Journal Home > Volume 16 , Issue 1

Low electrolyte/sulfur ratio (E/S) is an important factor in increasing the energy density of lithium-sulfur batteries (LSBs). Recently, the E/S has been widely lowered using catalytic hosts that can suppress “shuttle effect” during cycling by relying on a limited adsorption area. However, the shelf-lives of these cathodes have not yet received attention. Herein, we show that the self-discharge of sulfur cathodes based on frequently-used catalytic hosts is serious under low E/S because the “shuttle effect” during storage process caused by polysulfides (PSs) disproportionation cannot be suppressed using a limited adsorption area. We further prove that the adsorption strength toward PSs, which is unfortunately weak in commonly-used catalytic hosts, is critical for effectively hindering the disproportionation of the PSs. Subsequently, to verify this conclusion, we prepare a sulfur-doped titanium nitride (S-TiN) catalytic array host. As the adsorption strength and catalytic activity of TiN can be improved by S doping simultaneously, the constructed S/S-TiN cathodes under a low E/S (6.5 μL·mg−1) exhibit better shelf-life and cycle-stability than those of S/TiN cathodes. Our work suggests that enhancing the adsorption strength of catalytic hosts, while maintaining their function to reduce E/S, is crucial for practical LSBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Catalytic hosts with strong adsorption strength for long shelf-life lithium-sulfur batteries under lean electrolyte

Show Author's information Siyuan Zhao1Huayu Pei1Quan Yang1Kangli Liu1,2Yuanyuan Huang1,2Zhuo Wang1,2Guosheng Shao1,2( )Jinping Liu3( )Junling Guo1( )
State Center for International Cooperation on Designer Low-carbon & Environmental Materials, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
Zhengzhou Materials Genome Institute, Xingyang 450100, China
School of Chemistry, Chemical Engineering and Life Science, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China

Abstract

Low electrolyte/sulfur ratio (E/S) is an important factor in increasing the energy density of lithium-sulfur batteries (LSBs). Recently, the E/S has been widely lowered using catalytic hosts that can suppress “shuttle effect” during cycling by relying on a limited adsorption area. However, the shelf-lives of these cathodes have not yet received attention. Herein, we show that the self-discharge of sulfur cathodes based on frequently-used catalytic hosts is serious under low E/S because the “shuttle effect” during storage process caused by polysulfides (PSs) disproportionation cannot be suppressed using a limited adsorption area. We further prove that the adsorption strength toward PSs, which is unfortunately weak in commonly-used catalytic hosts, is critical for effectively hindering the disproportionation of the PSs. Subsequently, to verify this conclusion, we prepare a sulfur-doped titanium nitride (S-TiN) catalytic array host. As the adsorption strength and catalytic activity of TiN can be improved by S doping simultaneously, the constructed S/S-TiN cathodes under a low E/S (6.5 μL·mg−1) exhibit better shelf-life and cycle-stability than those of S/TiN cathodes. Our work suggests that enhancing the adsorption strength of catalytic hosts, while maintaining their function to reduce E/S, is crucial for practical LSBs.

Keywords: lithium-sulfur battery, low electrolyte/sulfur ratio (E/S), self-discharge, catalytic host, adsorption strength

References(79)

[1]

Manthiram, A.; Chung, S. H.; Zu, C. X. Lithium-sulfur batteries: Progress and prospects. Adv. Mater. 2015, 27, 1980–2006.

[2]

Yang, Y.; Zheng, G. Y.; Cui, Y. Nanostructured sulfur cathodes. Chem. Soc. Rev. 2013, 42, 3018–3032.

[3]

Croy, J. R.; Abouimrane, A.; Zhang, Z. C. Next-generation lithium-ion batteries: The promise of near-term advancements. MRS Bull. 2014, 39, 407–415.

[4]

Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv. Mater. 2017, 29, 1601759.

[5]

Zhang, J.; Huang, H.; Bae, J.; Chung, S. H.; Zhang, W. K.; Manthiram, A.; Yu, G. H. Nanostructured host materials for trapping sulfur in rechargeable Li-S batteries: Structure design and interfacial chemistry. Small Methods 2018, 2, 1700279.

[6]

Xu, N.; Qian, T.; Liu, X. J.; Liu, J.; Chen, Y.; Yan, C. L. Greatly suppressed shuttle effect for improved lithium sulfur battery performance through short chain intermediates. Nano Lett. 2017, 17, 538–543.

