Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Along with the keeping growing demand for high-energy-density energy storage system, high-voltage Li-metal batteries (LMBs) have attracted many attentions. In view of many defects of the commercial electrolytes, such as flammability, limited operation temperature range, and severe Li dendrite growth, non-flammable phosphate-based localized highly concentrated electrolytes (LHCE) have been explored as one of the safe electrolytes for LMBs. But until now there is rare report on wide-temperature range LMBs using phosphate-based electrolytes. Here, we prepare a wide-temperature LHCE, which is composed of lithium difluoro(oxalato)borate (LiDFOB), triethyl phosphate (TEP), and 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (HFE), and explore the applicability in wide-temperature LMBs from −40 to 70 °C. In the LHCE, both TEP and HFE are non-flammable, and Li+ is highly coordinated with TEP and DFOB−, which can effectively inhibit the TEP decomposition on anode, and facilitate the preferential reduction of DFOB−, thus obtain a robust solid electrolyte interphase (SEI) to suppress Li dendrite growth and side reactions. Therefore, this LHCE can not only endow Li/Cu and Li/Li cells with high Coulombic efficiency (CE) and long cycling lifespan, but also be applied to LiFePO4 (LFP)/Li and LiNi0.5Co0.2Mn0.3O2 (NCM523)/Li LMBs. Most importantly, the NCM523/Li LMBs with LHCE can deliver stable cycling performance at 4.5 V high-voltage and high-temperature (70 °C), as well as excellent low-temperature capacity retention even though both charging and discharging process were carried out at −40 °C.
Wu, F. X.; Maier, J.; Yu, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614.
Zou, J.; Yuan, K. G.; Zhao, J.; Wang, B. J.; Chen, S. Y.; Huang, J. Y.; Li, H.; Niu, X. B.; Wang, L. P. Delithiation-driven topotactic reaction endows superior cycling performances for high-energy-density FeSx (1 ≤ x ≤ 1.14) cathodes. Energy Storage Mater. 2021, 43, 579–584.
Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE 2012, 100, 1518–1534.
Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: A review. Chem. Rev. 2017, 117, 10403–10473.
Xu, J. J.; Hu, Y. Y.; Liu, T.; Wu, X. D. Improvement of cycle stability for high-voltage lithium-ion batteries by in-situ growth of SEI film on cathode. Nano Energy 2014, 5, 67–73.
Li, T.; Zhang, X. Q.; Shi, P.; Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 2019, 3, 2647–2661.
Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.
Xiao, J. How lithium dendrites form in liquid batteries. Science 2019, 366, 426–427.
Wang, Z. C.; Sun, Y. Y.; Mao, Y. Y.; Zhang, F. R.; Zheng, L.; Fu, D. S.; Shen, Y. B.; Hu, J. C.; Dong, H. L.; Xu, J. J. et al. Highly concentrated dual-anion electrolyte for non-flammable high-voltage Li-metal batteries. Energy Storage Mater. 2020, 30, 228–237.
Kim, J.; Oh, J.; Lee, H. Review on battery thermal management system for electric vehicles. Appl. Therm. Eng. 2019, 149, 192–212.
Li, Y. C.; Veith, G. M.; Browning, K. L.; Chen, J. H.; Hensley, D. K.; Paranthaman, M. P.; Dai, S.; Sun, X. G. Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium-ion batteries. Nano Energy 2017, 40, 9–19.
Landesfeind, J.; Gasteiger, H. A. Temperature and concentration dependence of the ionic transport properties of lithium-ion battery electrolytes. J. Electrochem. Soc. 2019, 166, A3079–A3097.
Fan, X. L.; Ji, X.; Chen, L.; Chen, J.; Deng, T.; Han, F. D.; Yue, J.; Piao, N.; Wang, R. X.; Zhou, X. Q. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 2019, 4, 882–890.
Zhang, S. S.; Xu, K.; Allen, J. L.; Jow, T. R. Effect of propylene carbonate on the low temperature performance of Li-ion cells. J. Power Sources 2002, 110, 216–221.
Guo, F.; Kang, T.; Liu, Z. J.; Tong, B.; Guo, L. M.; Wang, Y.; Liu, C. H.; Chen, X.; Zhao, Y. F.; Shen, Y. B. et al. An advanced lithium metal-carbon nanotube composite anode for high-performance lithium-oxygen batteries. Nano Lett. 2019, 19, 6377–6384.
