Journal Home > Volume 16 , Issue 1

Regeneration and maturation of native-like endothelium is crucial for material-guided small-diameter vascular regeneration. Although parallel-microgroove-patterned (micropatterned) substrates are capable of promoting endothelial regeneration with native-like endothelial cell (EC) alignment, their unbefitting high-stiffness acutely inhibits cell–matrix interaction and endothelial maturation. Given that the sufficient softness of nanofibers allows cells to deform the local matrix architecture to satisfy cell survival and functional requirements, in this study, an effective strategy of decorating micropatterned substrate with soft nanofibers was exploited to enhance cell–matrix interaction for engineering healthy endothelium. Results demonstrated that the micropatterned nanofibrous membranes were successfully obtained with high-resolution parallel microgrooves (groove width: ~ 15 µm; groove depth: ~ 5 µm) and adequate softness (bulk modulus: 2.27 ± 0.18 MPa). This particular substrate markedly accelerated the formation and maturation of confluent native-like endothelium by synchronously increasing cell–cell and cell–matrix interactions. Transcriptome analysis revealed that compared with smooth features, the microgrooved pattern was likely to promote endothelial remodeling via integrin α5-mediated microtubule disassembly and type I interleukin 1 receptor-mediated signaling pathways, whereas the nanofibrous pattern was likely to guide endothelial regeneration via integrin α5β8-guided actin cytoskeleton remodeling. Nevertheless, endowing micropatterned substrate with soft nanofibers was demonstrated to accelerate endothelial maturation via chemokine (C-X-C motif) receptor 4/calcium-mediated actin cytoskeleton assembly. Furthermore, numerical simulation results of hemodynamics indicated the positive impact of the micropatterned nanofibers on maintaining stable hemodynamics. Summarily, our current work supports an affirmation that the micropatterned nanofibrous substrates can significantly promote regeneration and maturation of native-like endothelium, which provides an innovative method for constructing vascular grafts with functional endothelium.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Soft nanofiber modified micropatterned substrates enhance native-like endothelium maturation via CXCR4/calcium-mediated actin cytoskeleton assembly

Show Author's information Bingcheng Yi1,2Boya Zhou2Wufei Dai2Xinwu Lu1Wei Liu2( )
Department of Vascular Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
Department of Plastic and Reconstructive Surgery, Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China

Abstract

Regeneration and maturation of native-like endothelium is crucial for material-guided small-diameter vascular regeneration. Although parallel-microgroove-patterned (micropatterned) substrates are capable of promoting endothelial regeneration with native-like endothelial cell (EC) alignment, their unbefitting high-stiffness acutely inhibits cell–matrix interaction and endothelial maturation. Given that the sufficient softness of nanofibers allows cells to deform the local matrix architecture to satisfy cell survival and functional requirements, in this study, an effective strategy of decorating micropatterned substrate with soft nanofibers was exploited to enhance cell–matrix interaction for engineering healthy endothelium. Results demonstrated that the micropatterned nanofibrous membranes were successfully obtained with high-resolution parallel microgrooves (groove width: ~ 15 µm; groove depth: ~ 5 µm) and adequate softness (bulk modulus: 2.27 ± 0.18 MPa). This particular substrate markedly accelerated the formation and maturation of confluent native-like endothelium by synchronously increasing cell–cell and cell–matrix interactions. Transcriptome analysis revealed that compared with smooth features, the microgrooved pattern was likely to promote endothelial remodeling via integrin α5-mediated microtubule disassembly and type I interleukin 1 receptor-mediated signaling pathways, whereas the nanofibrous pattern was likely to guide endothelial regeneration via integrin α5β8-guided actin cytoskeleton remodeling. Nevertheless, endowing micropatterned substrate with soft nanofibers was demonstrated to accelerate endothelial maturation via chemokine (C-X-C motif) receptor 4/calcium-mediated actin cytoskeleton assembly. Furthermore, numerical simulation results of hemodynamics indicated the positive impact of the micropatterned nanofibers on maintaining stable hemodynamics. Summarily, our current work supports an affirmation that the micropatterned nanofibrous substrates can significantly promote regeneration and maturation of native-like endothelium, which provides an innovative method for constructing vascular grafts with functional endothelium.