[7]

Hua, W. X.; Yang, Z.; Nie, H. G.; Li, Z. Y.; Yang, J. Z.; Guo, Z. Q.; Ruan, C. P.; Chen, X.; Huang, S. M. Polysulfide-scission reagents for the suppression of the shuttle effect in lithium-sulfur batteries. ACS Nano 2017, 11, 2209–2218.

[8]

Li, Z.; Zhang, J. T.; Guan, B. Y.; Wang, D.; Liu, L. M.; Lou, X. W. D. A sulfur host based on titanium monoxide@carbon hollow spheres for advanced lithium-sulfur batteries. Nat. Commun. 2016, 7, 13065.

[9]

Zhou, L.; Danilov, D. L.; Eichel, R. A.; Notten, P. H. L. Host materials anchoring polysulfides in Li-S batteries reviewed. Adv. Energy Mater. 2021, 11, 2001304.

[10]

Chen, S. R.; Gao, Y.; Yu, Z. X.; Gordin, M. L.; Song, J. X.; Wang, D. H. High capacity of lithium-sulfur batteries at low electrolyte/sulfur ratio enabled by an organosulfide containing electrolyte. Nano Energy 2017, 31, 418–423.

[11]

Hagen, M.; Fanz, P.; Tübke, J. Cell energy density and electrolyte/sulfur ratio in Li-S cells. J. Power Sources 2014, 264, 30–34.

[12]

Wang, H. Q.; Zhang, W. C.; Xu, J. Z.; Guo, Z. P. Advances in polar materials for lithium-sulfur batteries. Adv. Funct. Mater. 2018, 28, 1707520.

[13]

Guo, J. L.; Pei, H. Y.; Dou, Y.; Zhao, S. Y.; Shao, G. S.; Liu, J. P. Rational designs for lithium-sulfur batteries with low electrolyte/sulfur ratio. Adv. Funct. Mater. 2021, 31, 2010499.

[14]

Shin, W.; Lu, J.; Ji, X. L. ZnS coating of cathode facilitates lean-electrolyte Li-S batteries. Carbon Energy 2019, 1, 165–172.

[15]

Qian, J.; Wang, F. J.; Li, Y.; Wang, S.; Zhao, Y. Y.; Li, W. L.; Xing, Y.; Deng, L.; Sun, Q.; Li, L. et al. Electrocatalytic interlayer with fast lithium-polysulfides diffusion for lithium-sulfur batteries to enhance electrochemical kinetics under lean electrolyte conditions. Adv. Funct. Mater. 2020, 30, 2000742.

[16]

Pan, H. L.; Han, K. S.; Engelhard, M. H.; Cao, R. G.; Chen, J. Z.; Zhang, J. G.; Mueller, K. T.; Shao, Y. Y.; Liu, J. Addressing passivation in lithium-sulfur battery under lean electrolyte condition. Adv. Funct. Mater. 2018, 28, 1707234.

[17]

Han, Z. L.; Li, S. P.; Xiong, R. Y.; Jiang, Z. P.; Sun, M. J.; Hu, W.; Peng, L. F.; He, R. J.; Zhou, H. M.; Yu, C. et al. Low tortuosity and reinforced concrete type ultra-thick electrode for practical lithium-sulfur batteries. Adv. Funct. Mater. 2022, 32, 2108669.

[18]

Gao, X. J.; Yang, X. F.; Sun, Q.; Luo, J.; Liang, J. N.; Li, W. H.; Wang, J. W.; Wang, S. Z.; Li, M. S.; Li, R. Y. et al. Converting a thick electrode into vertically aligned “thin electrodes” by 3D-printing for designing thickness independent Li-S cathode. Energy Storage Mater. 2020, 24, 682–688.

[19]

He, J. R.; Bhargav, A.; Manthiram, A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv. Mater. 2020, 32, 2004741.

[20]

Yuan, Z.; Peng, H. J.; Hou, T. Z.; Huang, J. Q.; Chen, C. M.; Wang, D. W.; Cheng, X. B.; Wei, F.; Zhang, Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts. Nano Lett. 2016, 16, 519–527.

