Journal Home > Volume 16 , Issue 1

Transition metal phosphides (TMPs) are essential catalysts for some general catalytic reactions. However, their potentials for biological catalysis have seldom been explored. Herein, we investigated the enzyme-like properties of four TMPs (FeP, CoP, Ni2P, and Cu3P) towards two sugar-related reactions. Among the four TMPs, Cu3P nanoparticles (NPs) efficiently catalyzed the hydrolysis of glycosidic bonds as glycoside hydrolase mimics, and FeP NPs possessed both glucose oxidase-like (GOx-like) and peroxidase-like activities, which combined into a cascade reaction for glucose’s simple and one-step colorimetric biosensor without GOx. Cu3P and FeP NPs with distinctive enzyme-like activities have shown unique biological catalysis potentials for further applications with an attractive and challenging goal of developing nanomaterials to mimic natural enzymes, which encourages more efforts to reveal TMP’s capabilities towards biocatalysis.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A revisiting of transition metal phosphide (Cu3P and FeP) nanozymes for two sugar-related reactions

Show Author's information Daiyong Chao1,2,§Zhixuan Yu2,§Jinxing Chen2Qing Dong1,2Weiwei Wu2Youxing Fang2( )Ling Liu2( )Shaojun Dong1,2( )
College of Chemistry, Jilin University, Changchun 130012, China
State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China

§ Daiyong Chao and Zhixuan Yu contributed equally to this work.

Abstract

Transition metal phosphides (TMPs) are essential catalysts for some general catalytic reactions. However, their potentials for biological catalysis have seldom been explored. Herein, we investigated the enzyme-like properties of four TMPs (FeP, CoP, Ni2P, and Cu3P) towards two sugar-related reactions. Among the four TMPs, Cu3P nanoparticles (NPs) efficiently catalyzed the hydrolysis of glycosidic bonds as glycoside hydrolase mimics, and FeP NPs possessed both glucose oxidase-like (GOx-like) and peroxidase-like activities, which combined into a cascade reaction for glucose’s simple and one-step colorimetric biosensor without GOx. Cu3P and FeP NPs with distinctive enzyme-like activities have shown unique biological catalysis potentials for further applications with an attractive and challenging goal of developing nanomaterials to mimic natural enzymes, which encourages more efforts to reveal TMP’s capabilities towards biocatalysis.

Keywords: peroxidase-like activity, cascade reaction, glucose oxidase-like activity, transition metal phosphide, glycoside hydrolase mimic

References(45)

[1]

Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.

[2]

Liang, M. M.; Yan, X. Y. Nanozymes: From new concepts, mechanisms, and standards to applications. Acc. Chem. Res. 2019, 52, 2190–2200.

[3]

Jiao, L.; Yan, H. Y.; Wu, Y.; Gu, W. L.; Zhu, C. Z.; Du, D.; Lin, Y. H. When nanozymes meet single-atom catalysis. Angew. Chem., Int. Ed. 2020, 59, 2565–2576.

[4]

Ragg, R.; Tahir, M. N.; Tremel, W. Solids go bio: Inorganic nanoparticles as enzyme mimics. Eur. J. Inorg. Chem. 2016, 2016, 1896.

[5]

Li, Y. Q.; Liu, J. W. Nanozyme’s catching up: Activity, specificity, reaction conditions and reaction types. Mater. Horiz. 2021, 8, 336–350.

[6]

Tang, J. Y.; Chen, D.; Yao, Q. F.; Xie, J. P.; Yang, J. Recent advances in noble metal-based nanocomposites for electrochemical reactions. Mater. Today Energy 2017, 6, 115–127.

[7]

Li, P.; Chen, W. Recent advances in one-dimensional nanostructures for energy electrocatalysis. Chin. J. Catal. 2019, 40, 4–22.

[8]

Zhang, G. H.; Zhang, X. Q.; Meng, Y.; Pan, G. X.; Ni, Z. M.; Xia, S. J. Layered double hydroxides-based photocatalysts and visible-light driven photodegradation of organic pollutants: A review. Chem. Eng. J. 2020, 392, 123684.

[9]

Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

[10]

Chen, Z. J.; Chen, J. Y.; Li, Y. W. Metal–organic-framework-based catalysts for hydrogenation reactions. Chin. J. Catal. 2017, 38, 1108–1126.

[11]

Lu, X. F.; Xia, B. Y.; Zang, S. Q.; Lou, X. W. Metal–organic frameworks based electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2020, 59, 4634–4650.

[12]

Wu, J. J. X.; Yu, Y. J.; Cheng, Y.; Cheng, C. Q.; Zhang, Y. H.; Jiang, B.; Zhao, X. Z.; Miao, L. Y.; Wei, H. Ligand-dependent activity engineering of glutathione peroxidase-mimicking MIL-47(V) metal–organic framework nanozyme for therapy. Angew. Chem., Int. Ed. 2021, 60, 1227–1234.

