AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants

Houpeng Wang1,§Zhaoxiang Xu2,§Wei Lin1( )Xue Yang1Xianrui Gu1Wei Zhu2( )Zhongbin Zhuang2,3
SINOPEC Research Institute of Petroleum Processing, Beijing 100083, China
State Key Lab of Organic-Inorganic Composites and Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Beijing Key Laboratory of Energy Environmental Catalysis, Beijing University of Chemical Technology, Beijing 100029, China

§ Houpeng Wang and Zhaoxiang Xu contributed equally to this work.

Show Author Information

Graphical Abstract

We present a surfactant-assistant strategy to facilitate the detachment of on-site generated nano/micro-bubbles from the electrodes and thus enhance the overall performance of water electrolyzers.

Abstract

The impeded mass transfer rate by on-site-generated gas bubbles at both cathode and anode dramatically reduces the energy conversion efficiency of the proton exchange membrane water electrolyzer (PEMWE). Herein, we report a surfactant-assistant method to accelerate the nano/micro-bubble detachment and the mass transfer rate by reducing the surface tension, resulting in an increase in overall efficiency. Four kinds of surfactants are studied in this work. Only potassium perfluorobutyl sulfonate (PPFBS), which has the structural similarity to Nafion, shows a significant promotion of activity and stability for both hygrogen evolution reaction (HER) and oxygen evolution reaction (OER) in the acidic medium at the high current density region. The HER overpotential at 0.1 A·cm−2 decreased 22%, and the current density at −0.4 V increased 31% by adding PPFBS. The promotion of overall efficiency by PPFBS on a homemade PEMWE was also proven. The reduced surface tension and electrostatic repulsion were the probable origins of the accelerated bubble detachment.

Electronic Supplementary Material

Video
12274_2022_4657_MOESM1_ESM.mp4
12274_2022_4657_MOESM2_ESM.mp4
12274_2022_4657_MOESM3_ESM.mp4
12274_2022_4657_MOESM4_ESM.mp4
Download File(s)
12274_2022_4657_MOESM5_ESM.pdf (449.5 KB)

References

[1]

Chi, J.; Yu, H. M. Water electrolysis based on renewable energy for hydrogen production. Chin. J. Catal. 2018, 39, 390–394.

[2]

Saba, S. M.; Muller, M.; Robinius, M.; Stolten, D. The investment costs of electrolysis - A comparison of cost studies from the past 30 years. Int. J. Hydrog. Energy 2018, 43, 1209–1223.

[3]

Li, R. ; Wang, D. Understanding the structure-performance relationship of active sites at atomic scale. Nano Res. 2022, 15, 6888–6923.

[4]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[5]

Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res. 2022, 15, 5792–5815.

[6]

Xue, Y. R.; Wang, X. D.; Zhang, X. Q.; Fang, J. J.; Xu, Z. Y.; Zhang, Y. F.; Liu, X. R.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Cost-effective hydrogen oxidation reaction catalysts for hydroxide exchange membrane fuel cells. Acta Phys. -Chim. Sin. 2021, 37, 2009103.

[7]

Liu, D.; Lv, Q. Q.; Lu, S. Q.; Fang, J. J.; Zhang, Y. F.; Wang, X. D.; Xue, Y. R.; Zhu, W.; Zhuang, Z. B. IrCuNi deeply concave nanocubes as highly active oxygen evolution reaction electrocatalyst in acid electrolyte. Nano Lett. 2021, 21, 2809–2816.

[8]

Wang, Y. S.; Wang, X. Y.; Zhang, L. P.; Zhang, Y. F.; Xu, Z. X.; Lu, L. Y.; Huang, J. L.; Yin, L. K.; Zhu, W.; Zhuang, Z. B. Insights into the Effect of precursors on the FeP-catalyzed hydrogen evolution reaction. Inorg. Chem. 2022, 61, 2954–2961.

[9]

Xue, Y. R.; Fang, J. J.; Wang, X. D.; Xu, Z. Y.; Zhang, Y. F.; Lv, Q. Q.; Liu, M. Y.; Zhu, W.; Zhuang, Z. B. Sulfate-functionalized RuFeOx as highly efficient oxygen evolution reaction electrocatalyst in acid. Adv. Funct. Mater. 2021, 31, 2101405.