[21]

Hao, X. G.; Ma, J. B.; Cheng, X.; Zhong, G. M.; Yang, J. L.; Huang, L.; Ling, H. J.; Lai, C.; Lv, W.; Kang, F. Y. et al. Electron and ion co-conductive catalyst achieving instant transformation of lithium polysulfide towards Li2S. Adv. Mater. 2021, 33, 2105362.

[22]

Song, H.; Suh, S.; Park, H.; Jang, D.; Kim, J.; Kim, H. J. Synthesis of pompon-like ZnO microspheres as host materials and the catalytic effects of nonconductive metal oxides for lithium-sulfur batteries. J. Ind. Eng. Chem. 2021, 99, 309–316.

[23]

Balogun, M. S.; Huang, Y. C.; Qiu, W. T.; Yang, H.; Ji, H. B.; Tong, Y. X. Updates on the development of nanostructured transition metal nitrides for electrochemical energy storage and water splitting. Mater. Today 2017, 20, 425–451.

[24]

Dai, C. L.; Hu, L. Y.; Li, X. Y.; Xu, Q. J.; Wang, R.; Liu, H.; Chen, H.; Bao, S. J.; Chen, Y. M.; Henkelman, G. et al. Chinese knot-like electrode design for advanced Li-S batteries. Nano Energy 2018, 53, 354–361.

[25]

Yu, S. L.; Cai, W. L.; Chen, L.; Song, L. X.; Song, Y. Z. Recent advances of metal phosphides for Li-S chemistry. J. Energy Chem. 2021, 55, 533–548.

[26]

Mi, Y. Y.; Liu, W.; Li, X. L.; Zhuang, J. L.; Zhou, H. H.; Wang, H. L. High-performance Li-S battery cathode with catalyst-like carbon nanotube-mop promoting polysulfide redox. Nano Res. 2017, 10, 3698–3705.

[27]

Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal-organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

[28]

Yao, Y.; Wang, H. Y.; Yang, H.; Zeng, S. F.; Xu, R.; Liu, F. F.; Shi, P. C.; Feng, Y. Z.; Wang, K.; Yang, W. J. et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries. Adv. Mater. 2020, 32, 1905658.

[29]

Chen, G. L.; Zhong, W. T.; Li, Y. S.; Deng, Q.; Ou, X.; Pan, Q. C.; Wang, X. W.; Xiong, X. H.; Yang, C. H.; Liu, M. L. Rational design of TiO-TiO2 heterostructure/polypyrrole as a multifunctional sulfur host for advanced lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2019, 11, 5055–5063.

[30]

Schipper, F.; Vizintin, A.; Ren, J. W.; Dominko, R.; Fellinger, T. P. Biomass-derived heteroatom-doped carbon aerogels from a salt melt sol-gel synthesis and their performance in Li-S batteries. ChemSusChem 2015, 8, 3077–3083.

[31]

Pan, H.; Cheng, Z. B.; Xiao, Z. B.; Li, X. J.; Wang, R. H. The fusion of imidazolium-based ionic polymer and carbon nanotubes: One type of new heteroatom-doped carbon precursors for high-performance lithium-sulfur batteries. Adv. Funct. Mater. 2017, 27, 1703936.

[32]

Yang, K.; Zhong, L.; Mo, Y. D.; Wen, R.; Xiao, M.; Han, D. M.; Wang, S. J.; Meng, Y. Z. A functional separator coated with sulfonated poly(styrene-ethylene-butylene-styrene) to synergistically enhance the electrochemical performance and anti-self-discharge behavior of Li-S batteries. ACS Appl. Energy Mater. 2018, 1, 2555–2564.

[33]

Jin, C. B.; Zhang, W. K.; Zhuang, Z. Z.; Wang, J. G.; Huang, H.; Gan, Y. P.; Xia, Y.; Liang, C.; Zhang, J.; Tao, X. Y. Enhanced sulfide chemisorption using boron and oxygen dually doped multi-walled carbon nanotubes for advanced lithium-sulfur batteries. J. Mater. Chem. A 2017, 5, 632–640.

[34]

Li, J. B.; Chen, C. Y.; Chen, Y. W.; Li, Z. H.; Xie, W. F.; Zhang, X.; Shao, M. F.; Wei, M. Polysulfide confinement and highly efficient conversion on hierarchical mesoporous carbon nanosheets for Li-S batteries. Adv. Energy Mater. 2019, 9, 1901935.

