; Zhao, J.; Wu, T. T.; Chen, G. B.; Hansen, H. A.; Vegge, T. 2D transition metal-TCNQ sheets as bifunctional single-atom catalysts for oxygen reduction and evolution reaction (ORR/OER). J. Catal. 2019, 370, 378–384.

[89]

Deng, Y. J.; Chi, B.; Tian, X. L.; Cui, Z. M.; Liu, E. S.; Jia, Q. Y.; Fan, W. J.; Wang, G. H.; Dang, D.; Li, M. S. et al. g-C3N4 promoted MOF derived hollow carbon nanopolyhedra doped with high density/fraction of single Fe atoms as an ultra-high performance non-precious catalyst towards acidic ORR and PEM fuel cells. J. Mater. Chem. A 2019, 7, 5020–5030.

[90]

Chen, C.; Su, H.; Lu, L. N.; Hong, Y. S.; Chen, Y. Z.; Xiao, K.; Ouyang, T.; Qin, Y. L.; Liu, Z. Q. Interfacing spinel NiCo2O4 and NiCo alloy derived N-doped carbon nanotubes for enhanced oxygen electrocatalysis. Chem. Eng. J. 2021, 408, 127814.

[91]

He, T.; Lu, B. Z.; Chen, Y.; Wang, Y.; Zhang, Y. Q.; Davenport, J. L.; Chen, A. P.; Pao, C. W.; Liu, M.; Sun, Z. F. et al. Nanowrinkled carbon aerogels embedded with FeNx sites as effective oxygen electrodes for rechargeable zinc-air battery. Research 2019, 2019, 6813585.

[92]

Li, H.; Shu, X. X.; Tong, P. R.; Zhang, J. H.; An, P. F.; Lv, Z. X.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe-Ni alloy nanoclusters anchored on carbon aerogels as high-efficiency oxygen electrocatalysts in rechargeable Zn-air batteries. Small 2021, 17, 2102002.

[93]

Peng, R. L.; Li, J. L.; Wang, X. N.; Zhao, Y. M.; Li, B.; Xia, B. Y.; Zhou, H. C. Single-atom implanted two-dimensional MOFs as efficient electrocatalysts for the oxygen evolution reaction. Inorg. Chem. Front. 2020, 7, 4661–4668.

[94]

Douka, A. I.; Yang, H.; Huang, L.; Zaman, S.; Yue, T.; Guo, W.; You, B.; Xia, B. Y. Transition metal/carbon hybrids for oxygen electrocatalysis in rechargeable zinc-air batteries. EcoMat 2021, 3, e12067.

[95]

Liu, S. J.; Li, Y. Y.; Kwok, R. T. K.; Lam, J. W. Y.; Tang, B. Z. Structural and process controls of AIEgens for NIR-II theranostics. Chem. Sci. 2021, 12, 3427–3436.

[96]

Tan, M. J.; Li, B.; Chee, P.; Ge, X. M.; Liu, Z. L.; Zong, Y.; Loh, X. J. Acrylamide-derived freestanding polymer gel electrolyte for flexible metal-air batteries. J. Power Sources 2018, 400, 566–571.

[97]

Dou, J. L.; Qi, M. Y.; Wang, H. R.; Shi, W. W.; Luan, X. J.; Guo, W. X.; Xiao, L.; Zhao, C. Z.; Cheng, D.; Jiang, T. T. et al. SiO2-templated ferrocenyl porous organic polymer gel derived porous Carbon/Fe2C nanohybrids with interpenetrating macropores as oxygen reduction electrocatalyst for Zn-air batteries. Micropor. Mesopor. Mater. 2021, 320, 111101.

[98]

Cheng, N. C.; Zhang, L.; Doyle-Davis, K.; Sun, X. L. Single-atom catalysts: From design to application. Electrochem. Energy Rev. 2019, 2, 539–573.

[99]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Probing enhanced site activity of Co-Fe bimetallic subnanoclusters derived from dual cross-linked hydrogels for oxygen electrocatalysis. ACS Energy Lett. 2019, 4, 1793–1802.

[100]

Li, P. P.; Jin, Z. Y.; Qian, Y. M.; Fang, Z. W.; Xiao, D.; Yu, G. H. Supramolecular confinement of single Cu atoms in hydrogel frameworks for oxygen reduction electrocatalysis with high atom utilization. Mater. Today 2020, 35, 78–86.

[101]

Chen, C.; Wang, X. T.; Zhong, J. H.; Liu, J. L.; Waterhouse, G. I. N.; Liu, Z. Q. Epitaxially grown heterostructured SrMn3O6−x-SrMnO3 with high-valence Mn3+/4+ for improved oxygen reduction catalysis. Angew. Chem., Int. Ed. 2021, 60, 22043–22050.

[102]

Wang, H. T.; Wang, W.; Zaman, S.; Yu, Y.; Wu, Z. X.; Liu, H. F.; Xia, B. Y. Dicyandiamide and iron-tannin framework derived nitrogen-doped carbon nanosheets with encapsulated iron carbide nanoparticles as advanced pH-universal oxygen reduction catalysts. J. Colloid Interf. Sci. 2018, 530, 196–201.

[103]

Rabis, A.; Rodriguez, P.; Schmidt, T. J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. ACS Catal. 2012, 2, 864–890.

