Journal Home > Volume 16 , Issue 1

Biological proton pumps ferry protons in an active manner and have a high flux (a few to 10 protons/(s·nm2)). Integrating these features in an artificial membrane may open the way for a wide range of applications but it remains challenging. In this work, we employed a structural engineering strategy to construct an asymmetric photonic polymeric carbon nitride (C3N4) membrane that exhibited photo-driven high flux proton pumping performance. The ion transport path through the membrane is reminiscent of that in the high-flux asymmetric biological ion channel. In addition, it has a photonic structure that mimics the mosquito compound eyes with improved light adsorption. Finally, the asymmetric structure constitutes an isotype (n–n) heterojunction that enhances the separation of the light-induced electron–hole pairs. As a result, the membrane shows a flux of 89 μA/cm2 under 100 mW/cm2 white light illumination (approximately one sun), the highest ever reported. This translates to a pumping rate of ~ 6 proton/(s·nm2), comparable to the biological counterpart. This work highlights the potential of multi-level structural engineering to construct high-performance bionic devices, and may find applications in solar energy harvesting and solar powered membrane process.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Biomimetic high-flux proton pump constructed with asymmetric polymeric carbon nitride membrane

Show Author's information Yizhu Zhang1,§Shangfa Pan2,3,§Yuanyuan Zhang1,2,3,§Shaoqiang Su4Xia Zhang1Jian Liu1,2,3( )Jun Gao2,3( )
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
Shandong Energy Institute, Qingdao 266101, China
Physics of complex fluids, University of Twente, Enschede 7522 NB, the Netherlands

§ Yizhu Zhang, Shangfa Pan, and Yuanyuan Zhang contributed equally to this work.

Abstract

Biological proton pumps ferry protons in an active manner and have a high flux (a few to 10 protons/(s·nm2)). Integrating these features in an artificial membrane may open the way for a wide range of applications but it remains challenging. In this work, we employed a structural engineering strategy to construct an asymmetric photonic polymeric carbon nitride (C3N4) membrane that exhibited photo-driven high flux proton pumping performance. The ion transport path through the membrane is reminiscent of that in the high-flux asymmetric biological ion channel. In addition, it has a photonic structure that mimics the mosquito compound eyes with improved light adsorption. Finally, the asymmetric structure constitutes an isotype (n–n) heterojunction that enhances the separation of the light-induced electron–hole pairs. As a result, the membrane shows a flux of 89 μA/cm2 under 100 mW/cm2 white light illumination (approximately one sun), the highest ever reported. This translates to a pumping rate of ~ 6 proton/(s·nm2), comparable to the biological counterpart. This work highlights the potential of multi-level structural engineering to construct high-performance bionic devices, and may find applications in solar energy harvesting and solar powered membrane process.

Keywords: light harvesting, polymeric carbon nitride membrane, ion selectivity, proton pump

References(53)

[1]
Pelley, J. W. 7-citric acid cycle, electron transport chain, and oxidative phosphorylation. In Elsevier’s Integrated Biochemistry; Pelley, J. W., Ed.; Mosby: Elsevier, 2007; pp 55–63.
[2]
Kamel, K. S.; Halperin, M. L. Chapter 1—Principles of acid-base physiology. In Fluid, Electrolyte and Acid-Base Physiology, 5th ed.; Kamel, K. S.; Halperin, M. L., Eds.; Philadelphia: Elsevier, 2017; pp 3–32.
[3]

Esfandiar, A.; Radha, B.; Wang, F. C.; Yang, Q.; Hu, S.; Garaj, S.; Nair, R. R.; Geim, A. K.; Gopinadhan, K. Size effect in ion transport through angstrom-scale slits. Science 2017, 358, 511–513.

[4]

Acar, E. T.; Buchsbaum, S. F.; Combs, C.; Fornasiero, F.; Siwy, Z. S. Biomimetic potassium-selective nanopores. Sci. Adv. 2019, 5, eaav2568.

[5]

Zhang, Z.; Wen, L. P.; Jiang, L. Nanofluidics for osmotic energy conversion. Nat. Rev. Mater. 2021, 6, 622–639.

[6]

Steinberg-Yfrach, G.; Liddell, P. A.; Hung, S. C.; Moore, A. L.; Gust, D.; Moore, T. A. Conversion of light energy to proton potential in liposomes by artificial photosynthetic reaction centres. Nature 1997, 385, 239–241.

[7]

Xie, X. J.; Crespo, G. A.; Mistlberger, G.; Bakker, E. Photocurrent generation based on a light-driven proton pump in an artificial liquid membrane. Nat. Chem. 2014, 6, 202–207.