[35]

Chen, F. C.; Gao, C. H.; Li, H.; Hou, J. H.; Jiang, D. Y. FeS monolayer as a potential anchoring material for lithium-sulfur batteries: A theoretical study. Surf. Sci. 2021, 707, 121818.

[36]

Ren, Y. L.; Zhai, Q. X.; Wang, B.; Hu, L. B.; Ma, Y. J.; Dai, Y. M.; Tang, S. C.; Meng, X. K. Synergistic adsorption-electrocatalysis of 2D/2D heterostructure toward high performance Li-S batteries. Chem. Eng. J. 2022, 439, 135535.

[37]

Zhao, S. P.; Li, Y. P.; Zhang, F. X.; Guo, J. L. Li4Ti5O12 nanowire array as a sulfur host for high performance lithium sulfur battery. J. Alloys Compd. 2019, 805, 873–879.

[38]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[39]

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

[40]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[41]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[42]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[43]

Henkelman, G.; Uberuaga, B. P.; Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

[44]

Bieker, G.; Diddens, D.; Kolek, M.; Borodin, O.; Winter, M.; Bieker, P.; Jalkanen, K. Cation-dependent electrochemistry of polysulfides in lithium and magnesium electrolyte solutions. J. Phys. Chem. C 2018, 122, 21770–21783.

[45]

Barchasz, C.; Molton, F.; Duboc, C.; Leprêtre, J. C.; Patoux, S.; Alloin, F. Lithium/sulfur cell discharge mechanism: An original approach for intermediate species identification. Anal. Chem. 2012, 84, 3973–3980.

[46]

Lacey, M. J.; Yalamanchili, A.; Maibach, J.; Tengstedt, C.; Edström, K.; Brandell, D. The Li-S battery: An investigation of redox shuttle and self-discharge behaviour with LiNO3-containing electrolytes. RSC Adv. 2016, 6, 3632–3641.

[47]

Xu, R.; Lu, J.; Amine, K. Progress in mechanistic understanding and characterization techniques of Li-S batteries. Adv. Energy Mater. 2015, 5, 1500408.

[48]

Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries. Energy Environ. Sci. 2017, 10, 1694–1703.

[49]

Guo, J. L.; Zhao, S. Y.; Shen, Y. L.; Shao, G. S.; Zhang, F. X. “Room-like” TiO2 array as a sulfur host for lithium-sulfur batteries: Combining advantages of array and closed structures. ACS Sustainable Chem. Eng. 2020, 8, 7609–7616.

[50]

Nguyen, A. D.; Pham, T. H.; Nguyen, T. K.; Ullah, H.; Tahir, Z.; Park, Y. C.; Park, J.; Jang, J. I.; Shin, Y. H.; Kim, Y. S. TiO2 nanorod array conformally coated with a monolayer MoS2 film: An efficient electrocatalyst for hydrogen evolution reaction. ACS Appl. Energy Mater. 2020, 3, 10854–10862.

[51]

Zha, C.; Zhu, X. R.; Deng, J.; Zhou, Y.; Li, Y. S.; Chen, J. M.; Ding, P.; Hu, Y. P.; Li, Y. F.; Chen, H. Y. Facet-tailoring five-coordinated Ti sites and structure-optimizing electron transfer in a bifunctional cathode with titanium nitride nanowire array to boost the performance of Li2S6-based lithium-sulfur batteries. Energy Storage Mater. 2020, 26, 40–45.

[52]

Feng, H. W.; Xu, H.; Feng, H. T.; Gao, Y.; Jin, X. Y. The sol−gel synthesis and photocatalytic activity of Gd-SiO2-TiO2 photocatalyst. Chem. Phys. Lett. 2019, 733, 136676.

[53]

Li, Y. M.; Ni, W. M.; Chen, M. Q.; Zhou, Z.; Yang, Y. Q. Preparation of Fe3O4/TiO2 composite and its application in photocatalysis of organic pollutants. Bulg. Chem. Commun. 2018, 50, 494–501.

[54]

Savaloni, H.; Khojier, K.; Torabi, S. Influence of N+ ion implantation on the corrosion and nano-structure of Ti samples. Corros. Sci. 2010, 52, 1263–1267.