Keywords: nanofibers, small-diameter vascular grafts, parallel microgrooves, cell–matrix interaction, endothelial regeneration

References(72)

[1]

Urbano, R. L.; Furia, C.; Basehore, S.; Clyne, A. M. Stiff substrates increase inflammation-induced endothelial monolayer tension and permeability. Biophys. J. 2017, 113, 645–655.

[2]

Yi, B. C.; Shen, Y. B.; Tang, H.; Wang, X. L.; Zhang, Y. Z. Stiffness of the aligned fibers affects structural and functional integrity of the oriented endothelial cells. Acta Biomater. 2020, 108, 237–249.

[3]

Bonito, V.; Koch, S. E.; Krebber, M. M.; Carvajal-Berrio, D. A.; Marzi, J.; Duijvelshoff, R.; Lurier, E. B.; Buscone, S.; Dekker, S.; De Jong, S. M. J. et al. Distinct effects of heparin and interleukin-4 functionalization on macrophage polarization and in situ arterial tissue regeneration using resorbable supramolecular vascular grafts in rats. Adv. Healthc. Mater. 2021, 10, 2101103.

[4]

Gupta, P.; Mandal, B. B. Silk biomaterials for vascular tissue engineering applications. Acta Biomater. 2021, 134, 79–106.

[5]

Koch, S. E.; De Kort, B. J.; Holshuijsen, N.; Brouwer, H. F. M.; Van Der Valk, D. C.; Dankers, P. Y. W.; Van Luijk, J. A. K. R.; Hooijmans, C. R.; De Vries, R. B. M.; Bouten, C. V. C. et al. Animal studies for the evaluation of in situ tissue-engineered vascular grafts—A systematic review, evidence map, and meta-analysis. Npj Regen. Med. 2022, 7, 17.

[6]

Radke, D.; Jia, W. K.; Sharma, D.; Fena, K.; Wang, G. F.; Goldman, J.; Zhao, F. Tissue engineering at the blood-contacting surface: A review of challenges and strategies in vascular graft development. Adv. Healthc. Mater. 2018, 7, 1701461.

[7]

Hao, D. K.; Fan, Y. H.; Xiao, W. W.; Liu, R. W.; Pivetti, C.; Walimbe, T.; Guo, F. Z.; Zhang, X. K.; Farmer, D. L.; Wang, F. S. et al. Rapid endothelialization of small diameter vascular grafts by a bioactive integrin-binding ligand specifically targeting endothelial progenitor cells and endothelial cells. Acta Biomater. 2020, 108, 178–193.

[8]

Peng, B.; Tong, Z. Q.; Tong, W. Y.; Pasic, P. J.; Oddo, A.; Dai, Y. T.; Luo, M. H.; Frescene, J.; Welch, N. G.; Easton, C. D. et al. In situ surface modification of microfluidic blood-brain-barriers for improved screening of small molecules and nanoparticles. ACS Appl. Mater. Interfaces 2020, 12, 56753–56766.

[9]

Zhuang, Y.; Zhang, C. L.; Cheng, M. J.; Huang, J. Y.; Liu, Q. C.; Yuan, G. Y.; Lin, K. L.; Yu, H. B. Challenges and strategies for in situ endothelialization and long-term lumen patency of vascular grafts. Bioact. Mater. 2021, 6, 1791–1809.

[10]

Chang, H.; Hu, M.; Zhang, H.; Ren, K. F.; Li, B. C.; Li, H.; Wang, L. M.; Lei, W. X.; Ji, J. Improved endothelial function of endothelial cell monolayer on the soft polyelectrolyte multilayer film with matrix-bound vascular endothelial growth factor. ACS Appl. Mater. Interfaces 2016, 8, 14357–14366.