[13]

Wang, Y.; Jia, G. R.; Cui, X. Q.; Zhao, X.; Zhang, Q. H.; Gu, L.; Zheng, L. R.; Li, L. H.; Wu, Q.; Singh, D. J. et al. Coordination number regulation of molybdenum single-atom nanozyme peroxidase-like specificity. Chem 2021, 7, 436–449.

[14]

Jiao, L.; Xu, W. Q.; Zhang, Y.; Wu, Y.; Gu, W. L.; Ge, X. X.; Chen, B. B.; Zhu, C. Z.; Guo, S. J. Boron-doped Fe-N-C single-atom nanozymes specifically boost peroxidase-like activity. Nano Today 2020, 35, 100971.

[15]

Lv, Y.; Wang, X. B. Nonprecious metal phosphides as catalysts for hydrogen evolution, oxygen reduction and evolution reactions. Catal. Sci. Technol. 2017, 7, 3676–3691.

[16]

Su, J. Z.; Zhou, J. L.; Wang, L.; Liu, C.; Chen, Y. B. Synthesis and application of transition metal phosphides as electrocatalyst for water splitting. Sci. Bull. 2017, 62, 633–644.

[17]

Oyama, S. T.; Gott, T.; Zhao, H. Y.; Lee, Y. K. Transition metal phosphide hydroprocessing catalysts: A review. Catal. Today 2009, 143, 94–107.

[18]

Shi, Y. M.; Zhang, B. Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 2016, 45, 1529–1541.

[19]

Sun, M.; Liu, H. J.; Qu, J. H.; Li, J. H. Earth-rich transition metal phosphide for energy conversion and storage. Adv. Energy Mater. 2016, 6, 1600087.

[20]

Wang, X.; Kim, H. M.; Xiao, Y.; Sun, Y. K. Nanostructured metal phosphide-based materials for electrochemical energy storage. J. Mater. Chem. A 2016, 4, 14915–14931.

[21]

Huang, Y. Y.; Ren, J. S.; Qu, X. G. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412.

[22]

Gao, M.; Wang, Z. Z.; Zheng, H. Z.; Wang, L.; Xu, S. J.; Liu, X.; Li, W.; Pan, Y. X.; Wang, W. L.; Cai, X. M. et al. Two-dimensional tin selenide (SnSe) nanosheets capable of mimicking key dehydrogenases in cellular metabolism. Angew. Chem., Int. Ed. 2020, 59, 3618–3623.

[23]

Fan, K. L.; Xi, J. Q.; Fan, L.; Wang, P. X.; Zhu, C. H.; Tang, Y.; Xu, X. D.; Liang, M. M.; Jiang, B.; Yan, X. Y. et al. In vivo guiding nitrogen-doped carbon nanozyme for tumor catalytic therapy. Nat. Commun. 2018, 9, 1440.

[24]

Xi, J. Q.; Zhang, R. F.; Wang, L. M.; Xu, W.; Liang, Q.; Li, J. Y.; Jiang, J.; Yang, Y. L.; Yan, X. Y.; Fan, K. L. et al. A nanozyme-based artificial peroxisome ameliorates hyperuricemia and ischemic stroke. Adv. Funct. Mater. 2021, 31, 2007130.

[25]

Han, L.; Zhang, H. J.; Chen, D. Y.; Li, F. Protein-directed metal oxide nanoflakes with tandem enzyme-like characteristics: Colorimetric glucose sensing based on one-pot enzyme-free cascade catalysis. Adv. Funct. Mater. 2018, 28, 1800018.

[26]

Zhang, H. J.; Liang, X.; Han, L.; Li, F. “Non-naked” gold with glucose oxidase-like activity: A nanozyme for tandem catalysis. Small 2018, 14, 1803256.

[27]

Huang, Y.; Zhao, M. T.; Han, S. K.; Lai, Z. C.; Yang, J.; Tan, C. L.; Ma, Q. L.; Lu, Q. P.; Chen, J. Z.; Zhang, X. et al. Growth of Au nanoparticles on 2D metalloporphyrinic metal–organic framework nanosheets used as biomimetic catalysts for cascade reactions. Adv. Mater. 2017, 29, 1700102.

[28]

Zhang, P.; Sun, D. R.; Cho, A.; Weon, S.; Lee, S.; Lee, J.; Han, J. W.; Kim, D. P.; Choi, W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat. Commun. 2019, 10, 940.

[29]

Gu, F. W.; Liu, H. C. Hydroxyl radicals-mediated oxidative cleavage of the glycosidic bond in cellobiose by copper catalysts and its application to low-temperature depolymerization of cellulose. Chin. J. Catal. 2020, 41, 1073–1080.