[55]

Korpi, A. R.; Balashabadi, P.; Larijani, M. M.; Habibi, M.; Hamidi, A.; Malek, M. Effect of gas ratio on tribological and corrosion properties of ion beam sputter deposited TiN coatings. Prog. Color Colorants Coat. 2018, 11, 129–135.

[56]

Ni, J. F.; Fu, S. D.; Wu, C.; Maier, J.; Yu, Y.; Li, L. Self-supported nanotube arrays of sulfur-doped TiO2 enabling ultrastable and robust sodium storage. Adv. Mater. 2016, 28, 2259–2265.

[57]

Filatova, E. O.; Sakhonenkov, S. S.; Konashuk, A. S.; Kasatikov, S. A.; Afanas’ev, V. V. Inhibition of oxygen scavenging by TiN at the TiN/SiO2 interface by atomic-layer-deposited Al2O3 protective interlayer. J. Phys. Chem. C 2019, 123, 22335–22344.

[58]

Greczynski, G.; Hultman, L. Self-consistent modelling of X-ray photoelectron spectra from air-exposed polycrystalline TiN thin films. Appl. Surf. Sci. 2016, 387, 294–300.

[59]

Chen, X.; Wang, Y. B.; Wang, J. N.; Liu, J. W.; Sun, S. Y.; Zhu, L.; Ma, Q. Y.; Zhu, N. R.; Wang, X.; Chen, J. et al. A COF-like conductive conjugated microporous poly (aniline) serving as a current collector modifier for high-performance Li-S batteries. J. Mater. Chem. A 2022, 10, 1359–1368.

[60]

Knap, V.; Stroe, D. I.; Christensen, A. E.; Propp, K.; Fotouhi, A.; Auger, D. J.; Schaltz, E.; Teodorescu, R. Self-balancing feature of lithium-sulfur batteries. J. Power Sources 2017, 372, 245–251.

[61]

Knap, V.; Stroe, D. I.; Swierczynski, M.; Teodorescu, R.; Schaltz, E. Investigation of the self-discharge behavior of lithium-sulfur batteries. J. Electrochem. Soc. 2016, 163, A911–A916.

[62]

Al-Tahan, M. A.; Dong, Y. T.; Shrshr, A. E.; Liu, X. B.; Zhang, R.; Guan, H.; Kang, X. Y.; Wei, R. P.; Zhang, J. M. Enormous-sulfur-content cathode and excellent electrochemical performance of Li-S battery accouched by surface engineering of Ni-doped WS2@rGO nanohybrid as a modified separator. J. Colloid Interface Sci. 2022, 609, 235–248.

[63]

Zhang, D.; Wang, S.; Hu, R. M.; Gu, J. N.; Cui, Y. L. S.; Li, B.; Chen, W. H.; Liu, C. T.; Shang, J. X.; Yang, S. B. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries. Adv. Funct. Mater. 2020, 30, 2002471.

[64]

Yao, C. H.; Li, W.; Duan, K.; Zhu, C.; Li, J. Z.; Ren, Q. Y.; Bai, G. Properties of S-functionalized nitrogen-based MXene (Ti2NS2) as a hosting material for lithium-sulfur batteries. Nanomaterials (Basel) 2021, 11, 2478.

[65]

Baumann, A. E.; Aversa, G. E.; Roy, A.; Falk, M. L.; Bedford, N. M.; Thoi, V. S. Promoting sulfur adsorption using surface Cu sites in metal-organic frameworks for lithium sulfur batteries. J. Mater. Chem. A 2018, 6, 4811–4821.

[66]

Song, X. D.; Zhou, F. Y.; Yao, M.; Hao, C.; Qiu, J. S. Insights into the anchoring of polysulfides and catalytic performance by metal phthalocyanine covalent organic frameworks as the cathode in lithium-sulfur batteries. ACS Sustainable Chem. Eng. 2020, 8, 10185–10192.

[67]

Zhang, L.; Liang, P.; Shu, H. B.; Man, X. L.; Li, F.; Huang, J.; Dong, Q. M.; Chao, D. l. Borophene as efficient sulfur hosts for lithium-sulfur batteries: Suppressing shuttle effect and improving conductivity. J. Phys. Chem. C 2017, 121, 15549–15555.

[68]

Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang, N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe-N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2100171.

