AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Structure, magnetic and adsorption properties of novel FePt/h-BN heteromaterials

Anton S. Konopatsky1( )Vladislava V. Kalinina1Alena S. Savchenko1Denis. V. Leybo1Ekaterina V. Sukhanova2Viktor S. Baidyshev3Zakhar I. Popov2,4Andrey V. Bondarev5Josef Polčák6Dmitry V. Shtansky1( )
National University of Science and Technology (MISIS), Leninskiy prospect 4, Moscow, 119049, Russia
Emanuel Institute of Biochemical Physics RAS, Kosygina 4, Moscow, 119334, Russia
Katanov Khakas State University, 90 Lenin pr., 655017 Abakan, Russia
Plekhanov Russian University of Economics, 36 Stremyanny per., Moscow 117997, Russia
Department of Control Engineering, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 16627, Czech Republic
CEITEC-Central European Institute of Technology, Brno University of Technology, Purkyňova 123, Brno 61200 Brno, Czech Republic
Show Author Information

Graphical Abstract

Hexagonal boron nitride effectively stabilizes FePt nanoparticles and promotes the fcc→fct phase transformation during annealing in a hydrogen atmosphere.

Abstract

Nanomaterials with high specific surface area and high absorption capacity are attracting increased interest aimed at imparting the desired magnetic properties. This work is devoted to the study of the effect of heat treatment in a hydrogen atmosphere on the microstructure, adsorption and magnetic properties of heterogeneous FePt/h-BN nanomaterials. Obtained via the polyol process, FePt nanoparticles (NPs) had a size < 2 nm and were uniformly distributed over the surface of hexagonal boron nitride (h-BN) nanosheets. The temperature-activated fcc→fct phase transformation in ultrafine FePt NPs has been well documented. FePt NPs act as active centers dissociating H2 molecules and transfer adsorbed hydrogen atoms to the h-BN. Density functional theory (DFT) calculations also indicate that the h-BN substrate can absorb hydrogen adsorbed on the FePt NPs. This hydrogen circulation in the FePt/h-BN system promoted the fcc→fct phase transformation and allowed to control the magnetic properties. FePt/h-BN nanomaterials also exhibited a high adsorption capacity with respect to various organic dyes.

Electronic Supplementary Material

Download File(s)
12274_2022_4672_MOESM1_ESM.pdf (629.9 KB)

References

[1]

Pakdel, A.; Bando, Y.; Golberg, D. Nano boron nitride flatland. Chem. Soc. Rev. 2014, 43, 934–959.

[2]

Shtansky, D. V.; Firestein, K. L.; Golberg, D. V. Fabrication and application of BN nanoparticles, nanosheets and their nanohybrids. Nanoscale 2018, 10, 17477–17493.

[3]

Firestein, K. L.; Corthay, S.; Steinman, A. E.; Matveev, A. T.; Kovalskii, A. M.; Sukhorukova, I. V.; Golberg, D.; Shtansky, D. V. High-strength aluminum-based composites reinforced with BN, AlB2 and AlN particles fabricated via reactive spark plasma sintering of Al-BN powder mixtures. Mater. Sci. Eng. :A 2017, 681, 1–9.

[4]

Konopatsky, A. S.; Kvashnin, D. G.; Corthay, S.; Boyarintsev, I.; Firestein, K. L.; Orekhov, A.; Arkharova, N.; Golberg, D. V.; Shtansky, D. V. Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing. J. Alloys Compd. 2021, 859, 157765.

[5]

Konopatsky, A. S.; Leybo, D. V.; Firestein, K. L.; Popov, Z. I.; Bondarev, A. V.; Manakhov, A. M.; Permyakova, E. S.; Shtansky, D. V.; Golberg, D. V. Synthetic routes, structure and catalytic activity of Ag/BN nanoparticle hybrids toward CO oxidation reaction. J. Catal. 2018, 368, 217–227.

[6]

Sun, Z. M.; Wang, D.; Lin, L.; Liu, Y. H.; Yuan, M. W.; Nan, C. Y.; Li, H. F.; Sun, G. B.; Yang, X. J. Ultrathin hexagonal boron nitride as a van der Waals’ force initiator activated graphene for engineering efficient non-metal electrocatalysts of Li-CO2 battery. Nano Res. 2022, 15, 1171–1177.

[7]

Won, U. Y.; Lee, B. H.; Kim, Y. R.; Kang, W. T.; Lee, I.; Kim, J. E.; Lee, Y. H.; Yu, W. J. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector. Nano Res. 2021, 14, 1967–1972.

