Journal Home > Volume 15 , Issue 9

With the increasing advance of fifth generation (5G) network and the gradual expansion of digital devices, harsh working environment for electronic devices has spawned higher requirements for microwave absorbing materials (MAMs). Since both the electromagnetic response and energy conversion character vary with temperature, to achieve temperature insensitive microwave absorption behaviour in wide temperature range has become extremely challenging. In this work, structured metacomposites containing sub-wavelength reduced graphene oxide (RGO)@carbon spheres were fabricated, and the microwave absorption was further improved through structural and composition design of the RGO@carbon units. Due to the unique anti-reflection effect on microwave of the metacomposites, the temperature-insensitive electromagnetic performance at elevated temperature could be exhibited. Moreover, both the dielectric relaxation behaviour and microwave absorption proformance of the system could be further increased. As a result, the effective absorption bandwidth (reflection loss (RL) < −10 dB) of the metacomposites with only 3.0 wt.% filler content could cover the entire X-band (8.2–12.4 GHz) frequency ranging from 298 to 473K. The metacomposite proposed in this work provides a “de-correlating” strategy to break the linkage between microwave absorption behaviour and temperature, which offers an interesting plateau for fabricating efficient high-temperature microwave absorption structures with tunable and designable advantages.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reduced graphene oxide@carbon sphere based metacomposites for temperature-insensitive and efficient microwave absorption

Show Author's information Zhiyang Jiang1,2Haoxu Si2Yi Li1,2Dan Li1,2Huihui Chen1,2Chunhong Gong1,2( )Jingwei Zhang2
Institute of Functional Polymer Composites, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng 475004, China

Abstract

With the increasing advance of fifth generation (5G) network and the gradual expansion of digital devices, harsh working environment for electronic devices has spawned higher requirements for microwave absorbing materials (MAMs). Since both the electromagnetic response and energy conversion character vary with temperature, to achieve temperature insensitive microwave absorption behaviour in wide temperature range has become extremely challenging. In this work, structured metacomposites containing sub-wavelength reduced graphene oxide (RGO)@carbon spheres were fabricated, and the microwave absorption was further improved through structural and composition design of the RGO@carbon units. Due to the unique anti-reflection effect on microwave of the metacomposites, the temperature-insensitive electromagnetic performance at elevated temperature could be exhibited. Moreover, both the dielectric relaxation behaviour and microwave absorption proformance of the system could be further increased. As a result, the effective absorption bandwidth (reflection loss (RL) < −10 dB) of the metacomposites with only 3.0 wt.% filler content could cover the entire X-band (8.2–12.4 GHz) frequency ranging from 298 to 473K. The metacomposite proposed in this work provides a “de-correlating” strategy to break the linkage between microwave absorption behaviour and temperature, which offers an interesting plateau for fabricating efficient high-temperature microwave absorption structures with tunable and designable advantages.

Keywords: microwave absorption, metacomposites, subwavelength, functional units, temperature-insensitive

References(57)

1

Zhang, Y. L.; Wang, X. X.; Cao, M. S. Confinedly implanted NiFe2O4-rGO: Cluster tailoring and highly tunable electromagnetic properties for selective-frequency microwave absorption. Nano Res. 2018, 11, 1426–1436.

2

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

3

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A Appl. Sci. Manuf. 2020, 128, 105670.

4

Liang, L. L.; Gu, W. H.; Wu, Y.; Zhang, B. S.; Wang, G. H.; Yang, Y.; Ji, G. B. Heterointerface engineering in electromagnetic absorbers: New insights and opportunities. Adv. Mater. 2022, 34, 2106195.

5

Guan, H. T.; Wang, Q. Y.; Wu, X. F.; Pang, J.; Jiang, Z. Y.; Chen, G.; Dong, C. J.; Wang, L. H.; Gong, C. H. Biomass derived porous carbon (BPC) and their composites as lightweight and efficient microwave absorption materials. Compos. Part B Eng. 2021, 207, 108562.

6

Cao, M. S.; Song, W. L.; Hou, Z. L.; Wen, B.; Yuan, J. The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 2010, 48, 788–796.

7

Li, M.; Yin, X. W.; Zheng, G. P.; Chen, M.; Tao, M. J.; Cheng, L. F.; Zhang, L. T. High-temperature dielectric and microwave absorption properties of Si3N4-SiC/SiO2 composite ceramics. J. Mater. Sci. 2015, 50, 1478–1487.

8

Liu, Y.; Luo, F.; Su, J. B.; Zhou, W. C.; Zhu, D. M. Dielectric and microwave absorption properties of Ti3SiC2/cordierite composite ceramics oxidized at high temperature. J. Alloys Compd. 2015, 632, 623–628.

