Journal Home > Volume 16 , Issue 1

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered to be promising building blocks for the next generation electronic and optoelectronic devices. Various doping schemes and work function engineering techniques have been explored to overcome the intrinsic performance limits of 2D TMDs. However, a reliable and long-time air stable doping scheme is still lacking in this field. In this work, we utilize keV ion beams of H2+ to irradiate layered WSe2 crystals and obtain efficient n-type doping effect for all irradiated crystals within a fluence of 1 × 1014 protons·cm−2 (1e14). Moreover, the irradiated WSe2 remains an n-type semiconductor even after it is exposed to ambient conditions for a year. Localized ion irradiation with a focused beam can directly pattern on the sample to make high performance homogenous p-n junction diodes. Raman and photoluminescence (PL) spectra demonstrate that the WSe2 crystal lattice stays intact after irradiation within 1e14. We attribute the reliable electron-doping to the significant increase in Se vacancies after the proton irradiation, which is confirmed by our scanning transmission electron microscope (STEM) results. Our work demonstrates a reliable and long-term air stable n-type doping scheme to realize high-performance electronic TMD devices, which is also suitable for further integration with other 2D devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Robust n-type doping of WSe2 enabled by controllable proton irradiation

Show Author's information Haidong Liang1,3,§Yue Zheng2,3,§Leyi Loh4,§Zehua Hu6Qijie Liang7Cheng Han2Michel Bosman4( )Wei Chen3,5,8( )Andrew A. Bettiol1,3( )
Centre for Ion Beam Applications (CIBA), Department of Physics, National University of Singapore, Singapore 117542, Singapore
International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
Department of Physics, National University of Singapore, Singapore 117551, Singapore
Department of Materials Science and Engineering, National University of Singapore, Singapore 117575, Singapore
Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
Division of Physics and Applied Physics, School of Physical and Mathematical Science, Nanyang Technological University, Singapore 637371, Singapore
Songshan Lake Materials Laboratory, Songshan Lake Mat Lab, Dongguan 523808, China
National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou 215123, China

§ Haidong Liang, Yue Zheng, and Leyi Loh contributed equally to this work.

Abstract

Two-dimensional (2D) transition metal dichalcogenides (TMDs) are considered to be promising building blocks for the next generation electronic and optoelectronic devices. Various doping schemes and work function engineering techniques have been explored to overcome the intrinsic performance limits of 2D TMDs. However, a reliable and long-time air stable doping scheme is still lacking in this field. In this work, we utilize keV ion beams of H2+ to irradiate layered WSe2 crystals and obtain efficient n-type doping effect for all irradiated crystals within a fluence of 1 × 1014 protons·cm−2 (1e14). Moreover, the irradiated WSe2 remains an n-type semiconductor even after it is exposed to ambient conditions for a year. Localized ion irradiation with a focused beam can directly pattern on the sample to make high performance homogenous p-n junction diodes. Raman and photoluminescence (PL) spectra demonstrate that the WSe2 crystal lattice stays intact after irradiation within 1e14. We attribute the reliable electron-doping to the significant increase in Se vacancies after the proton irradiation, which is confirmed by our scanning transmission electron microscope (STEM) results. Our work demonstrates a reliable and long-term air stable n-type doping scheme to realize high-performance electronic TMD devices, which is also suitable for further integration with other 2D devices.

Keywords: WSe2, n-type doping, proton beam irradiation, long-time air stable, Se vacancies

References(57)

[1]

Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712.

[2]

Wang, H.; Yu, L. L.; Lee, Y. H.; Shi, Y. M.; Hsu, A.; Chin, M. L.; Li, L. J.; Dubey, M.; Kong, J.; Palacios, T. Integrated circuits based on bilayer MoS2 transistors. Nano Lett. 2012, 12, 4674–4680.

[3]

Lee, Y. H.; Zhang, X. Q.; Zhang, W. J.; Chang, M. T.; Lin, C. T.; Chang, K. D.; Yu, Y. C.; Wang, J. T. W.; Chang, C. S.; Li, L. J. et al. Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv. Mater. 2012, 24, 2320–2325.