[8]

Permyakova, E. S.; Antipina, L. Y.; Kovalskii, A. M.; Zhitnyak, I. Y.; Gudz, K. Y.; Polčak, J.; Sorokin, P. B.; Manakhov, A. M.; Shtansky, D. V. Experimental and theoretical study of doxorubicin physicochemical interaction with BN(O) drug delivery nanocarriers. J. Phys. Chem. C 2018, 122, 26409–26418.

[9]

Chen, J. X.; Ouyang, W. X.; Yang, W.; He, J. H.; Fang, X. S. Recent progress of heterojunction ultraviolet photodetectors: Materials, integrations, and applications. Adv. Funct. Mater. 2020, 30, 1909909.

[10]

Li, J.; Xiao, X.; Xu, X. W.; Lin, J.; Huang, Y.; Xue, Y. M.; Jin, P.; Zou, J.; Tang, C. C. Activated boron nitride as an effective adsorbent for metal ions and organic pollutants. Sci. Rep. 2013, 3, 3208.

[11]

Mishra, N. S.; Saravanan, P. A review on the synergistic features of hexagonal boron nitride (white graphene) as adsorbent-photo active nanomaterial. ChemistrySelect 2018, 3, 8023–8034.

[12]

Tarhan, T. Synthesis and characterization of hexagonal boron nitride used for comparison of removal of anionic and cationic hazardous Azo-Dye: Kinetics and equilibrium studies. Turk. J. Chem. 2020, 44, 1471–1482.

[13]

Doltabadi, M.; Alidadi, H.; Davoudi, M. Comparative study of cationic and anionic dye removal from aqueous solutions using sawdust-based adsorbent. Environ. Prog. Sustainable Energy 2016, 35, 1078–1090.

[14]

Rauf, M. A.; Ashraf, S. S. Fundamental principles and application of heterogeneous photocatalytic degradation of dyes in solution. Chem. Eng. J. 2009, 151, 10–18.

[15]

Lu, A. H.; Salabas, E. L.; Schüth, F. Magnetic nanoparticles: Synthesis, protection, functionalization, and application. Angew. Chem. , Int. Ed. 2007, 46, 1222–1244.

[16]

Mehta, D.; Mazumdar, S.; Singh, S. K. Magnetic adsorbents for the treatment of water/wastewater—a review. J. Water Process Eng. 2015, 7, 244–265.

[17]
SivashankarR.SathyaA. B.VasantharajK.SivasubramanianV. Magnetic composite an environmental super adsorbent for dye sequestration—a reviewEnviron. Nanotechnol. Monit. Manag.20141–2364910.1016/j.enmm.2014.06.001

Sivashankar, R.; Sathya, A. B.; Vasantharaj, K.; Sivasubramanian, V. Magnetic composite an environmental super adsorbent for dye sequestration—a review. Environ. Nanotechnol. Monit. Manag. 2014, 1–2, 36–49.

[18]

Liu, H.; Gao, N.; Liao, M. Y.; Fang, X. S. Hexagonal-like Nb2O5 nanoplates-based photodetectors and photocatalyst with high performances. Sci. Rep. 2015, 5, 7716.

[19]

Santhosh, C.; Velmurugan, V.; Jacob, G.; Jeong, S. K.; Grace, A. N.; Bhatnagar, A. Role of nanomaterials in water treatment applications: A review. Chem. Eng. J. 2016, 306, 1116–1137.

[20]

Sun, S. H.; Anders, S.; Thomson, T.; Baglin, J. E. E.; Toney, M. F.; Hamann, H. F.; Murray, C. B.; Terris, B. D. Controlled synthesis and assembly of FePt nanoparticles. J. Phys. Chem. B 2003, 107, 5419–5425.

[21]

Yu, Y. S.; He, L.; Xu, J. J.; Li, J. M.; Jiang, S. D.; Han, G. H.; Jiang, B. J.; Lei, W. J.; Yang, W. W.; Hou, Y. L. A facile solution phase synthesis of directly ordering monodisperse FePt nanoparticles. Nano Res. 2022, 15, 446–451.

[22]

Yung, S. W.; Chang, Y. H.; Lin, T. J.; Hung, M. P. Magnetic properties and microstructure of iron-platinum thin films. J. Magn. Magn. Mater. 1992, 116, 411–418.

[23]

Frey, N. A.; Peng, S.; Cheng, K.; Sun, S. H. Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 2009, 38, 2532–2542.

[24]

Ali, A.; Shah, T.; Ullah, R.; Zhou, P. F.; Guo, M. L.; Ovais, M.; Tan, Z. Q.; Rui, Y. K. Review on recent progress in magnetic nanoparticles: Synthesis, characterization, and diverse applications. Front. Chem. 2021, 9, 629054.