9

Zhang, Y. H.; Meng, H. J.; Shi, Y. P.; Zhang, X. F.; Liu, C. X.; Wang, Y.; Gong, C. H.; Zhang, J. W. TiN/Ni/C ternary composites with expanded heterogeneous interfaces for efficient microwave absorption. Compos. Part B Eng. 2020, 193, 108028.

10

Shi, Y. P.; Li, D.; Si, H. X.; Duan, Y. P.; Gong, C. H.; Zhang, J. W. TiN/Fe2Ni2N/SiO2 composites for magnetic-dielectric balance to facilitate temperature-stable broadband microwave absorption. J. Alloys Compd. 2022, 918, 165603.

11

Wei, Y.; Shi, Y. P.; Zhang, X. F.; Li, D.; Zhang, L.; Gong, C. H.; Zhang, J. W. Preparation of black titanium monoxide nanoparticles and their potential in electromagnetic wave absorption. Adv. Powder Technol. 2020, 31, 3458–3464.

12

Du, H.; Zhang, Q. P.; Zhao, B.; Marken, F.; Gao, Q. C.; Lu, H. X.; Guan, L.; Wang, H. L.; Shao, G.; Xu, H. L. et al. Novel hierarchical structure of MoS2/TiO2/Ti3C2Tx composites for dramatically enhanced electromagnetic absorbing properties. J. Adv. Ceram. 2021, 10, 1042–1051.

13

Zhao, J.; Zhang, J. L.; Wang, L.; Li, J. K.; Feng, T.; Fan, J. C.; Chen, L. X.; Gu, J. W. Superior wave-absorbing performances of silicone rubber composites via introducing covalently bonded SnO2@MWCNT absorbent with encapsulation structure. Compos. Commun. 2020, 22, 100486.

14

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

15
Li C. Qi X. S. Gong X. Peng Q. Chen Y. L. Xie R. Zhong W. Magnetic-dielectric synergy and interfacial engineering to design yolk−shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption Nano Res. 2022 15 6761 6771 10.1007/s12274-022-4468-2

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic-dielectric synergy and interfacial engineering to design yolk−shell structured CoNi@void@C and CoNi@void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

16

Song, W. L.; Zhang, K. L.; Chen, M. J.; Hou, Z. L.; Chen, H. S.; Yuan, X. J.; Ma, Y. B.; Fang, D. N. A universal permittivity-attenuation evaluation diagram for accelerating design of dielectric-based microwave absorption materials: A case of graphene-based composites. Carbon 2017, 118, 86–97.

17

Zhang, M. M.; Jiang, Z. Y.; Lv, X. Y.; Zhang, X. F.; Zhang, Y. H.; Zhang, J. W.; Zhang, L.; Gong, C. H. Microwave absorption performance of reduced graphene oxide with negative imaginary permeability. J. Phys. D Appl. Phys. 2020, 53, 02LT01.

18

Shi, Y. Y.; Yu, L. J.; Li, K.; Li, S. Z.; Dong, Y. B.; Zhu, Y. F.; Fu, Y. Q.; Meng, F. B. Well-matched impedance of polypyrrole-loaded cotton non-woven fabric/polydimethylsiloxane composite for extraordinary microwave absorption. Compos. Sci. Technol. 2020, 197, 108246.

19

Wen, B.; Cao, M. S.; Lu, M. M.; Cao, W. Q.; Shi, H. L.; Liu, J.; Wang, X. X.; Jin, H. B.; Fang, X. Y.; Wang, W. Z. et al. Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 2014, 26, 3484–3489.

20

Cao, M. S.; Wang, X. X.; Zhang, M.; Cao, W. Q.; Fang, X. Y.; Yuan, J. Variable-temperature electron transport and dipole polarization turning flexible multifunctional microsensor beyond electrical and optical energy. Adv. Mater. 2020, 32, 1907156.

21

Xu, H. L.; Yin, X. W.; Li, M. H.; Ye, F.; Han, M. K.; Hou, Z. X.; Li, X. L.; Zhang, L. T.; Cheng, L. F. Mesoporous carbon hollow microspheres with red blood cell like morphology for efficient microwave absorption at elevated temperature. Carbon 2018, 132, 343–351.

22

Song, W. L.; Cao, M. S.; Hou, Z. L.; Yuan, J.; Fang, X. Y. High-temperature microwave absorption and evolutionary behavior of multiwalled carbon nanotube nanocomposite. Scr. Mater. 2009, 61, 201–204.