[4]

Lee, G. H.; Yu, Y. J.; Cui, X.; Petrone, N.; Lee, C. H.; Choi, M. S.; Lee, D. Y.; Lee, C.; Yoo, W. J.; Watanabe, K. et al. Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride-graphene heterostructures. ACS Nano 2013, 7, 7931–7936.

[5]

Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678.

[6]

Liu, H.; Neal, A. T.; Ye, P. D. Channel length scaling of MoS2 MOSFETs. ACS Nano 2012, 6, 8563–8569.

[7]

Shi, Y. M.; Li, H. N.; Li, L. J. Recent advances in controlled synthesis of two-dimensional transition metal dichalcogenides via vapour deposition techniques. Chem. Soc. Rev. 2015, 44, 2744–2756.

[8]

Chen, M. L.; Sun, X. D.; Liu, H.; Wang, H. W.; Zhu, Q. B.; Wang, S. S.; Du, H. F.; Dong, B. J.; Zhang, J.; Sun, Y. et al. A FinFET with one atomic layer channel. Nat. Commun. 2020, 11, 1205.

[9]

Liu, Y.; Duan, X. D.; Huang, Y.; Duan, X. F. Two-dimensional transistors beyond graphene and TMDCs. Chem. Soc. Rev. 2018, 47, 6388–6409.

[10]

Long, M. S.; Wang, P.; Fang, H. H.; Hu, W. D. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 2019, 29, 1803807.

[11]

Sun, Z. P.; Martinez, A.; Wang, F. Optical modulators with 2D layered materials. Nat. Photonics 2016, 10, 227–238.

[12]

Withers, F.; Del Pozo-Zamudio, O.; Mishchenko, A.; Rooney, A. P.; Gholinia, A.; Watanabe, K.; Taniguchi, T.; Haigh, S. J.; Geim, A. K.; Tartakovskii, A. I. et al. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 2015, 14, 301–306.

[13]

Yoo, H.; Heo, K.; Ansari, H. R.; Cho, S. Recent advances in electrical doping of 2D semiconductor materials: Methods, analyses, and applications. Nanomaterials 2021, 11, 832.

[14]

Luo, P.; Zhuge, F. W.; Zhang, Q. F.; Chen, Y. Q.; Lv, L.; Huang, Y.; Li, H. Q.; Zhai, T. Y. Doping engineering and functionalization of two-dimensional metal chalcogenides. Nanoscale Horiz. 2019, 4, 26–51.

[15]

Loh, L.; Zhang, Z. P.; Bosman, M.; Eda, G. Substitutional doping in 2D transition metal dichalcogenides. Nano Res. 2021, 14, 1668–1681.

[16]

Cho, K.; Pak, J.; Chung, S.; Lee, T. Recent advances in interface engineering of transition-metal dichalcogenides with organic molecules and polymers. ACS Nano 2019, 13, 9713–9734.

[17]

Schmidt, H.; Giustiniano, F.; Eda, G. Electronic transport properties of transition metal dichalcogenide field-effect devices: Surface and interface effects. Chem. Soc. Rev. 2015, 44, 7715–7736.

[18]

Kiriya, D.; Tosun, M.; Zhao, P. D.; Kang, J. S.; Javey, A. Air-stable surface charge transfer doping of MoS2 by benzyl viologen. J. Am. Chem. Soc. 2014, 136, 7853–7856.

[19]

Sim, D. M.; Kim, M.; Yim, S.; Choi, M. J.; Choi, J.; Yoo, S.; Jung, Y. S. Controlled doping of vacancy-containing few-layer MoS2 via highly stable thiol-based molecular chemisorption. ACS Nano 2015, 9, 12115–12123.

[20]

Kang, D. H.; Shim, J.; Jang, S. K.; Jeon, J.; Jeon, M. H.; Yeom, G. Y.; Jung, W. S.; Jang, Y. H.; Lee, S.; Park, J. H. Controllable nondegenerate p-type doping of tungsten diselenide by octadecyltrichlorosilane. ACS Nano 2015, 9, 1099–1107.