[25]

Weller, D.; Parker, G.; Mosendz, O.; Lyberatos, A.; Mitin, D.; Safonova, N. Y.; Albrecht, M. Review article: FePt heat assisted magnetic recording media. J. Vac. Sci. Technol. B 2016, 34, 060801.

[26]

Jeyaraj, M.; Gurunathan, S.; Qasim, M.; Kang, M. H.; Kim, J. H. A Comprehensive review on the synthesis, characterization, and biomedical application of platinum nanoparticles. Nanomaterials 2019, 9, 1719.

[27]

Suzuki, I.; Kubo, S.; Sepehri-Amin, H.; Takahashi, Y. K. Dependence of the growth mode in epitaxial FePt films on surface free energy. ACS Appl. Mater. Interfaces 2021, 13, 16620–16627.

[28]

Jung, C.; Lee, C.; Bang, K.; Lim, J.; Lee, H.; Ryu, H. J.; Cho, E.; Lee, H. M. Synthesis of chemically ordered Pt3Fe/C intermetallic electrocatalysts for oxygen reduction reaction with enhanced activity and durability via a removable carbon coating. ACS Appl. Mater. Interfaces 2017, 9, 31806–31815.

[29]

Shariatzadeh, R.; Akbari, H.; Zeynali, H.; Arumugam, S.; Kalaiselvan, G. Achieving isolated Fe100−xPtx nanoparticles with high magnetic coercivity. J. Supercond. Nov. Magn. 2013, 26, 3475–3485.

[30]

Pavlova, O. P.; Verbitska, T. I.; Vladymyrskyi, I. A.; Sidorenko, S. I.; Katona, G. L.; Beke, D. L.; Beddies, G.; Albrecht, M.; Makogon, I. M. Structural and magnetic properties of annealed FePt/Ag/FePt thin films. Appl. Surf. Sci. 2013, 266, 100–104.

[31]

Wu, C.; Jiang, Y. N.; Niu, Z. Y.; Zhao, D.; Pei, W. L.; Wang, K.; Wang, Q. Effects of high magnetic field annealing on FePt nanoparticles with shape-anisotropy and element-distribution-anisotropy. RSC Adv. 2021, 11, 10463–10467.

[32]

Sung, Y. M.; Lee, M. K.; Kim, K. E.; Kim, T. G. The origin of enhanced L10 chemical ordering in Ag-doped FePt nanoparticles. Chem. Phys. Lett. 2007, 443, 319–322.

[33]

Miyazaki, T.; Kitakami, O.; Okamoto, S.; Shimada, Y.; Akase, Z.; Murakami, Y.; Shindo, D.; Takahashi, Y. K.; Hono, K. Size effect on the ordering of L10 FePt nanoparticles. Phys. Rev. B 2005, 72, 144419.

[34]

Delalande, M.; Guinel, M. J. F.; Allard, L. F.; Delattre, A.; Le Bris, R.; Samson, Y.; Bayle-Guillemaud, P.; Reiss, P. L10 ordering of ultrasmall FePt nanoparticles revealed by TEM in situ annealing. J. Phys. Chem. C 2012, 116, 6866–6872.

[35]

Azarkharman, F.; Saievar Iranizad, E.; Sebt, S. A. A novel method for synthesis of size-controlled L10 FePt nanoparticles. Appl. Surf. Sci. 2012, 258, 5765–5769.

[36]

Jeyadevan, B.; Urakawa, K.; Hobo, A.; Chinnasamy, N.; Shinoda, K.; Tohji, K.; Djayaprawira, D. D. J.; Tsunoda, M.; Takahashi, M. Direct synthesis of Fct-FePt nanoparticles by chemical route. Jpn. J. Appl. Phys. 2003, 42, L350–L352.

[37]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[38]

Hohenberg, P.; Kohn, W. Inhomogeneous electron gas. Phys. Rev. 1964, 136, B864–B871.

[39]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[40]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

[41]

Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251–14269.

[42]

Hammer, B.; Hansen, L. B.; Nørskov, J. K. Improved adsorption energetics within density-functional theory using revised perdew-burke-ernzerhof functionals. Phys. Rev. B 1999, 59, 7413–7421.

[43]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[44]

Monkhorst, H. J.; Pack, J. D. Special points for brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192.

[45]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 Elements H–Pu. J. Chem. Phys. 2010, 132, 154104.

[46]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276.