[10]

Wu, Q. K.; Zhu, Y. Q.; Guo, J. H.; Wang, S. R.; Feng, X. Q.; Chen, Z. Insight into the influence of doped oxygen on active sites of molybdenum sulfide materials in hydrogen evolution reaction. Int. J. Hydrogen Energy 2021, 46, 11721–11730.

[11]

Wu, Q. K.; Wang, S. R.; Guo, J. H.; Feng, X. Q.; Li, H.; Lv, S. S.; Zhou, Y.; Chen, Z. Insight into sulfur and iron effect of binary nickel-iron sulfide on oxygen evolution reaction. Nano Res. 2022, 15, 1901–1908.

[12]

Wang, S. R.; Wang, M. M.; Liu, Z.; Liu, S. J.; Chen, Y. J.; Li, M.; Zhang, H.; Wu, Q. K.; Guo, J. H.; Feng, X. Q. et al. Synergetic function of the single-atom Ru-N4 site and Ru nanoparticles for hydrogen production in a wide pH range and seawater electrolysis. ACS Appl. Mater. Interfaces 2022, 14, 15250–15258.

[13]

Wang, Y. C.; Hu, X. W.; Cao, Z. S.; Guo, L. J. Investigations on bubble growth mechanism during photoelectrochemical and electrochemical conversions. Colloids Surf. A Physicochem. Eng. Asp. 2016, 505, 86–92.

[14]

Vogt, H. On the gas-evolution efficiency of electrodes I - theoretical. Electrochim. Acta 2011, 56, 1409–1416.

[15]

Nouri-Khorasani, A.; Ojong, E. T.; Smolinka, T.; Wilkinson, D. P. Model of oxygen bubbles and performance impact in the porous transport layer of PEM water electrolysis cells. Int. J. Hydrog. Energy 2017, 42, 28665–28680.

[16]

Xu, W. W.; Lu, Z. Y.; Sun, X. M.; Jiang, L.; Duan, X. Superwetting electrodes for gas-involving electrocatalysis. Acc. Chem. Res. 2018, 51, 1590–1598.

[17]

Zhao, X.; Ren, H.; Luo, L. Gas Bubbles in electrochemical gas evolution reactions. Langmuir 2019, 35, 5392–5408.

[18]

Lu, Z. Y.; Zhu, W.; Yu, X. Y.; Zhang, H. C.; Li, Y. J.; Sun, X. M.; Wang, X. W.; Wang, H.; Wang, J. M.; Luo, J. et al. Ultrahigh hydrogen evolution performance of under-water "superaerophobic" MoS2 nanostructured electrodes. Adv. Mater. 2014, 26, 2683–2687.

[19]

Yu, L.; Zhu, Q.; Song, S. W.; McElhenny, B.; Wang, D. Z.; Wu, C. Z.; Qin, Z. J.; Bao, J. M.; Yu, Y.; Chen, S. et al. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis. Nat. Commun. 2019, 10, 5106.

[20]

Yu, X. X.; Yu, Z. Y.; Zhang, X. L.; Zheng, Y. R.; Duan, Y.; Gao, Q.; Wu, R.; Sun, B.; Gao, M. R.; Wang, G. X. et al. "Superaerophobic" nickel phosphide nanoarray catalyst for efficient hydrogen evolution at ultrahigh current densities. J. Am. Chem. Soc. 2019, 141, 7537–7543.

[21]

Liang, C. W.; Zou, P. C.; Nairan, A.; Zhang, Y. Q.; Liu, J. X.; Liu, K. W.; Hu, S. Y.; Kang, F. Y.; Fan, H. J.; Yang, C. Exceptional performance of hierarchical Ni-Fe oxyhydroxide@NiFe alloy nanowire array electrocatalysts for large current density water splitting. Energy Environ. Sci. 2020, 13, 86–95.

[22]

Li, Y. J.; Zhang, H. C.; Xu, T. H.; Lu, Z. Y.; Wu, X. C.; Wan, P. B.; Sun, X. M.; Jiang, L. Under-water superaerophobic pine-shaped Pt nanoarray electrode for ultrahigh-performance hydrogen evolution. Adv. Funct. Mater. 2015, 25, 1737–1744.