[11]

Krishnan, R.; Klumpers, D. D.; Park, C. Y.; Rajendran, K.; Trepat, X.; Van Bezu, J.; Van Hinsbergh, V. W. M.; Carman, C. V.; Brain, J. D.; Fredberg, J. J. et al. Substrate stiffening promotes endothelial monolayer disruption through enhanced physical forces. Am. J. Physiol. Cell Physiol. 2011, 300, C146–C154.

[12]

Yi, B. C.; Yu, L.; Tang, H.; Wang, W. B.; Liu, W.; Zhang, Y. Z. Lysine-doped polydopamine coating enhances antithrombogenicity and endothelialization of an electrospun aligned fibrous vascular graft. Appl. Mater. Today 2021, 25, 101198.

[13]

Ding, Y. H.; Yang, Z. L.; Bi, C. W. C.; Yang, M.; Xu, S. L.; Lu, X.; Huang, N.; Huang, P. B.; Leng, Y. Directing vascular cell selectivity and hemocompatibility on patterned platforms featuring variable topographic geometry and size. ACS Appl. Mater. Interfaces 2014, 6, 12062–12070.

[14]

Govindarajan, T.; Shandas, R. Microgrooves encourage endothelial cell adhesion and organization on shape-memory polymer surfaces. ACS Appl. Bio Mater. 2019, 2, 1897–1906.

[15]

Chen, J. Y.; Hu, M.; Zhang, H.; Li, B. C.; Chang, H.; Ren, K. F.; Wang, Y. B.; Ji, J. Improved antithrombotic function of oriented endothelial cell monolayer on microgrooves. ACS Biomater. Sci. Eng. 2018, 4, 1976–1985.

[16]

Sales, A.; Holle, A. W.; Kemkemer, R. Initial contact guidance during cell spreading is contractility-independent. Soft Matter 2017, 13, 5158–5167.

[17]

Yi, B. C.; Xu, Q.; Liu, W. An overview of substrate stiffness guided cellular response and its applications in tissue regeneration. Bioact. Mater. 2022, 15, 82–102.

[18]

Davis, G. E.; Senger, D. R. Endothelial extracellular matrix: Biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Circ. Res. 2005, 97, 1093–1107.

[19]

Taskin, M. B.; Ahmad, T.; Wistlich, L.; Meinel, L.; Schmitz, M.; Rossi, A.; Groll, J. Bioactive electrospun fibers: Fabrication strategies and a critical review of surface-sensitive characterization and quantification. Chem. Rev. 2021, 121, 11194–11237.

[20]

Weekes, A.; Bartnikowski, N.; Pinto, N.; Jenkins, J.; Meinert, C.; Klein, T. J. Biofabrication of small diameter tissue-engineered vascular grafts. Acta Biomater. 2022, 138, 92–111.

[21]

Sun, Q.; Hou, Y.; Chu, Z. Q.; Wei, Q. Soft overcomes the hard: Flexible materials adapt to cell adhesion to promote cell mechanotransduction. Bioact. Mater. 2022, 10, 397–404.

[22]

Baker, B. M.; Trappmann, B.; Wang, W. Y.; Sakar, M. S.; Kim, I. L.; Shenoy, V. B.; Burdick, J. A.; Chen, C. S. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 2015, 14, 1262–1268.

[23]

Shin, Y. M.; Shin, H. J.; Heo, Y.; Jun, I.; Chung, Y. W.; Kim, K.; Lim, Y. M.; Jeon, H.; Shin, H. Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation. J. Mater. Chem. B 2017, 5, 318–328.

[24]

Tang, H.; Yi, B. C.; Wang, X. L.; Shen, Y. B.; Zhang, Y. Z. Understanding the cellular responses based on low-density electrospun fiber networks. Mat. Sci. Eng. C 2021, 119, 111470.

[25]

Berginski, M. E.; Gomez, S. M. The focal adhesion analysis server: A web tool for analyzing focal adhesion dynamics. F1000Res 2013, 2, 68.

[26]

Zhu, M. F.; Wu, Y. F.; Li, W.; Dong, X. H.; Chang, H.; Wang, K.; Wu, P. L.; Zhang, J.; Fan, G. W.; Wang, L. Y. et al. Biodegradable and elastomeric vascular grafts enable vascular remodeling. Biomaterials 2018, 183, 306–318.

