Journal Home > Volume 16 , Issue 6

Effective passivation of aluminum (Al) current collector at high potentials (> 4.0 V vs. Li/Li+) is of essence for the long-term operation of lithium-based batteries. Unfortunately, the non-aqueous liquid electrolytes comprising lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and organic carbonates are corrosive toward Al current collector at high potentials (> 4.0 V vs. Li/Li+), despite their intriguing features (e.g., good chemical stability and high ionic conductivity). Herein, we propose the utilization of N,N-dimethyl fluorosulfonamide (DMFSA) as electrolyte solvent for suppressing Al corrosion in the LiTFSI-based electrolytes. It has been demonstrated that the electrolyte of 1.0 M LiTFSI-DMFSA shows decent ionic conductivities (1.76 mS·cm−1 at 25 °C) with good fluidities (2.44 cP at 25 °C). In particular, the replacement of organic carbonates (e.g., ethylene carbonate and ethyl methyl carbonate) with DMFSA leads to significant suppressed Al corrosion. Morphological and compositional characterizations utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) reveal that DMFSA favors the formation of insoluble species (i.e., aluminum fluoride (AlF3)) on the surface of Al electrode, which effectively inhibits continuous exposure of fresh Al surface to electrolyte during cycling. This work provides not only a deeper understanding on the Al corrosion in LiTFSI-based electrolyte but also an elegant path to stabilize the Al current collector at high potentials (> 4.0 V vs. Li/Li+), which may give an impetus into the development of lithium-based batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N,N-Dimethyl fluorosulfonamide for suppressed aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes

Show Author's information Hao WuZiyu SongXingxing WangWenfang FengZhibin Zhou( )Heng Zhang( )
Key Laboratory of Material Chemistry for Energy Conversion and Storage (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China

Abstract

Effective passivation of aluminum (Al) current collector at high potentials (> 4.0 V vs. Li/Li+) is of essence for the long-term operation of lithium-based batteries. Unfortunately, the non-aqueous liquid electrolytes comprising lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) and organic carbonates are corrosive toward Al current collector at high potentials (> 4.0 V vs. Li/Li+), despite their intriguing features (e.g., good chemical stability and high ionic conductivity). Herein, we propose the utilization of N,N-dimethyl fluorosulfonamide (DMFSA) as electrolyte solvent for suppressing Al corrosion in the LiTFSI-based electrolytes. It has been demonstrated that the electrolyte of 1.0 M LiTFSI-DMFSA shows decent ionic conductivities (1.76 mS·cm−1 at 25 °C) with good fluidities (2.44 cP at 25 °C). In particular, the replacement of organic carbonates (e.g., ethylene carbonate and ethyl methyl carbonate) with DMFSA leads to significant suppressed Al corrosion. Morphological and compositional characterizations utilizing scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS) reveal that DMFSA favors the formation of insoluble species (i.e., aluminum fluoride (AlF3)) on the surface of Al electrode, which effectively inhibits continuous exposure of fresh Al surface to electrolyte during cycling. This work provides not only a deeper understanding on the Al corrosion in LiTFSI-based electrolyte but also an elegant path to stabilize the Al current collector at high potentials (> 4.0 V vs. Li/Li+), which may give an impetus into the development of lithium-based batteries.

Keywords: aluminum current collector, corrosion inhibition, lithium bis(trifluoromethanesulfonyl)imide, lithium-based batteries

References(83)

[1]
Armand, M. Intercalation electrodes. In Materials for Advanced Batteries; Murphy, D. W.; Broadhead, J.; Steele, B. C. H., Eds.; Springer: Boston, 1980; pp 145–161.
DOI
[2]

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

[3]
The Nobel prize in chemistry 2019 [Online]. https://www.nobelprize.org/prizes/chemistry/2019/summary/ (accessed May 19, 2022).
[4]

Zhang, H.; Li, C. M.; Eshetu, G. G.; Laruelle, S.; Grugeon, S.; Zaghib, K.; Julien, C.; Mauger, A.; Guyomard, D.; Rojo, T. et al. From solid-solution electrodes and the rocking-chair concept to today’s batteries. Angew. Chem., Int. Ed. 2020, 59, 534–538.