Park, S. J.; Hwang, J. Y.; Yoon, C. S.; Jung, H. G.; Sun, Y. K. Stabilization of lithium-metal batteries based on in-situ formation of stable solid electrolyte interphase layer. ACS Appl. Mater. Interfaces 2018, 10, 17985–17993.
Wan, G. J.; Guo, F. H.; Li, H.; Cao, Y L.; Ai, X. P.; Qian, J. F.; Li, Y. X.; Yang, H. X. Suppression of dendritic lithium growth by in-situ formation of a chemically stable and mechanically strong solid electrolyte interphase. ACS Appl. Mater. Interfaces 2018, 10, 593–601.
Chen, L.; Sun, W. L.; Xu, K.; Dong, Q. Y.; Zheng, L.; Wang, J.; Lu, D. R.; Shen, Y. B.; Zhang, J. Y.; Fu, F. et al. How Prussian blue analogues can be stable in concentrated aqueous electrolytes. ACS Energy Lett. 2022, 7, 1672–1678.
Huang, Y. F.; Sun, W. L.; Xu, K.; Zhang, J. S.; Zhang, H.; Li, J. L.; He, L. W.; Cai, L. F.; Fu, F.; Qin, J. Q. et al. Robust interphase on both anode and cathode enables stable aqueous lithium-ion battery with coulombic efficiency exceeding 99%. Energy Storage Mater. 2022, 46, 577–582.
Zhou, D.; Liu, R. L.; He, Y. B.; Li, F. Y.; Liu, M.; Li, B. H.; Yang, Q. H.; Cai, Q.; Kang, F. Y. SiO2 hollow nanosphere-based composite solid electrolyte for lithium metal batteries to suppress lithium dendrite growth and enhance cycle life. Adv. Energy Mater. 2016, 6, 1502214.
Guo, Q. P.; Han, Y.; Wang, H.; Hong, X. B.; Zheng, C. M.; Liu, S. K.; Xie, K. Safer lithium metal battery based on advanced ionic liquid gel polymer nonflammable electrolytes. RSC Adv. 2016, 6, 101638–101644.
Basile, A.; Bhatt, A. I.; O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 2016, 7, ncomms11794.
Wang, Z. C.; Zhang, F. R.; Sun, Y. Y.; Zheng, L.; Shen, Y. B.; Fu, D. S.; Li, W. F.; Pan, A. R.; Wang, L.; Xu, J. J. et al. Intrinsically nonflammable ionic liquid-based localized highly concentrated electrolytes enable high-performance Li-metal batteries. Adv. Energy Mater. 2021, 11, 2003752.
Xiao, L. F.; Zeng, Z. Q.; Liu, X. W.; Fang, Y. J.; Jiang, X. Y.; Shao, Y. Y.; Zhuang, L.; Ai, X. P.; Yang, H. X.; Cao, Y. L. et al. Stable Li metal anode with “ion-solvent-coordinated” nonflammable electrolyte for safe Li metal batteries. ACS Energy Lett. 2019, 4, 483–488.
Zeng, Z. Q.; Murugesan, V.; Han, K. S.; Jiang, X. Y.; Cao, Y. L.; Xiao, L. F.; Ai, X. P.; Yang, H. X.; Zhang, J. G.; Sushko, M. L. et al. Non-flammable electrolytes with high salt-to-solvent ratios for Li-ion and Li-metal batteries. Nat. Energy 2018, 3, 674–681.
Chen, S. R.; Zheng, J. M.; Yu, L.; Ren, X. D.; Engelhard, M. H.; Niu, C. J.; Lee, H.; Xu, W.; Xiao, J.; Liu, J. et al. High-efficiency lithium metal batteries with fire-retardant electrolytes. Joule 2018, 2, 1548–1558.
Yang, H. J.; Guo, C.; Chen, J. H.; Naveed, A.; Yang, J.; Nuli, Y. N.; Wang, J. L. An intrinsic flame-retardant organic electrolyte for safe lithium-sulfur batteries. Angew. Chem., Int. Ed. 2019, 58, 791–795.
Schedlbauer, T.; Krüger, S.; Schmitz, R.; Schmitz, R. W.; Schreiner, C.; Gores, H. J.; Passerini, S.; Winter, M. Lithium difluoro(oxalato)borate: A promising salt for lithium metal based secondary batteries? Electrochim. Acta 2013, 92, 102–107.