[27]

Sell, S. A.; McClure, M. J.; Garg, K.; Wolfe, P. S.; Bowlin, G. L. Electrospinning of collagen/biopolymers for regenerative medicine and cardiovascular tissue engineering. Adv. Drug Deliver. Rev. 2009, 61, 1007–1019.

[28]

Meshel, A. S.; Wei, Q. Z.; Adelstein, R. S.; Sheetz, M. P. Basic mechanism of three-dimensional collagen fibre transport by fibroblasts. Nat. Cell Biol. 2005, 7, 157–164.

[29]

Hansel, C. S.; Crowder, S. W.; Cooper, S.; Gopal, S.; Da Cruz, M. J. P.; Martins, L. D. O.; Keller, D.; Rothery, S.; Becce, M.; Cass, A. E. G. et al. Nanoneedle-mediated stimulation of cell mechanotransduction machinery. ACS Nano 2019, 13, 2913–2926.

[30]

Soenen, S. J. H.; Nuytten, N.; De Meyer, S. F.; De Smedt, S. C.; De Cuyper, M. High intracellular iron oxide nanoparticle concentrations affect cellular cytoskeleton and focal adhesion kinase-mediated signaling. Small 2010, 6, 832–842.

[31]

Mascharak, S.; Benitez, P. L.; Proctor, A. C.; Madl, C. M. ; Hu, K. H.; Dewi, R. E.; Butte, M. J.; Heilshorn, S. C. YAP-dependent mechanotransduction is required for proliferation and migration on native-like substrate topography. Biomaterials 2017, 115, 155–166.

[32]

Jiang, W. S.; Zhang, C. X.; Tran, L.; Wang, S. G.; Hakim, A. D.; Liu, H. N. Engineering nano-to-micron-patterned polymer coatings on bioresorbable magnesium for controlling human endothelial cell adhesion and morphology. ACS Biomater. Sci. Eng. 2020, 6, 3878–3898.

[33]

Eguiluz, R. C. A.; Kaylan, K. B.; Underhill, G. H.; Leckband, D. E. Substrate stiffness and VE-cadherin mechano-transduction coordinate to regulate endothelial monolayer integrity. Biomaterials 2017, 140, 45–57.

[34]

Wu, X. F.; Zhao, X. H.; Baylor, L.; Kaushal, S.; Eisenberg, E.; Greene, L. E. Clathrin exchange during clathrin-mediated endocytosis. J. Cell Biol. 2001, 155, 291–300.

[35]

Qiao, D. H.; Yang, X. H.; Meyer, K.; Friedl, A. Glypican-1 regulates anaphase promoting complex/cyclosome substrates and cell cycle progression in endothelial cells. Mol. Biol. Cell 2008, 19, 2789–2801.

[36]

Cancel, L. M.; Tarbell, J. M. The role of mitosis in LDL transport through cultured endothelial cell monolayers. Am. J. Physiol. Circulat. Physiol. 2011, 300, H769–H776.

[37]

Ohashi, T.; Sato, M. Remodeling of vascular endothelial cells exposed to fluid shear stress: Experimental and numerical approach. Fluid Dyn. Res. 2005, 37, 40–59.

[38]

Tzima, E.; Del Pozo, M. A.; Kiosses, W. B.; Mohamed, S. A.; Li, S.; Chien, S.; Schwartz, M. A. Activation of Rac1 by shear stress in endothelial cells mediates both cytoskeletal reorganization and effects on gene expression. EMBO J. 2002, 21, 6791–6800.

[39]

Ng, D. H. J.; Humphries, J. D.; Byron, A.; Millon-Frémillon, A.; Humphries, M. J. Microtubule-dependent modulation of adhesion complex composition. PLoS One 2014, 9, e115213.

[40]

Tedgui, A.; Mallat, Z. Anti-inflammatory mechanisms in the vascular wall. Circ. Res. 2001, 88, 877–887.