[5]

Hirata, K.; Morita, Y.; Kawase, T.; Sumida, Y. Electrochemical performance of an ethylene carbonate-free electrolyte based on lithium bis(fluorosulfonyl)imide and sulfolane. J. Power Sources 2018, 395, 163–170.

[6]

Qiao, L. X.; Oteo, U.; Martinez-Ibañez, M.; Santiago, A.; Cid, R.; Sanchez-Diez, E.; Lobato, E.; Meabe, L.; Armand, M.; Zhang, H. Stable non-corrosive sulfonimide salt for 4-V-class lithium metal batteries. Nat. Mater. 2022, 21, 455–462.

[7]

Li, M.; Lu, J.; Chen, Z. W; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, 30, 1800561.

[8]

Whittingham, M. S. Electrical energy storage and intercalation chemistry. Science 1976, 192, 1126–1127.

[9]

Song, Z. Y.; Zheng, L. P.; Cheng, P. F.; Wang, X. X.; Wu, H.; Ma, Q.; Liu, J. J.; Feng, W. F.; Nie, J.; Yu, H. L. et al. Taming the chemical instability of lithium hexafluorophosphate-based electrolyte with lithium fluorosulfonimide salts. J. Power Sources 2022, 526, 231105.

[10]

Mizushima, K.; Jones, P. C.; Wiseman, P. J.; Goodenough, J. B. LixCoO2 (0 < x < −1): A new cathode material for batteries of high energy density. Mater. Res. Bull. 1980, 15, 783–789.

[11]

Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 1997, 144, 1188–1194.

[12]
Kazunori, O. ; Yokokawa M. Cycle performance of lithium ion rechargeable battery. In 10th International Seminar of Primary and Secondary Battery Technology Applications, Florida, USA, 1993.
[13]

Myung, S. T.; Hitoshi, Y.; Sun, Y. K. Electrochemical behavior and passivation of current collectors in lithium-ion batteries. J. Mater. Chem. 2011, 21, 9891–9911.

[14]

Zhu, P. C.; Gastol, D.; Marshall, J.; Sommerville, R.; Goodship, V.; Kendrick, E. A review of current collectors for lithium-ion batteries. J. Power Sources 2021, 485, 229321.

[15]

Zhang, X. Y.; Devine, T. M. Factors that influence formation of AlF3 passive film on aluminum in Li-ion battery electrolytes with LiPF6. J. Electrochem. Soc. 2006, 153, B375.

[16]

Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 2014, 114, 11503–11618.

[17]

Zheng, L. P.; Zhang, H.; Cheng, P. F.; Ma, Q.; Liu, J. J.; Nie, J.; Feng, W. F.; Zhou, Z. B. Li[(FSO2)(n-C4F9SO2)N] versus LiPF6 for graphite/LiCoO2 lithium-ion cells at both room and elevated temperatures: A comprehensive understanding with chemical, electrochemical and XPS analysis. Electrochim. Acta 2016, 196, 169–188.

[18]

Han, H. B.; Guo, J.; Zhang, D. J.; Feng, S. W.; Feng, W. F.; Nie, J.; Zhou, Z. B. Lithium (fluorosulfonyl) (nonafluorobutanesulfonyl)imide (LiFNFSI) as conducting salt to improve the high-temperature resilience of lithium-ion cells. Electrochem. Commun. 2011, 13, 265–268.

[19]

Zhang, H.; Han, H. B.; Cheng, X. R.; Zheng, L. P.; Cheng, P. F.; Feng, W. F.; Nie, J.; Armand, M.; Huang, X. J.; Zhou, Z. B. Lithium salt with a super-delocalized perfluorinated sulfonimide anion as conducting salt for lithium-ion cells: Physicochemical and electrochemical properties. J. Power Sources 2015, 296, 142–149.

[20]

Krause, L. J.; Lamanna, W.; Summerfield, J.; Engle, M.; Korba, G.; Loch, R.; Atanasoski, R. Corrosion of aluminum at high voltages in non-aqueous electrolytes containing perfluoroalkylsulfonyl imides; new lithium salts for lithium-ion cells. J. Power Sources 1997, 68, 320–325.

[21]

Mun, J.; Yim, T.; Choi, C. Y.; Ryu, J. H.; Kim, Y. G.; Oh, S. M. Linear-sweep thermammetry study on corrosion behavior of Al current collector in ionic liquid solvent. Electrochem. Solid-State Lett. 2010, 13, A109.