[21]

Benjamin, C. J.; Zhang, S.; Chen, Z. H. Controlled doping of transition metal dichalcogenides by metal work function tuning in phthalocyanine compounds. Nanoscale 2018, 10, 5148–5153.

[22]

Pak, J.; Jang, J.; Cho, K.; Kim, T. Y.; Kim, J. K.; Song, Y.; Hong, W. K.; Min, M.; Lee, H.; Lee, T. Enhancement of photodetection characteristics of MoS2 field effect transistors using surface treatment with copper phthalocyanine. Nanoscale 2015, 7, 18780–18788.

[23]

Mouri, S.; Miyauchi, Y.; Matsuda, K. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett. 2013, 13, 5944–5948.

[24]

Li, Y.; Xu, C. Y.; Hu, P. A.; Zhen, L. Carrier control of MoS2 nanoflakes by functional self-assembled monolayers. ACS Nano 2013, 7, 7795–7804.

[25]

Dey, S.; Matte, H. S. S. R.; Shirodkar, S. N.; Waghmare, U. V.; Rao, C. N. R. Charge-transfer interaction between few-layer MoS2 and tetrathiafulvalene. Chem. -Asian J. 2013, 8, 1780–1784.

[26]

Kang, D. H.; Kim, M. S.; Shim, J.; Jeon, J.; Park, H. Y.; Jung, W. S.; Yu, H. Y.; Pang, C. H.; Lee, S.; Park, J. H. High-performance transition metal dichalcogenide photodetectors enhanced by self-assembled monolayer doping. Adv. Funct. Mater. 2015, 25, 4219–4227.

[27]

Tarasov, A.; Zhang, S. Y.; Tsai, M. Y.; Campbell, P. M.; Graham, S.; Barlow, S.; Marder, S. R.; Vogel, E. M. Controlled doping of large-area trilayer MoS2 with molecular reductants and oxidants. Adv. Mater. 2015, 27, 1175–1181.

[28]

Andleeb, S.; Singh, A. K.; Eom, J. Chemical doping of MoS2 multilayer by p-toluene sulfonic acid. Sci. Technol. Adv. Mater. 2015, 16, 035009.

[29]

Ghimire, G.; Dhakal, K. P.; Neupane, G. P.; Jo, S. G.; Kim, H.; Seo, C.; Lee, Y. H.; Joo, J.; Kim, J. Optically active charge transfer in hybrids of Alq3 nanoparticles and MoS2 monolayer. Nanotechnology 2017, 28, 185702.

[30]

Heo, K.; Jo, S. H.; Shim, J.; Kang, D. H.; Kim, J. H.; Park, J. H. Stable and reversible triphenylphosphine-based n-type doping technique for molybdenum disulfide (MoS2). ACS Appl. Mater. Interfaces 2018, 10, 32765–32772.

[31]

Peimyoo, N.; Yang, W. H.; Shang, J. Z.; Shen, X. N.; Wang, Y. L.; Yu, T. Chemically driven tunable light emission of charged and neutral excitons in monolayer WS2. ACS Nano 2014, 8, 11320–11329.

[32]

Yoo, H.; Hong, S.; Moon, H.; On, S.; Ahn, H.; Lee, H. K.; Kim, S.; Hong, Y. K.; Kim, J. J. Chemical doping effects on CVD-grown multilayer MoSe2 transistor. Adv. Electron. Mater. 2018, 4, 1700639.

[33]

Ghorbani-Asl, M.; Kretschmer, S.; Spearot, D. E.; Krasheninnikov, A. V. Two-dimensional MoS2 under ion irradiation: From controlled defect production to electronic structure engineering. 2D Mater. 2017, 4, 025078.