[8]

Xiao, K.; Chen, L.; Jiang, L.; Antonietti, M. Carbon nitride nanotube for ion transport based photo-rechargeable electric energy storage. Nano Energy 2020, 67, 104230.

[9]

Epsztein, R.; DuChanois, R. M.; Ritt, C. L.; Noy, A.; Elimelech, M. Towards single-species selectivity of membranes with subnanometre pores. Nat. Nanotechnol. 2020, 15, 426–436.

[10]

Zhang, H. C.; Hou, J.; Hu, Y. X.; Wang, P. Y.; Ou, R. W.; Jiang, L.; Liu, J. Z.; Freeman, B. D.; Hill, A. J.; Wang, H. T. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 2018, 4, eaaq0066.

[11]

Lu, J.; Zhang, H. C.; Hou, J.; Li, X. Y.; Hu, X. Y.; Hu, Y. X.; Easton, C. D.; Li, Q. Y.; Sun, C. H.; Thornton, A. W. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal-organic frameworks. Nat. Mater. 2020, 19, 767–774.

[12]

Sholl, D. S.; Lively, R. P. Seven chemical separations to change the world. Nature 2016, 532, 435–437.

[13]

Wang, L. L.; Wen, Q.; Jia, P.; Jia, M. J.; Lu, D. N.; Sun, X. M.; Jiang, L.; Guo, W. Light-driven active proton transport through photoacid- and photobase-doped Janus graphene oxide membranes. Adv. Mater. 2019, 31, 1903029.

[14]

Quan, D.; Ji, D. Y.; Wen, Q.; Du, L. H.; Wang, L. L.; Jia, P.; Liu, D.; Ding, L. P.; Dong, H. L.; Lu, D. N. et al. Laterally heterogeneous 2D layered materials as an artificial light-harvesting proton pump. Adv. Funct. Mater. 2020, 30, 2001549.

[15]

Xiao, K.; Chen, L.; Chen, R. T.; Heil, T.; Lemus, S. D. C.; Fan, F. T.; Wen, L. P.; Jiang, L.; Antonietti, M. Artificial light-driven ion pump for photoelectric energy conversion. Nat. Commun. 2019, 10, 74.

[16]

Jiang, Y. N.; Ma, W. J.; Qiao, Y. J.; Xue, Y. F.; Lu, J. H.; Gao, J.; Liu, N. N.; Wu, F.; Yu, P.; Jiang, L. et al. Metal-organic framework membrane nanopores as biomimetic photoresponsive ion channels and photodriven ion pumps. Angew. Chem., Int. Ed. 2020, 59, 12795–12799.

[17]

Yang, J. L.; Liu, P. C.; He, X.; Hou, J. J.; Feng, Y. P.; Huang, Z. W.; Yu, L.; Li, L. S.; Tang, Z. Y. Photodriven active ion transport through a Janus microporous membrane. Angew. Chem., Int. Ed. 2020, 59, 6244–6248.

[18]

Zhang, Z.; Kong, X. Y.; Xie, G. H.; Li, P.; Xiao, K.; Wen, L. P.; Jiang, L. “Uphill” cation transport: A bioinspired photo-driven ion pump. Sci. Adv. 2016, 2, e1600689.

[19]

Wen, L. P.; Hou, X.; Tian, Y.; Zhai, J.; Jiang, L. Bio-inspired photoelectric conversion based on smart-gating nanochannels. Adv. Funct. Mater. 2010, 20, 2636–2642.

[20]

Jia, P.; Wang, L. L.; Zhang, Y. H.; Yang, Y. T.; Jin, X. Y.; Zhou, M.; Quan, D.; Jia, M. J.; Cao, L. X.; Long, R. et al. Harnessing ionic power from equilibrium electrolyte solution via photoinduced active ion transport through van-der-Waals-like heterostructures. Adv. Mater. 2021, 33, 2007529.

[21]

Rao, S. Y.; Lu, S. F.; Guo, Z. B.; Li, Y.; Chen, D. L.; Xiang, Y. A light-powered bio-capacitor with nanochannel modulation. Adv. Mater. 2014, 26, 5846–5850.

[22]

Lv, Y. J.; Yang, N. N.; Li, S. H.; Lu, S. F.; Xiang, Y. A novel light-driven pH-biosensor based on bacteriorhodopsin. Nano Energy 2019, 66, 104129.

[23]

Zhang, Q. Q.; Liu, Z. Y.; Zhai, J. Photocurrent generation in a light-harvesting system with multifunctional artificial nanochannels. Chem. Commun. 2015, 51, 12286–12289.