[47]

Konopatsky, A. S.; Firestein, K. L.; Evdokimenko, N. D.; Kustov, A. L.; Baidyshev, V. S.; Chepkasov, I. V.; Popov, Z. I.; Matveev, A. T.; Shetinin, I. V.; Leybo, D. V. et al. Microstructure and catalytic properties of Fe3O4/BN, Fe3O4(Pt)/BN, and FePt/BN heterogeneous nanomaterials in CO2 hydrogenation reaction: Experimental and theoretical insights. J. Catal. 2021, 402, 130–142.

[48]

Hai, H. T.; Takamura, H.; Koike, J. Oxidation behavior of Cu–Ag core–shell particles for solar cell applications. J. Alloys Compd. 2013, 564, 71–77.

[49]

Radnóczi, G.; Bokányi, E.; Erdélyi, Z.; Misják, F. Size dependent spinodal decomposition in Cu–Ag nanoparticles. Acta Mater. 2017, 123, 82–89.

[50]

Prabhudev, S.; Bugnet, M.; Zhu, G. Z.; Bock, C.; Botton, G. A. Surface segregation of Fe in Pt-Fe alloy nanoparticles: Its precedence and effect on the ordered-phase evolution during thermal annealing. ChemCatChem 2015, 7, 3655–3664.

[51]

Wei, M. M.; Fu, Q.; Wu, H.; Dong, A. Y.; Bao, X. H. Hydrogen intercalation of graphene and boron nitride monolayers grown on Pt(111). Top. Catal. 2016, 59, 543–549.

[52]

Zhang, H. X.; Feng, P. X. Controlling bandgap of rippled hexagonal boron nitride membranes via plasma treatment. ACS Appl. Mater. Interfaces 2012, 4, 30–33.

[53]

Janin, E.; Björkqvist, M.; Grehk, T. M.; Göthelid, M.; Pradier, C. M.; Karlsson, U. O.; Rosengren, A. Hydrogen adsorption on the Pt(111) (3×3) R30°–Sn surface alloy studied by high resolution core level photoelectron spectroscopy. Appl. Surf. Sci. 1996, 99, 371–378.

[54]

Stoerzinger, K. A.; Favaro, M.; Ross, P. N.; Yano, J.; Liu, Z.; Hussain, Z.; Crumlin, E. J. Probing the surface of platinum during the hydrogen evolution reaction in alkaline electrolyte. J. Phys. Chem. B 2018, 122, 864–870.

[55]

David, T. M.; Gnanasekar, K. I.; Wilson, P.; Sagayaraj, P.; Mathews, T. Effect of Ni, Pd, and Pt nanoparticle dispersion on thick films of TiO2 nanotubes for hydrogen sensing: TEM and XPS studies. ACS Omega 2020, 5, 11352–11360.

[56]

Sun, K. G.; Chung, J. S.; Hur, S. H. Durability improvement of Pt/RGO catalysts for PEMFC by low-temperature self-catalyzed reduction. Nanoscale Res. Lett. 2015, 10, 257.

[57]

Nakaya, M.; Kanehara, M.; Yamauchi, M.; Kitagawa, H.; Teranishi, T. Hydrogen-induced crystal structural transformation of FePt nanoparticles at low temperature. J. Phys. Chem. C 2007, 111, 7231–7234.

[58]

Sun, S. H.; Fullerton, E. E.; Weller, D.; Murray, C. B. Compositionally controlled FePt nanoparticle materials. IEEE Trans. Magn. 2001, 37, 1239–1243.

[59]

Kumar Sahu, N.; Bahadur, D. Influence of excess Fe accumulation over the surface of FePt nanoparticles: Structural and magnetic properties. J. Appl. Phys. 2013, 113, 134303.

[60]

Joseyphus, R. J.; Shinoda, K.; Sato, Y.; Tohji, K.; Jeyadevan, B. Composition controlled synthesis of Fcc–FePt nanoparticles using a modified polyol process. J. Mater. Sci. 2008, 43, 2402–2406.

[61]

Zheng, Q.; Zhang, Z. R.; Du, J.; Lin, L. L.; Xia, W. X.; Zhang, J.; Bian, B. R.; Liu, J. P. A novel direct reduction method to synthesize ordered Fe–Pt alloy nanoparticles. J. Mater. Sci. Technol. 2019, 35, 560–567.

[62]

Zeng, H.; Sun, S. H.; Vedantam, T. S.; Liu, J. P. Exchange-coupled FePt nanoparticle assembly. Appl. Phys. Lett. 2002, 80, 2583.