[34]

Bertolazzi, S.; Bonacchi, S.; Nan, G. J.; Pershin, A.; Beljonne, D.; Samorì, P. Engineering chemically active defects in monolayer MoS2 transistors via ion-beam irradiation and their healing via vapor deposition of alkanethiols. Adv. Mater. 2017, 29, 1606760.

[35]

Mupparapu, R.; Steinert, M.; George, A.; Tang, Z.; Turchanin, A.; Pertsch, T.; Staude, I. Facile resist-free nanopatterning of monolayers of MoS2 by focused ion-beam milling. Adv. Mater. Interfaces 2020, 7, 2000858.

[36]

Madauß, L.; Ochedowski, O.; Lebius, H.; D’Etat, B. B.; Naylor, C. H.; Johnson, A. T. C.; Kotakoski, J.; Schleberger, M. Defect engineering of single- and few-layer MoS2 by swift heavy ion irradiation. 2D Mater. 2017, 4, 015034.

[37]

Valerius, P.; Kretschmer, S.; Senkovskiy, B. V.; Wu, S. L.; Hall, J.; Herman, A.; Ehlen, N.; Ghorbani-Asl, M.; Grüneis, A.; Krasheninnikov, A. V. et al. Reversible crystalline-to-amorphous phase transformation in monolayer MoS2 under grazing ion irradiation. 2D Mater. 2020, 7, 025005.

[38]

Choudhary, N.; Islam, M. R.; Kang, N.; Tetard, L.; Jung, Y.; Khondaker, S. I. Two-dimensional lateral heterojunction through bandgap engineering of MoS2 via oxygen plasma. J. Phys.: Condens. Matter 2016, 28, 364002.

[39]

Chen, Y.; Huang, S. X.; Ji, X.; Adepalli, K.; Yin, K. D.; Ling, X.; Wang, X. W.; Xue, J. M.; Dresselhaus, M.; Kong, J. et al. Tuning electronic structure of single layer MoS2 through defect and interface engineering. ACS Nano 2018, 12, 2569–2579.

[40]

Stanford, M. G.; Pudasaini, P. R.; Belianinov, A.; Cross, N.; Noh, J. H.; Koehler, M. R.; Mandrus, D. G.; Duscher, G.; Rondinone, A. J.; Ivanov, I. N. et al. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions. Sci. Rep. 2016, 6, 27276.

[41]

He, Z. Y.; Zhao, R.; Chen, X. F.; Chen, H. J.; Zhu, Y. M.; Su, H. M.; Huang, S. X.; Xue, J. M.; Dai, J. F.; Cheng, S. et al. Defect engineering in single-layer MoS2 using heavy ion irradiation. ACS Appl. Mater. Interfaces 2018, 10, 42524–42533.

[42]

Cheng, Z. H.; Abuzaid, H.; Yu, Y. F.; Zhang, F.; Li, Y. L.; Noyce, S. G.; Williams, N. X.; Lin, Y. C.; Doherty, J. L.; Tao, C. G. et al. Convergent ion beam alteration of 2D materials and metal-2D interfaces. 2D Mater. 2019, 6, 034005.

[43]

Jadwiszczak, J.; Keane, D.; Maguire, P.; Cullen, C. P.; Zhou, Y. B.; Song, H. D.; Downing, C.; Fox, D.; McEvoy, N.; Zhu, R. et al. MoS2 memtransistors fabricated by localized helium ion beam irradiation. ACS Nano 2019, 13, 14262–14273.

[44]

Komsa, H. P.; Kotakoski, J.; Kurasch, S.; Lehtinen, O.; Kaiser, U.; Krasheninnikov, A. V. Two-dimensional transition metal dichalcogenides under electron irradiation: Defect production and doping. Phys. Rev. Lett. 2012, 109, 035503.

[45]

Gao, L.; Liao, Q. L.; Zhang, X. K.; Liu, X. Z.; Gu, L.; Liu, B. S.; Du, J. L.; Ou, Y.; Xiao, J. K.; Kang, Z. et al. Defect-engineered atomically thin MoS2 homogeneous electronics for logic inverters. Adv. Mater. 2020, 32, 1906646.