[41]

Ciechanover, A.; Orian, A.; Schwartz, A. L. Ubiquitin-mediated proteolysis: Biological regulation via destruction. Bioessays 2000, 22, 442–451.

DOI
[42]

Liu, L. J.; Michowski, W.; Kolodziejczyk, A.; Sicinski, P. The cell cycle in stem cell proliferation, pluripotency and differentiation. Nat. Cell Biol. 2019, 21, 1060–1067.

[43]

Zachariae, W.; Tyson, J. J. Cell division: Flipping the mitotic switches. Curr. Biol. 2016, 26, R1272–R1274.

[44]

Papakonstanti, E. A.; Vardaki, E. A.; Stournaras, C. Actin cytoskeleton: A signaling sensor in cell volume regulation. Cell Physiol. Biochem. 2000, 10, 257–264.

[45]

Schnittler, H. J.; Schneider, S. W.; Raifer, H.; Luo, F.; Dieterich, P.; Just, I.; Aktories, K. Role of actin filaments in endothelial cell-cell adhesion and membrane stability under fluid shear stress. Pfluger Arch. 2001, 442, 675–687.

[46]

Cunningham, K. S.; Gotlieb, A. I. The role of shear stress in the pathogenesis of atherosclerosis. Lab. Invest. 2005, 85, 9–23.

[47]

Shen, Q.; Rigor, R. R.; Pivetti, C. D.; Wu, M. H.; Yuan, S. Y. Myosin light chain kinase in microvascular endothelial barrier function. Cardiovasc. Res. 2010, 87, 272–280.

[48]

Tinsley, J. H.; De Lanerolle, P.; Wilson, E.; Ma, W. Y.; Yuan, S. Y. Myosin light chain kinase transference induces myosin light chain activation and endothelial hyperpermeability. Am. J. Physiol. Cell Physiol. 2000, 279, C1285–C1289.

[49]

Lau, E. O. C.; Damiani, D.; Chehade, G.; Ruiz-Reig, N.; Saade, R.; Jossin, Y.; Aittaleb, M.; Schakman, O.; Tajeddine, N.; Gailly, P. et al. DIAPH3 deficiency links microtubules to mitotic errors, defective neurogenesis, and brain dysfunction. eLife 2021, 10, e61974.

[50]

Gasiorowski, J. Z.; Liliensiek, S. J.; Russell, P.; Stephan, D. A.; Nealey, P. F.; Murphy, C. J. Alterations in gene expression of human vascular endothelial cells associated with nanotopographic cues. Biomaterials 2010, 31, 8882–8888.

[51]

Vakifahmetoglu-Norberg, H.; Ouchida, A. T.; Norberg, E. The role of mitochondria in metabolism and cell death. Biochem. Biophys. Res. Commun. 2017, 482, 426–431.

[52]

Rao, R. M.; Yang, L.; Garcia-Cardena, G.; Luscinskas, F. W. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ. Res. 2007, 101, 234–247.

[53]

Muller, W. A. Leukocyte–endothelial–cell interactions in leukocyte transmigration and the inflammatory response. Trends Immunol. 2003, 24, 326–333.

[54]

Adams, R. H.; Eichmann, A. Axon guidance molecules in vascular patterning. Cold Spring Harb Perspect. Biol. 2010, 2, a001875.

[55]

Kay, A. M.; Simpson, C. L.; Stewart, J. A.; Jr. The role of AGE/RAGE signaling in diabetes-mediated vascular calcification. J. Diabetes Res. 2016, 2016, 6809703.

[56]

Souilhol, C.; Serbanovic-Canic, J.; Fragiadaki, M.; Chico, T. J.; Ridger, V.; Roddie, H.; Evans, P. C. Endothelial responses to shear stress in atherosclerosis: A novel role for developmental genes. Nat. Rev. Cardiol. 2020, 17, 52–63.

[57]

Bryant, J.; Ahern, D. J.; Brennan, F. M. CXCR4 and vascular cell adhesion molecule 1 are key chemokine/adhesion receptors in the migration of cytokine-activated T cells. Arthritis Rheum. 2012, 64, 2137–2146.