[63]

Bangari, R. S.; Yadav, A.; Awasthi, P.; Sinha, N. Experimental and theoretical analysis of simultaneous removal of methylene blue and tetracycline using boron nitride nanosheets as adsorbent. Colloids Surf. A:Physicochem. Eng. Asp. 2022, 634, 127943.

[64]

Xue, L. L.; Lu, B. Z.; Wu, Z. S.; Ge, C. H.; Wang, P.; Zhang, R.; Zhang, X. D. Synthesis of mesoporous hexagonal boron nitride fibers with high surface area for efficient removal of organic pollutants. Chem. Eng. J. 2014, 243, 494–499.

[65]

Mahdizadeh, A.; Farhadi, S.; Zabardasti, A. Microwave-assisted rapid synthesis of graphene-analogue hexagonal boron nitride (h-BN) nanosheets and their application for the ultrafast and selective adsorption of cationic dyes from aqueous solutions. RSC Adv. 2017, 7, 53984–53995.

[66]

Ngoc, P. K.; Mac, T. K.; Nguyen, H. T.; Viet, D. T.; Thanh, T. D.; Van Vinh, P.; Phan, B. T.; Duong, A. T.; Das, R. Excellent organic dye adsorption capacity and recyclability of hydrothermally synthesized α-Fe2O3 nanoplates and nanorices. J. Sci. Adv. Mater. Devices 2021, 6, 245–253.

[67]

Ahmad, R.; Kumar, R. Kinetic and thermodynamic studies of brilliant green adsorption onto carbon/iron oxide nanocomposite. J. Korean Chem. Soc. 2010, 54, 125–130.

[68]

Leistner, K.; Thomas, J.; Schlörb, H.; Weisheit, M.; Schultz, L.; Fähler, S. Highly coercive electrodeposited FePt films by postannealing in hydrogen. Appl. Phys. Lett. 2004, 85, 3498–3500.

[69]

Lai, C. H.; Wu, Y. C.; Chiang, C. C. Effects of forming gas annealing on low-temperature ordering of FePt films. J. Appl. Phys. 2005, 97, 10H305.

[70]

Wang, T. R.; Li, Y. J.; Qi, W. H. Matrix effect on order-disorder phase transition of FePt nanoparticles. Phys. B:Condens. Matter 2018, 545, 498–502.

[71]

Zhang, S. D.; Qi, W. H.; Huang, B. Y. Size effect on order-disorder transition kinetics of FePt nanoparticles. J. Chem. Phys. 2014, 140, 044328.

[72]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[73]

An, Y.; Kuc, A.; Petkov, P.; Lozada-Hidalgo, M.; Heine, T. On the chemistry and diffusion of hydrogen in the interstitial space of layered crystals h-BN, MoS2, and graphite. Small 2019, 15, 1901722.

[74]

Rai, D. P.; Chettri, B.; Patra, P. K.; Sattar, S. Hydrogen storage in bilayer hexagonal boron nitride: A first-principles study. ACS Omega 2021, 6, 30362–30370.

[75]

Lin, S. Y.; Xu, M. L.; Qu, Z. Y.; Liang, Y. W.; Li, Y.; Cui, W. W.; Shi, J. M.; Zeng, Q. X.; Hao, J.; Li, Y. W. Hidden porous boron nitride as a high-efficiency membrane for hydrogen purification. Phys. Chem. Chem. Phys. 2020, 22, 22778–22784.

[76]

Bull, S. K.; Champ, T. A.; Raj, S. V.; O’Brien, R. C.; Musgrave, C. B.; Weimer, A. W. Atomic layer deposited boron nitride nanoscale films act as high temperature hydrogen barriers. Appl. Surf. Sci. 2021, 565, 150428.

[77]

Kang, J. X.; Harrath, K.; Chen, X. N. Theoretical study on hydrogen storage of pristine bilayer hexagonal boron nitride. Theor. Chem. Acc. 2021, 140, 72.

[78]

Shevlin, S. A.; Guo, Z. X. Hydrogen sorption in defective hexagonal BN sheets and BN nanotubes. Phys. Rev. B 2007, 76, 024104.

Nano Research
Pages 1473-1481
Cite this article:
Konopatsky AS, Kalinina VV, Savchenko AS, et al. Structure, magnetic and adsorption properties of novel FePt/h-BN heteromaterials. Nano Research, 2023, 16(1): 1473-1481. https://doi.org/10.1007/s12274-022-4672-0
Topics:

1006

Views

3

Crossref

3

Web of Science

3

Scopus

0

CSCD

Altmetrics

Received: 13 May 2022
Revised: 10 June 2022
Accepted: 17 June 2022
Published: 23 July 2022
© Tsinghua University Press 2022
Return