[69]

Wang, R. R.; Wu, R. B.; Ding, C. F.; Chen, Z. L.; Xu, H. B.; Liu, Y. F.; Zhang, J. C.; Ha, Y.; Fei, B.; Pan, H. G. Porous carbon architecture assembled by cross-linked carbon leaves with implanted atomic cobalt for high-performance Li-S batteries. Nano-Micro Lett. 2021, 13, 151.

[70]

Rao, D. W.; Yang, H.; Shen, X. Q.; Yan, X. H.; Qiao, G. J. Immobilisation of sulphur on cathodes of lithium-sulphur batteries via B-doped atomic-layer carbon materials. Phys. Chem. Chem. Phys. 2019, 21, 10895–10901.

[71]

Li, Y. P.; Lei, D.; Jiang, T. Y.; Guo, J. L.; Deng, X. Y.; Zhang, X.; Hao, C.; Zhang, F. X. P-doped Co9S8 nanoparticles embedded on 3D spongy carbon-sheets as electrochemical catalyst for lithium-sulfur batteries. Chem. Eng. J. 2021, 426, 131798.

[72]

Tian, H.; Ma, J. F.; Li, K.; Li, J. J. Hydrothermal synthesis of S-doped TiO2 nanoparticles and their photocatalytic ability for degradation of methyl orange. Ceram. Int. 2009, 35, 1289–1292.

[73]

Sun, C. Z.; Zhang, H.; Liu, H.; Zheng, X. X.; Zou, W. X.; Dong, L.; Qi, L. Enhanced activity of visible-light photocatalytic H2 evolution of sulfur-doped g-C3N4 photocatalyst via nanoparticle metal Ni as cocatalyst. Appl. Catal. B Environ. 2018, 235, 66–74.

[74]

Zhang, H. C.; Jiang, Y.; Qi, Z. Y.; Zhong, X. W.; Yu, Y. Sulfur doped ultra-thin anatase TiO2 nanosheets/graphene nanocomposite for high-performance pseudocapacitive sodium storage. Energy Storage Mater. 2018, 12, 37–43.

[75]

Martinez, H.; Auriel, C.; Gonbeau, D.; Loudet, M.; Pfister-Guillouzo, G. Studies of 1T TiS2 by STM, AFM and XPS: The mechanism of hydrolysis in air. Appl. Surf. Sci. 1996, 93, 231–235.

[76]

Hao, B. Y.; Li, H.; Lv, W.; Zhang, Y. B.; Niu, S. Z.; Qi, Q.; Xiao, S. J.; Li, J.; Kang, F. Y.; Yang, Q. H. Reviving catalytic activity of nitrides by the doping of the inert surface layer to promote polysulfide conversion in lithium-sulfur batteries. Nano Energy 2019, 60, 305–311.

[77]

Wang, H.; Qiu, Z. Z.; Xia, W. Y.; Ming, C.; Han, Y. Y.; Cao, L.; Lu, J.; Zhang, P. H.; Zhang, S. B.; Xu, H. et al. Semimetal or semiconductor: The nature of high intrinsic electrical conductivity in TiS2. J. Phys. Chem. Lett. 2019, 10, 6996–7001.

[78]

Zhao, H.; Tian, B. B.; Su, C. L.; Li, Y. Single-atom iron and doped sulfur improve the catalysis of polysulfide conversion for obtaining high-performance lithium-sulfur batteries. ACS Appl. Mater. Interfaces 2021, 13, 7171–7177.

[79]

Wang, M. X.; Fan, L. S.; Sun, X.; Guan, B.; Jiang, B.; Wu, X.; Tian, D.; Sun, K. N.; Qiu, Y.; Yin, X. J. et al. Nitrogen-doped CoSe2 as a bifunctional catalyst for high areal capacity and lean electrolyte of Li-S battery. ACS Energy Lett. 2020, 5, 3041–3050.

File
12274_2022_4662_MOESM1_ESM.pdf (3.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 April 2022
Revised: 25 May 2022
Accepted: 14 June 2022
Published: 06 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 52102318 and 52172229), the Natural Science Foundation of Henan (No. 202300410427), fellowship of China Postdoctoral Science Foundation (No. 2021TQ0287), and the Zhengzhou Materials Genome Institute. The author would like to thank Shiyanjia Lab (www.shiyanjia.com) for the DFT calculation.

Return