[24]

Yang, J. L.; Hu, X. Y.; Kong, X.; Jia, P.; Ji, D. Y.; Quan, D.; Wang, L. L.; Wen, Q.; Lu, D. N.; Wu, J. Z. et al. Photo-induced ultrafast active ion transport through graphene oxide membranes. Nat. Commun. 2019, 10, 1171.

[25]

Liu, P.; Zhou, T.; Teng, Y. F.; Fu, L.; Hu, Y. H.; Lin, X. B.; Kong, X. Y.; Jiang, L.; Wen, L. P. Light-induced heat driving active ion transport based on 2D MXene nanofluids for enhancing osmotic energy conversion. CCS Chem. 2021, 3, 1325–1335.

[26]

Liu, P.; Zhou, T.; Yang, L. S.; Zhu, C. C.; Teng, Y. F.; Kong, X. Y.; Wen, L. P. Synergy of light and acid-base reaction in energy conversion based on cellulose nanofiber intercalated titanium carbide composite nanofluidics. Energy Environ. Sci. 2021, 14, 4400–4409.

[27]

Zhao, X. L.; Lu, C. X.; Yang, L. S.; Chen, W. P.; Xin, W. W.; Kong, X. Y.; Fu, Q.; Wen, L. P.; Qiao, G.; Jiang, L. Metal organic framework enhanced SPEEK/SPSF heterogeneous membrane for ion transport and energy conversion. Nano Energy 2021, 81, 105657.

[28]

Chen, L.; Tu, B.; Lu, X. B.; Li, F.; Jiang, L.; Antonietti, M.; Xiao, K. Unidirectional ion transport in nanoporous carbon membranes with a hierarchical pore architecture. Nat. Commun. 2021, 12, 4650.

[29]

Sze, H.; Li, X. H.; Palmgren, M. G. Energization of plant cell membranes by H+-pumping ATPases: Regulation and biosynthesis. Plant Cell 1999, 11, 677–689.

[30]

Abe, K.; Irie, K.; Nakanishi, H.; Suzuki, H.; Fujiyoshi, Y. Crystal structures of the gastric proton pump. Nature 2018, 556, 214–218.

[31]

Focht, D.; Croll, T. I.; Pedersen, B. P.; Nissen, P. Improved model of proton pump crystal structure obtained by interactive molecular dynamics flexible fitting expands the mechanistic model for proton translocation in P-type ATPases. Front. Physiol. 2017, 8, 202.

[32]

Kühlbrandt, W.; Zeelen, J.; Dietrich, J. Structure, mechanism, and regulation of the Neurospora plasma membrane H+-ATPase. Science 2002, 297, 1692–1696.

[33]
Hille, B. Ion Channels of Excitable Membranes; Sinauer Associates: Sunderland, 2001.
[34]

Lee, L. P.; Szema, R. Inspirations from biological optics for advanced photonic systems. Science 2005, 310, 1148–1150.

[35]

Li, J.; Wang, W. J.; Mei, X. S.; Hou, D. X.; Pan, A. F.; Liu, B.; Cui, J. L. Fabrication of artificial compound eye with controllable field of view and improved imaging. ACS Appl. Mater. Interfaces 2020, 12, 8870–8878.

[36]

Zhang, J. S.; Zhang, M. W.; Sun, R. Q.; Wang, X. C. A facile band alignment of polymeric carbon nitride semiconductors to construct isotype heterojunctions. Angew. Chem., Int. Ed. 2012, 51, 10145–10149.

[37]

Liu, J.; Wang, H. Q.; Antonietti, M. Graphitic carbon nitride “reloaded”: Emerging applications beyond (photo)catalysis. Chem. Soc. Rev. 2016, 45, 2308–2326.

[38]

Arazoe, H.; Miyajima, D.; Akaike, K.; Araoka, F.; Sato, E.; Hikima, T.; Kawamoto, M.; Aida, T. An autonomous actuator driven by fluctuations in ambient humidity. Nat. Mater. 2016, 15, 1084–1089.

[39]

Liu, J.; Wang, H. Q.; Chen, Z. P.; Moehwald, H.; Fiechter, S.; Van De Krol, R.; Wen, L. P.; Jiang, L.; Antonietti, M. Microcontact-printing-assisted access of graphitic carbon nitride films with favorable textures toward photoelectrochemical application. Adv. Mater. 2015, 27, 712–718.