23

Kong, L.; Yin, X. W.; Han, M. K.; Zhang, L. T.; Cheng, L. F. Carbon nanotubes modified with ZnO nanoparticles: High-efficiency electromagnetic wave absorption at high-temperatures. Ceram. Int. 2015, 41, 4906–4915.

24

Hou, Z. X.; Yin, X. W.; Xu, H. L.; Wei, H. J.; Li, M. H.; Cheng, L. F.; Zhang, L. T. Reduced graphene oxide/silicon nitride composite for cooperative electromagnetic absorption in wide temperature spectrum with excellent thermal stability. ACS Appl. Mater. Interfaces 2019, 11, 5364–5372.

25

Shi, Y. P.; Li, D.; Si, H. X.; Jiang, Z. Y.; Li, M. Y.; Gong, C. H. TiN/BN composite with excellent thermal stability for efficiency microwave absorption in wide temperature spectrum. J. Mater. Sci. Technol. 2022, 130, 249–255.

26

Li, Y. K.; Li, W.; Wang, Y.; Cao, J.; Guan, J. G. Refractory metamaterial microwave absorber with strong absorption insensitive to temperature. Adv. Opt. Mater. 2018, 6, 1800691.

27

Zhang, D. J.; Liu, X. F.; Li, C. H.; Zhang, M.; Zhang, Y. H.; Zhang, X. F. Structuring micro/nanoscale hybrid Fe@SiC flakes for tunable microwave absorption properties. Mater. Res. Bull. 2019, 118, 110487.

28

Zhang, D. J.; Ma, Y. R.; Jiang, L.; Zhang, X. F.; Yan, M. Milimeter-scale metacomposite absorbers by structuring Ni@C nanocapsules for tunable microwave absorption. J. Alloys Compd. 2019, 784, 1205–1211.

29
Jiang, Q.; Qiao, Y.; Xiang, C. J.; Uddin, A.; Wu, L. W.; Qin, F. X. Metacomposite based on three-dimensional ferromagnetic microwire architecture for electromagnetic response. Adv. Compos. Hybrid. Mater., in press, https://doi.org/10.1007/s42114-021-00394-y.
DOI
30

Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

31

Zhang, M. M.; Fang, X. K.; Zhang, Y. H.; Guo, J. H.; Gong, C. H.; Estevez, D.; Qin, F. X.; Zhang, J. W. Ultralight reduced graphene oxide aerogels prepared by cation-assisted strategy for excellent electromagnetic wave absorption. Nanotechnology 2020, 31, 275707.

32

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

33
Zhou, M. F.; Xu, X. F.; Wan, G. P.; Mou, P. P.; Teng, S. J.; Wang, G. Z. Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers. Nano Res., in press, https://doi.org/10.1007/s12274-022-4521-1.
DOI
34

Jiao, C. L.; Xiong, J. Q.; Tao, J.; Xu, S. J.; Zhang, D. S.; Lin, H.; Chen, Y. Y. Sodium alginate/graphene oxide aerogel with enhanced strength-toughness and its heavy metal adsorption study. Int. J. Biol. Macromol. 2016, 83, 133–141.

35

Xuan, C. J.; Wu, Z. X.; Lei, W.; Wang, J.; Guo, J. P.; Wang, D. L. Nitrogen-doped hierarchical porous carbons derived from sodium alginate as efficient oxygen reduction reaction electrocatalysts. ChemCatChem 2017, 9, 809–815.

36

Yu, F.; Li, Y.; Han, S.; Ma, J. Adsorptive removal of ciprofloxacin by sodium alginate/graphene oxide composite beads from aqueous solution. J. Colloid Interface Sci. 2016, 484, 196–204.

37

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

38

Treml, H.; Woelki, S.; Kohler, H. H. Theory of capillary formation in alginate gels. Chem. Phys. 2003, 293, 341–353.

39

Jiang, Z. Y.; Si, H. X.; Chen, X.; Liu, H. M.; Zhang, L.; Zhang, Y. H.; Gong, C. H.; Zhang, J. W. Simultaneous enhancement of impedance matching and the absorption behavior of BN/RGO nanocomposites for efficiency microwave absorption. Compos. Commun. 2020, 22, 100503.

40

Wang, X. X.; Zhang, M.; Shu, J. C.; Wen, B.; Cao, W. Q.; Cao, M. S. Thermally-tailoring dielectric “genes” in graphene-based heterostructure to manipulate electromagnetic response. Carbon 2021, 184, 136–145.

41

Li, T. T.; Zhong, Y. Q.; Yan, M. X.; Zhou, W.; Xu, W. T.; Huang, S. Y.; Sun, F.; Lou, C. W.; Lin, J. H. Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials (Basel) 2019, 9, 714.