[46]

Stanford, M. G.; Pudasaini, P. R.; Gallmeier, E. T.; Cross, N.; Liang, L. B.; Oyedele, A.; Duscher, G.; Mahjouri-Samani, M.; Wang, K.; Xiao, K. et al. High conduction hopping behavior induced in transition metal dichalcogenides by percolating defect networks: Toward atomically thin circuits. Adv. Funct. Mater. 2017, 27, 1702829.

[47]

Li, Z. Q.; Chen, F. Ion beam modification of two-dimensional materials: Characterization, properties, and applications. Appl. Phys. Rev. 2017, 4, 011103.

[48]

Fox, D. S.; Zhou, Y. B.; Maguire, P.; O’Neill, A.; Ó’Coileaín, C.; Gatensby, R.; Glushenkov, A. M.; Tao, T.; Duesberg, G. S.; Shvets, I. V.; Abid, M. et al. Nanopatterning and electrical tuning of MoS2 layers with a subnanometer helium ion beam. Nano Lett. 2015, 15, 5307–5313.

[49]

Kim, T. Y.; Cho, K.; Park, W.; Park, J.; Song, Y.; Hong, S.; Hong, W. K.; Lee, T. Irradiation effects of high-energy proton beams on MoS2 field effect transistors. ACS Nano 2014, 8, 2774–2781.

[50]

Tosun, M.; Chan, L.; Amani, M.; Roy, T.; Ahn, G. H.; Taheri, P.; Carraro, C.; Ager, J. W.; Maboudian, R.; Javey, A. Air-stable n-doping of WSe2 by anion vacancy formation with mild plasma treatment. ACS Nano 2016, 10, 6853–6860.

[51]

Wang, S. F.; Zhao, W. J.; Giustiniano, F.; Eda, G. Effect of oxygen and ozone on p-type doping of ultra-thin WSe2 and MoSe2 field effect transistors. Phys. Chem. Chem. Phys. 2016, 18, 4304–4309.

[52]

Jones, A. M.; Yu, H. Y.; Ghimire, N. J.; Wu, S. F.; Aivazian, G.; Ross, J. S.; Zhao, B.; Yan, J. Q.; Mandrus, D. G.; Xiao, D. et al. Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 2013, 8, 634–638.

[53]

Wang, Y. L.; Cong, C. X.; Yang, W. H.; Shang, J. Z.; Peimyoo, N.; Chen, Y.; Kang, J. Y.; Wang, J. P.; Huang, W.; Yu, T. Strain-induced direct-indirect bandgap transition and phonon modulation in monolayer WS2. Nano Res. 2015, 8, 2562–2572.

[54]
Zhu, C. R ; Zhang, K.; Glazov, M.; Urbaszek, B.; Amand, T.; Ji, Z. W.; Liu, B. L.; Marie, X. Exciton valley dynamics probed by Kerr rotation in WSe2 monolayers. Phys. Rev. B 2014, 90, 161302(R).
[55]

Ye, Y. X.; Dou, X. M.; Ding, K.; Jiang, D. S.; Yang, F. H.; Sun, B. Q. Pressure-induced KΛ crossing in monolayer WSe2. Nanoscale 2016, 8, 10843–10848.

[56]

Zheng, Y. J.; Chen, Y. F.; Huang, Y. L.; Gogoi, P. K.; Li, M. Y.; Li, L. J.; Trevisanutto, P. E.; Wang, Q. X.; Pennycook, S. J.; Wee, A. T. S. et al. Point defects and localized excitons in 2D WSe2. ACS Nano 2019, 13, 6050–6059.

[57]

Zhang, S.; Wang, C. G.; Li, M. Y.; Huang, D.; Li, L. J.; Ji, W.; Wu, S. W. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 2017, 119, 046101.

File
12274_2022_4668_MOESM1_ESM.pdf (3.2 MB)
Publication history
Copyright

Publication history

Received: 13 May 2022
Revised: 09 June 2022
Accepted: 15 June 2022
Published: 27 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022
Return