[104]

Hong, J. W.; Kang, S. W.; Choi, B. S.; Kim, D.; Lee, S. B.; Han, S. W. Controlled synthesis of Pd-Pt alloy hollow nanostructures with enhanced catalytic activities for oxygen reduction. ACS Nano 2012, 6, 2410–2419.

[105]

Sun, Z. F.; Li, Z. Y.; He, Y. H.; Shen, R. J.; Deng, L.; Yang, M. H.; Liang, Y. Z.; Zhang, Y. Ferrocenoyl phenylalanine: A new strategy toward supramolecular hydrogels with multistimuli responsive properties. J. Am. Chem. Soc. 2013, 135, 13379–13386.

[106]

Liu, W.; Rodriguez, P.; Borchardt, L.; Foelske, A.; Yuan, J. P.; Herrmann, A. K.; Geiger, D.; Zheng, Z. K.; Kaskel, S.; Gaponik, N. et al. Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2013, 52, 9849–9852.

[107]

Cai, B.; Hübner, R.; Sasaki, K.; Zhang, Y. Z.; Su, D.; Ziegler, C.; Vukmirovic, M. B.; Rellinghaus, B.; Adzic, R. R.; Eychmüller, A. Core–shell structuring of pure metallic aerogels towards highly efficient platinum utilization for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2018, 57, 2963–2966.

[108]

Dong, X.; Li, J. R.; Wei, D. H.; Li, R.; Qu, K. G.; Wang, L.; Xu, S. L.; Kang, W. J.; Li, H. B. Pd(II)/Ni(II)-dimethylglyoxime derived Pd-Ni-P@N-doped carbon hybrid nanocatalysts for oxygen reduction reaction. Appl. Surf. Sci. 2019, 479, 273–279.

[109]

Wu, P.; Fang, Z. W.; Zhang, A. P.; Zhang, X.; Tang, Y. W.; Zhou, Y. M.; Yu, G. H. Chemically binding scaffolded anodes with 3D graphene architectures realizing fast and stable lithium storage. Research 2019, 2019, 8393085.

[110]

Xia, Z. H.; An, L.; Chen, P. K.; Xia, D. G. Non-Pt nanostructured catalysts for oxygen reduction reaction: Synthesis, catalytic activity and its key factors. Adv. Energy Mater. 2016, 6, 1600458.

[111]

Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447.

[112]

Lu, X. F.; Xia, B. Y.; Zang, S. Q.; Lou, X. W. Metal-organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 4634–4650.

[113]

Gates, B. C.; Flytzani-Stephanopoulos, M.; Dixon, D. A.; Katz, A. Atomically dispersed supported metal catalysts: Perspectives and suggestions for future research. Catal. Sci. Technol. 2017, 7, 4259–4275.

[114]

Corma, A.; Concepción, P.; Boronat, M.; Sabater, M. J.; Navas, J.; Yacaman, M. J.; Larios, E.; Posadas, A.; López-Quintela, M. A.; Buceta, D. et al. Exceptional oxidation activity with size-controlled supported gold clusters of low atomicity. Nat. Chem. 2013, 5, 775–781.

[115]

Shi, J. J.; Shu, X. X.; Xiang, C. S.; Li, H.; Li, Y.; Du, W.; An, P. F.; Tian, H.; Zhang, J. T.; Xia, H. B. Fe ultra-small particles anchored on carbon aerogels to enhance the oxygen reduction reaction in Zn-air batteries. J. Mater. Chem. A 2021, 9, 6861–6871.

[116]

Kang, Q. L.; Li, M. Y.; Shi, J. W.; Lu, Q. Y.; Gao, F. A universal strategy for carbon-supported transition metal phosphides as high-performance bifunctional electrocatalysts towards efficient overall water splitting. ACS Appl. Mater. Interfaces 2020, 12, 19447–19456.

[117]

Hu, C. G.; Dai, L. M. Carbon-based metal-free catalysts for electrocatalysis beyond the ORR. Angew. Chem., Int. Ed. 2016, 55, 11736–11758.

[118]

Zhu, Y. G.; Shang, C. Q.; Wang, Z. Y.; Zhang, J. Q.; Yang, M. Y.; Cheng, H.; Lu, Z. G. Co and N co-modified carbon nanotubes as efficient electrocatalyst for oxygen reduction reaction. Rare Metals 2021, 40, 90–95.

[119]

Li, D. H.; Jia, Y.; Chang, G. J.; Chen, J.; Liu, H. W.; Wang, J. C.; Hu, Y. F.; Xia, Y. Z.; Yang, D. J.; Yao, X. D. A defect-driven metal-free electrocatalyst for oxygen reduction in acidic electrolyte. Chem 2018, 4, 2345–2356.

[120]

Tan, M. L.; He, T.; Liu, J.; Wu, H. Q.; Li, Q.; Zheng, J.; Wang, Y.; Sun, Z. F.; Wang, S. Y.; Zhang, Y. Supramolecular bimetallogels: A nanofiber network for bimetal/nitrogen Co-doped carbon electrocatalysts. J. Mater. Chem. A 2018, 6, 8227–8232.

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 April 2022
Revised: 06 June 2022
Accepted: 20 June 2022
Published: 26 July 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 22102125). The Scientific Research Foundation of Wuhan Institute of Technology (No. K2021040) and the Innovation Foundation of Key Laboratory of Green Chemical Engineering Process of Ministry of Education (No. GCX202108) are also acknowledged.

Return