42

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

43

Quan, L.; Qin, F. X.; Lu, H. T.; Estevez, D.; Wang, Y. F.; Li, Y. H.; Tian, Y.; Wang, H.; Peng, H. X. Sequencing dual dopants for an electromagnetic tunable graphene. Chem. Eng. J. 2021, 413, 127421.

44
Liu J. L. Zhang L. M. Wu H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption Adv. Funct. Mater. 2022 32 2200544 10.1002/adfm.202200544

Liu, J. L.; Zhang, L. M.; Wu, H. J. Anion-doping-induced vacancy engineering of cobalt sulfoselenide for boosting electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200544.

45
Luo J. H. Feng M. N. Dai Z. Y. Jiang C. Y. Yao W. Zhai N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption Nano Res. 2022 15 5781 5789 10.1007/s12274-022-4411-6

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped MOF-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

46

Li, X.; Zhang, M.; You, W. B.; Pei, K.; Zeng, Q. W.; Han, Q.; Li, Y. S.; Cao, H.; Liu, X. H.; Che, R. C. Magnetized mxene microspheres with multiscale magnetic coupling and enhanced polarized interfaces for distinct microwave absorption via a spray-drying method. ACS Appl. Mater. Interfaces 2020, 12, 18138–18147.

47

Sun, G. B.; Wu, H.; Liao, Q. L.; Zhang, Y. Enhanced microwave absorption performance of highly dispersed CoNi nanostructures arrayed on graphene. Nano Res. 2018, 11, 2689–2704.

48

Cao, W. Q.; Wang, X. X.; Yuan, J.; Wang, W. Z.; Cao, M. S. Temperature dependent microwave absorption of ultrathin graphene composites. J. Mater. Chem. C 2015, 3, 10017–10022.

49

Wang, H. Y.; Zhu, D. M.; Zhou, W. C.; Luo, F. High temperature electromagnetic and microwave absorbing properties of polyimide/multi-walled carbon nanotubes nancomposites. Chem. Phys. Lett. 2015, 633, 223–228.

50

Zhou, W.; Yin, R. M.; Long, L.; Luo, H.; Hu, W. D.; Ding, Y. H.; Li, Y. Enhanced high-temperature dielectric properties and microwave absorption of SiC nanofibers modified Si3N4 ceramics within the gigahertz range. Ceram. Int. 2018, 44, 12301–12307.

51

Ma, J. R.; Shu, J. C.; Cao, W. Q.; Zhang, M.; Wang, X. X.; Yuan, J.; Cao, M. S. A green fabrication and variable temperature electromagnetic properties for thermal stable microwave absorption towards flower-like Co3O4@rGO/SiO2 composites. Compos. Part B:Eng. 2019, 166, 187–195.

52

Shi, Y. P.; Li, D.; Wei, Y.; Gong, C. H.; Zhang, J. W. Magnetic TiN composites for efficient microwave absorption: Nanoribbons vs nanoparticles. Compos. Commun. 2021, 28, 100919.

53
Mu, Z. G.; Wei, G. K.; Zhang, H.; Gao, L.; Zhao, Y.; Tang, S. L.; Ji, G. B. The dielectric behavior and efficient microwave absorption of doped nanoscale LaMnO3 at elevated temperature. Nano Res., in press, https://doi.org/10.1007/s12274-022-4500-6.
DOI
54

Wang, H. G.; Meng, F. B.; Huang, F.; Jing, C. F.; Li, Y.; Wei, W.; Zhou, Z. W. Interface modulating CNTs@PANi hybrids by controlled unzipping of the walls of CNTs to achieve tunable high-performance microwave absorption. ACS Appl. Mater. Interfaces 2019, 11, 12142–12153.

55

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

56

Zhang, M.; Xu, P.; Peng, H. X.; Qin, F. X. A rational design of core-shell-satellite structured BaTiO3 fillers for epoxy-based composites with enhanced microwave dielectric constant and low loss. Compos. Part B Eng. 2021, 215, 108764.

57

Zhao, B.; Li, Y.; Zeng, Q. W.; Fan, B. B.; Wang, L.; Zhang, R.; Che, R. C. Growth of magnetic metals on carbon microspheres with synergetic dissipation abilities to broaden microwave absorption. J. Mater. Sci. Technol. 2022, 107, 100–110.

File
12274_2022_4674_MOESM1_ESM.pdf (1.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 May 2022
Revised: 12 June 2022
Accepted: 17 June 2022
Published: 11 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

Thanks for the financial support of the National Natural Science Foundation of China (Nos. U1704253 and 21671057).

Return