[22]

Kita, F.; Sakata, H.; Sinomoto, S.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Nie, J.; Pavlenko, N. V.; Yagupolskii, Y. L. Characteristics of the electrolyte with fluoro organic lithium salts. J. Power Sources 2000, 90, 27–32.

[23]
Michot, C. ; Armand, M. ; Sanchez, J. Y. ; Choquette, Y. ; Gauthier, M. Ionic conducting material having good anticorrosive properties. U. S. Patent 5, 916, 475, June 29, 1999.
[24]

Han, H. B.; Zhou, S. S.; Zhang, D. J.; Feng, S. W.; Li, L. F.; Liu, K.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J. Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties. J. Power Sources 2011, 196, 3623–3632.

[25]

Yang, H.; Kwon, K.; Devine, T. M.; Evans, J. W. Aluminum corrosion in lithium batteries an investigation using the electrochemical quartz crystal microbalance. J. Electrochem. Soc. 2000, 147, 4399–4407.

[26]

Zhang, Z. A.; Zhao, X. X.; Peng, B.; Lai, Y. Q.; Zhang, Z. Y.; Li, J. Mixed salts for lithium iron phosphate-based batteries operated at wide temperature range. Trans. Nonferrous Met. Soc. China 2015, 25, 2260–2265.

[27]

Li, X.; Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Li, Q. Y.; Jiao, S. H.; Liu, N.; Zhao, W. G.; Zhang, J. G.; Xu, W. Effects of imide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 2469–2479.

[28]

Zhang, S. S.; Jow, T. R. Aluminum corrosion in electrolyte of Li-ion battery. J. Power Sources 2002, 109, 458–464.

[29]

Louis, H.; Lee, Y. G.; Kim, K. M.; Cho, W. I.; Ko, J. M. Suppression of aluminum corrosion in lithium bis(trifluoromethanesulfonyl)imide-based electrolytes by the addition of fumed silica. Bull. Korean Chem. Soc. 2013, 34, 1795–1799.

[30]

Oldiges, K.; Von Aspern, N.; Cekic-Laskovic, I.; Winter, M.; Brunklaus, G. Impact of trifluoromethylation of adiponitrile on aluminum dissolution behavior in dinitrile-based electrolytes. J. Electrochem. Soc. 2018, 165, A3773–A3781.

[31]

Krämer, E.; Passerini, S.; Winter, M. Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochem. Lett. 2012, 1, C9–C11.

[32]

Pohl, B.; Grünebaum, M.; Drews, M.; Passerini, S.; Winter, M.; Wiemhöfer, H. D. Nitrile functionalized silyl ether with dissolved LiTFSI as new electrolyte solvent for lithium-ion batteries. Electrochim. Acta 2015, 180, 795–800.

[33]

Cheng, P. F.; Zhang, H.; Ma, Q.; Feng, W. F.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhou, Z. B. Highly salt-concentrated electrolyte comprising lithium bis(fluorosulfonyl)imide and 1,3-dioxolane-based ether solvents for 4-V-class rechargeable lithium metal cell. Electrochim. Acta 2020, 363, 137198.

[34]

Abouimrane, A.; Belharouak, I.; Amine, K. Sulfone-based electrolytes for high-voltage Li-ion batteries. Electrochem. Commun. 2009, 11, 1073–1076.

[35]

Xu, K.; Angell, C. A. Sulfone-based electrolytes for lithium-ion batteries. J. Electrochem. Soc. 2002, 149, A920.

[36]

Peng, C. X.; Yang, L.; Wang, B. F.; Zhang, Z. X.; Li, N. Electrochemical behavior of aluminum foil in 1-alkyl-3-methylimidazolium tetrafluoroborate ionic liquids electrolytes. Chin. Sci. Bull. 2006, 51, 2824–2830.

[37]

Cha, E. H.; Mun, J. Y.; Cho, E. R.; Yim, T. E.; Kim, Y. G.; Oh, S. M.; Lim, S. A.; Lim, J. W. The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery. J. Korean Electrochem. Soc. 2011, 14, 152–156.