[23]

Yu, L.; Mishra, I. K.; Xie, Y. L.; Zhou, H. Q.; Sun, J. Y.; Zhou, J. Q.; Ni, Y. Z.; Luo, D.; Yu, F.; Yu, Y. et al. Ternary Ni2(1-x)Mo2xP nanowire arrays toward efficient and stable hydrogen evolution electrocatalysis under large-current-density. Nano Energy 2018, 53, 492–500.

[24]

Shan, X. Y.; Liu, J.; Mu, H. R.; Xiao, Y.; Mei, B. B.; Liu, W. G.; Lin, G.; Jiang, Z.; Wen, L. P.; Jiang, L. An engineered superhydrophilic/superaerophobic electrocatalyst composed of the supported CoMoSx chalcogel for overall water splitting. Angew. Chem. , Int. Ed. 2020, 59, 1659–1665.

[25]

Chen, Y.; Hu, F.; Hao, Y. N.; Wang, Y. H.; Xie, Y. Y.; Wang, H.; Yin, L. J.; Yu, D. S.; Yang, H. C.; Ma, J. et al. In situ construction of thiol-silver interface for selectively electrocatalytic CO2 reduction. Nano Res. 2022, 15, 3283–3289.

[26]

Cui, T. T.; Li, L. X.; Ye, C. L.; Li, X. Y.; Liu, C. X.; Zhu, S. H.; Chen, W.; Wang, D. S. Heterogeneous single atom environmental catalysis: Fundamentals, applications, and opportunities. Adv. Funct. Mater. 2022, 32, 2108381.

[27]

Chen, S. H.; Li, W. H.; Jiang, W. J.; Yang, J. R.; Zhu, J. X.; Wang, L. Q.; Ou, H. H.; Zhuang, Z. C.; Chen, M. Z.; Sun, X. H. et al. MOF encapsulating N-heterocyclic carbene-ligated copper single-atom site catalyst towards efficient methane electrosynthesis. Angew. Chem. , Int. Ed. 2022, 61, e202114450.

[28]

Sritapunya, T.; Kitiyanan, B.; Scamehorn, J. F.; Grady, B. P.; Chavadej, S. Wetting of polymer surfaces by aqueous surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 2012, 409, 30–41.

[29]

Khaleduzzaman, S. S.; Mahbubul, I. M.; Shahrul, I. M.; Saidur, R. Effect of particle concentration, temperature and surfactant on surface tension of nanofluids. Int. Commun. Heat Mass Transf. 2013, 49, 110–114.

[30]
Davies, J. T. A quantitative kinetic theory of emulsion type, I. Physical chemistry of the emulsifying agent, gas/liquid and liquid/liquid interfaces. In Proceedings of the 2nd International Congress Surface Activity, Butterworths, 1957, pp 426–438.
[31]

Oguz, H. N.; Prosperetti, A. Dynamics of bubble growth and detachment from a needle. J. Fluid Mech. 1993, 257, 111–145.

[32]

Taqieddin, A.; Nazari, R.; Rajic, L.; Alshawabkeh, A. Review-physicochemical hydrodynamics of gas bubbles in two phase electrochemical systems. J. Electrochem. Soc. 2017, 164, E448–E459.

[33]

Ranaweera, R.; Ghafari, C.; Luo, L. Bubble-nucleation-based method for the selective and sensitive electrochemical detection of surfactants. Anal. Chem. 2019, 91, 7744–7748.

[34]

Zhao, X.; Ranaweera, R.; Luo, L. Highly efficient hydrogen evolution of platinum via tuning the interfacial dissolved-gas concentration. Chem. Commun. 2019, 55, 1378–1381.

[35]

Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

[36]

Brandon, N. P.; Kelsall, G. H.; Levine, S.; Smith, A. L. Interfacial electrical properties of electrogenerated bubbles. J. Appl. Electrochem. 1985, 15, 485–493.

Nano Research
Pages 420-426
Cite this article:
Wang H, Xu Z, Lin W, et al. Improving the water electrolysis performance by manipulating the generated nano/micro-bubbles using surfactants. Nano Research, 2023, 16(1): 420-426. https://doi.org/10.1007/s12274-022-4657-z
Topics:

1012

Views

16

Crossref

16

Web of Science

22

Scopus

0

CSCD

Altmetrics

Received: 31 May 2022
Revised: 10 June 2022
Accepted: 13 June 2022
Published: 29 June 2022
© Tsinghua University Press 2022
Return