[40]

Jia, C. C.; Yang, L. J.; Zhang, Y. Y.; Zhang, X.; Xiao, K.; Xu, J. S.; Liu, J. Graphitic carbon nitride films: Emerging paradigm for versatile applications. ACS Appl. Mater. Interfaces 2020, 12, 53571–53591.

[41]

Zou, Y. J.; Xiao, K.; Qin, Q.; Shi, J. W.; Heil, T.; Markushyna, Y.; Jiang, L.; Antonietti, M.; Savateev, A. Enhanced organic photocatalysis in confined flow through a carbon nitride nanotube membrane with conversions in the millisecond regime. ACS Nano 2021, 15, 6551–6561.

[42]

Jia, C. C.; Hu, W. J.; Zhang, Y. Y.; Teng, C.; Chen, Z. P.; Liu, J. Facile assembly of a graphitic carbon nitride film at an air/water interface for photoelectrochemical NADH regeneration. Inorg. Chem. Front. 2020, 7, 2434–2442.

[43]

Ong, W. J.; Tan, L. L.; Ng, Y. H.; Yong, S. T.; Chai, S. P. Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: Are we a step closer to achieving sustainability? Chem. Rev. 2016, 116, 7159–7329.

[44]

Jia, F. H.; Zhang, Y. Z.; Hu, W. J.; Lv, M.; Jia, C. C.; Liu, J. In-situ construction of superhydrophilic g-C3N4 film by vapor-assisted confined deposition for photocatalysis. Front. Mater. 2019, 6, 52.

[45]

Zhao, Y. C.; Liu, Z.; Chu, W. G.; Song, L.; Zhang, Z. X.; Yu, D. L.; Tian, Y. J.; Xie, S. S.; Sun, L. F. Large-scale synthesis of nitrogen-rich carbon nitride microfibers by using graphitic carbon nitride as precursor. Adv. Mat. 2008, 20, 1777–1781.

[46]

Liu, J.; Huang, J. H.; Dontosova, D.; Antonietti, M. Facile synthesis of carbon nitride micro-/nanoclusters with photocatalytic activity for hydrogen evolution. RSC Adv. 2013, 3, 22988–22993.

[47]

Shockley, W.; Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 1961, 32, 510–519.

[48]

Chang, S. L.; Wu, B. R.; Yang, P. H.; Lin, M. F. Curvature effects on electronic properties of armchair graphenenanoribbons without passivation. Phys. Chem. Chem. Phys. 2012, 14, 16409–16414.

[49]

Batista, F. Jr.; Chaves, A.; Da Costa, D. R.; Farias, G. A. Curvature effects on the electronic and transport properties of semiconductor films. Phys. E 2018, 99, 304–309.

[50]

Yan, W.; He, W. Y.; Chu, Z. D.; Liu, M. X.; Meng, L.; Dou, R. F.; Zhang, Y. F.; Liu, Z. F.; Nie, J. C.; He, L. Strain and curvature induced evolution of electronic band structures in twisted graphene bilayer. Nat. Commun. 2013, 4, 2159.

[51]

Gupta, A. K.; Nisoli, C.; Lammert, P. E.; Crespi, V. H.; Eklund, P. C. Curvature-induced D-band Raman scattering in folded graphene. J. Phys. :Condens. Matter 2010, 22, 334205.

[52]

Li, R. G.; Zhang, F. X.; Wang, D. E.; Yang, J. X.; Li, M. R.; Zhu, J.; Zhou, X.; Han, H. X.; Li, C. Spatial separation of photogenerated electrons and holes among {010} and {110} crystal facets of BiVO4. Nat. Commun. 2013, 4, 1432.

[53]

Zhu, J.; Fan, F. T.; Chen, R. T.; An, H. Y.; Feng, Z. C.; Li, C. Direct imaging of highly anisotropic photogenerated charge separations on different facets of a single BiVO4 photocatalyst. Angew. Chem., Int. Ed. 2015, 54, 9111–9114.

File
12274_2022_4659_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 12 January 2022
Revised: 19 May 2022
Accepted: 14 June 2022
Published: 06 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

J. L. and J. G. acknowledge Prof. Wei Lin and Xu Cai of Fuzhou University for helpful discussions. This work was financially supported by the Natural Science Foundation of Shandong Province (Nos. ZR2019ZD47, ZR2019JQ05, ZR2018MB018, and ZR202103010934), the Key R&D Projects of Shandong Province (No. 2022CXGC010302), the Education Department of Shandong Province (No. 2019KJC006), the Shandong Energy Institute (No. SEI202124), and the National Natural Science Foundation of China (Nos. 22175104 and 21802080).

Return