[38]

Xue, W. J.; Shi, Z.; Huang, M. J.; Feng, S. T.; Wang, C.; Wang, F.; Lopez, J.; Qiao, B.; Xu, G. Y.; Zhang, W. X. et al. FSI-inspired solvent and “full fluorosulfonyl” electrolyte for 4 V class lithium-metal batteries. Energy Environ. Sci. 2020, 13, 212–220.

[39]

Song, Z. Y.; Wang, X. X.; Wu, H.; Feng, W. F.; Nie, J.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhang, H.; Zhou, Z. B. Bis(fluorosulfonyl)imide-based electrolyte for rechargeable lithium batteries: A perspective. J. Power Sources Adv. 2022, 14, 100088.

[40]

Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 2004, 104, 4303–4418.

[41]

Behrend, R. Ueber die einwirkung von sulfurylchlorid auf secundäre aminbasen. Justus Liebigs Ann. Chem. 1884, 222, 116–136.

[42]

Heap, R.; Saunders, B. C. Esters containing phosphorus; substituted diaminofluorophosphine oxides. J. Chem. Soc. 1948, 17, 1313–1316.

[43]
Armarego, W. L. F.; Chai, C. L. L. Purification of organic chemicals. In Purification of Laboratory Chemicals; Armarego, W. L. F.; Chai, C. L. L., Eds.; Elsevier: Amsterdam, 2009; pp 88–444.
DOI
[44]
Schrader, G.; Bayer, O. Sulphamic acid fluorides. U. S. Patent 2, 130, 038, September 13, 1938.
[45]

Havu, V.; Blum, V.; Havu, P.; Scheffler, M. Efficient integration for all-electron electronic structure calculation using numeric basis functions. J. Comput. Phys. 2009, 228, 8367–8379.

[46]

Blum, V.; Gehrke, R.; Hanke, F.; Havu, P.; Havu, V.; Ren, X. G.; Reuter, K.; Scheffler, M. Ab initio molecular simulations with numeric atom-centered orbitals. Comput. Phys. Commun. 2009, 180, 2175–2196.

[47]

Becke, A. D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction. J. Chem. Phys. 1992, 96, 2155–2160.

[48]

Lee, C.; Yang, W. T.; Parr, R. G. Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 1988, 37, 785–789.

[49]

Hanwell, M. D.; Curtis, D. E.; Lonie, D. C.; Vandermeersch, T.; Zurek, E.; Hutchison, G. R. Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. J. Cheminform. 2012, 4, 17.

[50]

Jones, G.; Bradshaw, B. C. The measurement of the conductance of electrolytesV. A redetermination of the conductance of standard potassium chloride solutions in absolute units. J. Am. Chem. Soc. 1933, 55, 1780–1800.

[51]

Fu, S. T.; Liao, S. L.; Nie, J.; Zhou, Z. B. N,N-dialkyl perfluoroalkanesulfonamides: Synthesis, characterization and properties. J. Fluorine Chem. 2013, 147, 56–64.

[52]

Choquette, Y.; Brisard, G.; Parent, M.; Brouillette, D.; Perron, G.; Desnoyers J. E.; Armand, M.; Gravel, D.; Slougui, N. Sulfamides and glymes as aprotic solvents for lithium batteries. J. Electrochem. Soc. 1998, 145, 3500–3507.

[53]

Shyamsunder, A.; Beichel, W.; Klose, P.; Pang, Q.; Scherer, H.; Hoffmann, A.; Murphy, G. K.; Krossing, I.; Nazar, L. F. Inhibiting polysulfide shuttle in lithium-sulfur batteries through low-ion-pairing salts and a triflamide solvent. Angew. Chem., Int. Ed. 2017, 56, 6192–6197.

[54]

Feng, S. T.; Huang, M. J.; Lamb, J. R.; Zhang, W. X.; Tatara, R.; Zhang, Y. R.; Zhu, Y. G.; Perkinson, C. F.; Johnson, J. A.; Shao-Horn, Y. Molecular design of stable sulfamide- and sulfonamide-based electrolytes for aprotic Li-O2 batteries. Chem 2019, 5, 2630–2641.

[55]

Zhang, H.; Arcelus, O.; Carrasco, J. Role of asymmetry in the physiochemical and electrochemical behaviors of perfluorinated sulfonimide anions for lithium batteries: A DFT study. Electrochim. Acta 2018, 280, 290–299.