[30]

Zhu, J. L.; Peng, X.; Nie, W.; Wang, Y. J.; Gao, J. W.; Wen, W.; Selvaraj, J. N.; Zhang, X. H.; Wang, S. F. Hollow copper sulfide nanocubes as multifunctional nanozymes for colorimetric detection of dopamine and electrochemical detection of glucose. Biosens. Bioelectron. 2019, 141, 111450.

[31]

Zhu, J. L.; Luo, G.; Xi, X. X.; Wang, Y. J.; Selvaraj, J. N.; Wen, W.; Zhang, X. H.; Wang, S. F. Cu2+-modified hollow carbon nanospheres: An unusual nanozyme with enhanced peroxidase-like activity. Microchim. Acta 2021, 188, 8.

[32]

Tian, L. H.; Yan, X. D.; Chen, X. B. Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 2016, 6, 5441–5448.

[33]

Liang, Y. H.; Liu, Q.; Asiri, A. M.; Sun, X. P.; Luo, Y. L. Self-supported FeP nanorod arrays: A cost-effective 3D hydrogen evolution cathode with high catalytic activity. ACS Catal. 2014, 4, 4065–4069.

[34]

Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

[35]

Cheng, H. Q.; Lv, X. J.; Cao, S.; Zhao, Z. Y.; Chen, Y.; Fu, W. F. Robustly photogenerating H2 in water using FeP/CdS catalyst under solar irradiation. Sci. Rep. 2016, 6, 19846.

[36]

Dong, Y. M.; He, K.; Yin, L.; Zhang, A. M. A facile route to controlled synthesis of Co3O4 nanoparticles and their environmental catalytic properties. Nanotechnology 2007, 18, 435602.

[37]

Galbiati, M.; Stoot, A. C.; Mackenzie, D. M. A.; Bøggild, P.; Camilli, L. Real-time oxide evolution of copper protected by graphene and boron nitride barriers. Sci. Rep. 2017, 7, 39770.

[38]

Xu, M.; Han, L.; Han, Y. J.; Yu, Y.; Zhai, J. F.; Dong, S. J. Porous CoP concave polyhedron electrocatalysts synthesized from metal–organic frameworks with enhanced electrochemical properties for hydrogen evolution. J. Mater. Chem. A 2015, 3, 21471–21477.

[39]

Li, J. Y.; Li, J.; Zhou, X. M.; Xia, Z. M.; Gao, W.; Ma, Y. Y.; Qu, Y. Q. Highly efficient and robust nickel phosphides as bifunctional electrocatalysts for overall water-splitting. ACS Appl. Mater. Interfaces 2016, 8, 10826–10834.

[40]

Kim, H.; Lim, J.; Lee, S.; Kim, H. H.; Lee, C.; Lee, J.; Choi, W. Spontaneous generation of H2O2 and hydroxyl radical through O2 reduction on copper phosphide under ambient aqueous condition. Environ. Sci. Technol. 2019, 53, 2918–2925.

[41]

He, S. B.; Hu, A. L.; Zhuang, Q. Q.; Peng, H. P.; Deng, H. H.; Chen, W.; Hong, G. L. Ascorbate oxidase mimetic activity of copper(II) oxide nanoparticles. ChemBioChem 2020, 21, 978–984.

[42]

Chen, Q. M.; Li, S. Q.; Liu, Y.; Zhang, X. D.; Tang, Y.; Chai, H. X.; Huang, Y. M. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B:Chem. 2020, 305, 127511.

[43]

Xu, B. L.; Wang, H.; Wang, W. W.; Gao, L. Z.; Li, S. S.; Pan, X. T.; Wang, H. Y.; Yang, H. L.; Meng, X. Q.; Wu, Q. W. et al. A single-atom nanozyme for wound disinfection applications. Angew. Chem., Int. Ed. 2019, 58, 4911–4916.

[44]

Chen, J. X.; Ma, Q.; Li, M. H.; Chao, D. Y.; Huang, L.; Wu, W. W.; Fang, Y. X.; Dong, S. J. Glucose-oxidase like catalytic mechanism of noble metal nanozymes. Nat. Commun. 2021, 12, 3375.

[45]

Tang, W.; Fan, W. P.; Zhang, W. Z.; Yang, Z.; Li, L.; Wang, Z. T.; Chiang, Y. L.; Liu, Y. J.; Deng, L. M.; He, L. C. et al. Wet/sono-chemical synthesis of enzymatic two-dimensional MnO2 nanosheets for synergistic catalysis-enhanced phototheranostics. Adv. Mater. 2019, 31, 1900401.

File
12274_2022_4665_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 February 2022
Revised: 28 May 2022
Accepted: 15 June 2022
Published: 19 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. U21A2037, 22074137, and 21721003), High Technology Industrialization Special of Science and Technology Cooperation of Jilin Province and the Chinese Academy of Sciences (No. 2021SYHZ0036), and Jilin Province Key Research and Development Program of China (No. 20200403002SF).

Return