[58]

Putney, J. W.; Tomita, T. Phospholipase C signaling and calcium influx. Adv. Biol. Regul. 2012, 52, 152–164.

[59]

Thelen, M.; Stein, J. V. How chemokines invite leukocytes to dance. Nat. Immunol. 2008, 9, 953–959.

[60]

Béliveau, É.; Guillemette, G. Microfilament and microtubule assembly is required for the propagation of inositol trisphosphate receptor-induced Ca2+ waves in bovine aortic endothelial cells. J. Cell Biochem. 2009, 106, 344–352.

[61]

Wang, Z. H.; Liu, C. G.; Xiao, Y.; Gu, X.; Xu, Y.; Dong, N. G.; Zhang, S. M.; Qin, Q. H.; Wang, J. L. Remodeling of a cell-free vascular graft with nanolamellar intima into a neovessel. ACS Nano 2019, 13, 10576–10586.

[62]

Liu, M.; Sun, A. Q.; Deng, X. Y. Numerical and experimental investigation of the hemodynamic performance of bifurcated stent grafts with various torsion angles. Sci. Rep. 2018, 8, 12625.

[63]

Wang, Z. H.; Liu, C. G.; Zhu, D.; Gu, X.; Xu, Y.; Qin, Q. H.; Dong, N. G.; Zhang, S. M.; Wang, J. L. Untangling the co-effects of oriented nanotopography and sustained anticoagulation in a biomimetic intima on neovessel remodeling. Biomaterials 2020, 231, 119654.

[64]

Song, K. H.; Kwon, K. W.; Song, S.; Suh, K. Y.; Doh, J. Dynamics of T cells on endothelial layers aligned by nanostructured surfaces. Biomaterials 2012, 33, 2007–2015.

[65]

Wen, J. H.; Vincent, L. G.; Fuhrmann, A.; Choi, Y. S.; Hribar, K. C.; Taylor-Weiner, H.; Chen, S. C.; Engler, A. J. Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat. Mater. 2014, 13, 979–987.

[66]

Kennedy, K. M.; Bhaw-Luximon, A.; Jhurry, D. Cell–matrix mechanical interaction in electrospun polymeric scaffolds for tissue engineering: Implications for scaffold design and performance. Acta Biomater. 2017, 50, 41–55.

[67]

Liliensiek, S. J.; Wood, J. A.; Yong, J.; Auerbach, R.; Nealey, P. F.; Murphy, C. J. Modulation of human vascular endothelial cell behaviors by nanotopographic cues. Biomaterials 2010, 31, 5418–5426.

[68]

Fu, Y.; Xiao, S. H.; Hong, T. T.; Shaw, R. M. Cytoskeleton regulation of ion channels. Circulation 2015, 131, 689–691.

[69]

Jain, A.; Graveline, A.; Waterhouse, A.; Vernet, A.; Flaumenhaft, R.; Ingber, D. E. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat. Commun. 2016, 7, 10176.

[70]

Baeyens, N.; Schwartz, M. A. Biomechanics of vascular mechanosensation and remodeling. Mol. Biol. Cell 2016, 27, 7–11.

[71]

Gerhold, K. A.; Schwartz, M. A. Ion channels in endothelial responses to fluid shear stress. Physiology (Bethesda) 2016, 31, 359–369.

[72]

Ali Shahzad, K.; Qin, Z. J.; Li, Y.; Xia, D. L. The roles of focal adhesion and cytoskeleton systems in fluid shear stress-induced endothelial cell response. Biocell 2020, 44, 137–145.

File
12274_2022_4670_MOESM1_ESM.pdf (832.2 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 April 2022
Revised: 11 June 2022
Accepted: 16 June 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by National Key Research and Development Program of China (No. 2018YFC1105800), China Postdoctoral Science Foundation (No. 2020M681322), and National Natural Science Foundation of China (No. 31870967). We are also grateful to Shiyanjia Lab (www.shiyanjia.com) for his kind help in performing the numerical simulations.

Return