[56]

Shainyan, B. A.; Chipanina, N. N.; Oznobikhina, L. P. The basicity of sulfonamides and carboxamides. Theoretical and experimental analysis and effect of fluorinated substituent. J. Phys. Org. Chem. 2012, 25, 738–747.

[57]

Liu, K.; Zhou, Y. X.; Han, H. B.; Zhou, S. S.; Feng, W. F.; Nie, J.; Li, H.; Huang, X. J.; Armand, M.; Zhou, Z. B. Ionic liquids based on (fluorosulfonyl)(pentafluoroethanesulfonyl)imide with various oniums. Electrochim. Acta 2010, 55, 7145–7151.

[58]

Sekhar, B. C.; Hachicha, R.; Maffre, M.; Bodin, C.; Le Vot, S.; Favier, F.; Fontaine, O. Evaluation of the properties of an electrolyte based on formamide and LiTFSI for electrochemical capacitors. J. Electrochem. Soc. 2020, 167, 110508.

[59]

Wang, Z. Q.; Hofmann, A.; Hanemann, T. Low-flammable electrolytes with fluoroethylene carbonate based solvent mixtures and lithium bis(trifluoromethanesulfonyl)imide for lithium-ion batteries. Electrochim. Acta 2019, 298, 960–972.

[60]

Ue, M. Mobility and ionic association of lithium and quaternary ammonium salts in propylene carbonate and γ-butyrolactone. J. Electrochem. Soc. 1994, 141, 3336–3342.

[61]

Fox, T. G. Jr.; Flory, P. J. Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J. Appl. Phys. 1950, 21, 581–591.

[62]

Zhou, Z. B.; Matsumoto, H.; Tatsumi, K. Structure and properties of new ionic liquids based on alkyl- and alkenyltrifluoroborates. ChemPhysChem 2005, 6, 1324–1332.

[63]

Linert, W.; Camard, A.; Armand, M.; Michot, C. Anions of low Lewis basicity for ionic solid state electrolytes. Coord. Chem. Rev. 2002, 226, 137–141.

[64]

Cataldo, F. A revision of the Gutmann donor numbers of a series of phosphoramides including TEPA. Eur. Chem. Bull. 2015, 4, 92–97.

[65]

Walden, P. Über organische Lösungs- und Ionisierungsmittel: III. Teil: Innere Reibung und deren Zusammenhang mit dem Leitvermögen. Z. Phys. Chem. 1906, 55U, 207–249.

[66]

Yoshizawa, M.; Xu, W.; Angell, C. A. Ionic liquids by proton transfer: Vapor pressure, conductivity, and the relevance of ∆pKa from aqueous solutions. J. Am. Chem. Soc. 2003, 125, 15411–15419.

[67]

MacFarlane, D. R.; Forsyth, M.; Izgorodina, E. I.; Abbott, A. P.; Annat, G.; Fraser, K. On the concept of ionicity in ionic liquids. Phys. Chem. Chem. Phys. 2009, 11, 4962–4967.

[68]

Wang, X. X.; Song, Z. Y.; Wu, H.; Nie, J.; Feng, W. F.; Yu, H. L.; Huang, X. J.; Armand, M.; Zhou, Z. B.; Zhang, H. Unprecedented impact of main chain on comb polymer electrolytes performances. ChemElectroChem 2022, 9, e202101590.

[69]

Evans, D. H.; O’Connell, K. M.; Petersen, R. A.; Kelly, M. J. Cyclic voltammetry. J. Chem. Educ. 1983, 60, 290–292.

[70]

Cho, K.; Baek, J.; Balamurugan, C.; Im, H.; Kim, H. J. Corrosion study of nickel-coated copper and chromate-coated aluminum for corrosion-resistant lithium-ion battery lead-tab. J. Ind. Eng. Chem. 2022, 106, 537–545.

[71]

Piao, N.; Wang, L.; Anwar, T.; Feng, X. N.; Sheng, S. E.; Tian, G. Y.; Wang, J. L.; Tang, Y. P.; He, X. M. Corrosion resistance mechanism of chromate conversion coated aluminium current collector in lithium-ion batteries. Corros. Sci. 2019, 158, 108100.

[72]

Li, X.; Deng, S. X.; Banis, M. N.; Doyle-Davis, K.; Zhang, D. X.; Zhang, T. Y.; Yang, J.; Divigalpitiya, R.; Brandys, F.; Li, R. Y. et al. Suppressing corrosion of aluminum foils via highly conductive graphene-like carbon coating in high-performance lithium-based batteries. ACS Appl. Mater. Interfaces 2019, 11, 32826–32832.

[73]

Krummacher, J.; Hess, L. H.; Balducci, A. Al(TFSI)3 in acetonitrile as electrolytes for electrochemical double layer capacitors. J. Electrochem. Soc. 2019, 166, A1763–A1768.

[74]

Liang, F. X.; Yu, J. L.; Chen, J. H.; Wang, D.; Lin, C. D.; Zhu, C. Z.; Wang, M. L.; Dong, L.; Li, C. H. A novel boron-based ionic liquid electrolyte for high voltage lithium-ion batteries with outstanding cycling stability. Electrochim. Acta 2018, 283, 111–120.

[75]
Li, F.; Liu, J. D.; He, J.; Hou, Y. Y.; Wang, H. P.; Wu, D. X.; Huang, J. D.; Ma, J. M. Additive-assisted hydrophobic Li+-solvated structure for stabilizing dual electrode electrolyte interphases through suppressing LiPF6 hydrolysis. Angew. Chem., Int. Ed., in press, https://doi.org/10.1002/anie.202205091.
DOI
[76]

Huang, J. D.; Liu, J. D.; He, J.; Wu, M. G.; Qi, S. H.; Wang, H. P.; Li, F.; Ma, J. M. Optimizing electrode/electrolyte interphases and Li-ion flux/solvation for lithium-metal batteries with qua-functional heptafluorobutyric anhydride. Angew. Chem., Int. Ed. 2021, 60, 20717–20722.

[77]

Meister, P.; Qi, X.; Kloepsch, R.; Krämer, E.; Streipert, B.; Winter, M.; Placke, T. Anodic behavior of the aluminum current collector in imide-based electrolytes: Influence of solvent, operating temperature, and native oxide-layer thickness. ChemSusChem 2017, 10, 804–814.

[78]

Krummacher, J.; Balducci, A. Al(TFSI)3 as a conducting salt for high-voltage electrochemical double-layer capacitors. Chem. Mater. 2018, 30, 4857–4863.

[79]

Lin, M.; Yang, X. R.; Zheng, X.; Zheng, J. M.; Cheng, J.; Yang, Y. Initial stages of oxidation reactions of ethylene carbonate and fluoroethylene carbonate on LixCoO2 surfaces: A DFT study. J. Electrochem. Soc. 2021, 168, 050505.

[80]

Yang, S. D.; Fan, Q. L.; Shi, Z. C.; Liu, L. Y.; Liu, J.; Ke, X.; Liu, J. P.; Hong, C. Y.; Yang, Y.; Guo, Z. P. Superior stability secured by a four-phase cathode electrolyte interface on a Ni-rich cathode for lithium ion batteries. ACS Appl. Mater. Interfaces 2019, 11, 36742–36750.

[81]

Zou, Y.; Cheng, Y.; Lin, J. D.; Xiao, Y. K.; Ren, F. C.; Zhou, K.; Wang, M. S.; Wu, D. Y.; Yang, Y.; Zheng, J. M. Boosting high voltage cycling of LiCoO2 cathode via triisopropanolamine cyclic borate electrolyte additive. J. Power Sources 2022, 532, 231372.

[82]

Kim, J. M.; Zhang, X. H.; Zhang, J. G.; Manthiram, A.; Meng, Y. S.; Xu, W. A review on the stability and surface modification of layered transition-metal oxide cathodes. Mater. Today 2021, 46, 155–182.

[83]

Yu, X. W.; Yu, W. A.; Manthiram, A. Advances and prospects of high-voltage spinel cathodes for lithium-based batteries. Small Methods 2021, 5, 2001196.

File
4669_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 May 2022
Revised: 15 June 2022
Accepted: 16 June 2022
Published: 20 July 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work is supported by the Fundamental Research Funds for the Central Universities, HUST (No. 52020kfyXJJS09). The authors appreciate Molecular Simulations from First Principles (MS1P) eV. for kindly supplying the FHI-aims (Fritz Haber Institute ab initio molecular simulations) package as a generous gift.

Return