Allen, J. L.; Han, S. D.; Boyle, P. D.; Henderson, W. A. Crystal structure and physical properties of lithium difluoro(oxalato)borate (LiDFOB or LiBF2Ox). J. Power Sources 2011, 196, 9737–9742.
Zhou, H. M.; Liu, F. R.; Li, J. Preparation, thermal stability and electrochemical properties of LiODFB. J. Mater. Sci. Technol. 2012, 28, 723–727.
Zhang, F. R.; Sun, Y. Y.; Wang, Z. C.; Fu, D. S.; Li, J.; Hu, J. C.; Xu, J. J.; Wu, X. D. Highly conductive polymeric ionic liquid electrolytes for ambient-temperature solid-state lithium batteries. ACS Appl. Mater. Interfaces 2020, 12, 23774–23780.
Evans, J.; Vincent, C. A.; Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 1987, 28, 2324–2328.
Gholizadeh, R.; Wang, Y. J. Molecular dynamics simulation of the aggregation phenomenon in the late stages of silica materials preparation. Chem. Eng. Sci. 2018, 184, 62–71.
Wang, J. H.; Yamada, Y.; Sodeyama, K.; Chiang, C. H.; Tateyama, Y.; Yamada, A. Superconcentrated electrolytes for a high-voltage lithium-ion battery. Nat. Commun. 2016, 7, 12032.
Yamada, Y.; Furukawa, K.; Sodeyama, K.; Kikuchi, K.; Yaegashi, M.; Tateyama, Y.; Yamada, A. Unusual stability of acetonitrile-based superconcentrated electrolytes for fast-charging lithium-ion batteries. J. Am. Chem. Soc. 2014, 136, 5039–5046.
Delley, B. An all-electron numerical method for solving the local density functional for polyatomic molecules. J. Chem. Phys. 1990, 92, 508–517.
Fan, X. L.; Chen, L.; Ji, X.; Deng, T.; Hou, S.; Chen, J.; Zheng, J.; Wang, F.; Jiang, J. J.; Xu, K. et al. Highly fluorinated interphases enable high-voltage Li-metal batteries. Chem 2018, 4, 174–185.
Li, X.; Zheng, J. M.; Engelhard, M. H.; Mei, D. H.; Li, Q. Y.; Jiao, S. H.; Liu, N.; Zhao, W. G.; Zhang, J. G.; Xu, W. Effects of imide-orthoborate dual-salt mixtures in organic carbonate electrolytes on the stability of lithium metal batteries. ACS Appl. Mater. Interfaces 2018, 10, 2469–2479.
Zhou, H. M.; Xiao, K. W.; Li, J.; Xiao, D. M.; Jiang, Y. X. Synthesis of lithium difluoro(oxalate)borate (LiODFB), phase diagram and ions coordination of LiODFB in dimethyl carbonate. J. Cent. South Univ. 2018, 25, 550–560.
Polu, A. R.; Rhee, H. W. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int. J. Hydrog. Energy 2017, 42, 7212–7219.
Septiani, N. L. W.; Kaneti, Y. V.; Fathoni, K. B.; Kani, K.; Allah, A. E.; Yuliarto, B.; Nugraha; Dipojono, H. K.; Alothman, Z. A.; Golberg, D. et al. Self-assembly of two-dimensional bimetallic nickel-cobalt phosphate nanoplates into one-dimensional porous chainlike architecture for efficient oxygen evolution reaction. Chem. Mater. 2020, 32, 7005–7018.
Wang, Z. C.; Zhang, H. Y.; Xu, J. J.; Pan, A. R.; Zhang, F. R.; Wang, L.; Han, R.; Hu, J. C.; Liu, M. N.; Wu, X. D. Advanced ultralow-concentration electrolyte for wide-temperature and high-voltage Li-metal batteries. Adv. Funct. Mater. 2022, 32, 2112598.
Takada, K.; Yamada, Y.; Yamada, A. Optimized nonflammable concentrated electrolytes by introducing a low-dielectric diluent. ACS Appl. Mater. Interfaces 2019, 11, 35770–35776.
Dong, Y.; Zhang, N.; Li, C. X.; Zhang, Y. F.; Jia, M.; Wang, Y. Y.; Zhao, Y. R.; Jiao, L. F.; Cheng, F. Y.; Xu, J. Z. Fire-retardant phosphate-based electrolytes for high-performance lithium metal batteries. ACS Appl. Energy Mater. 2019, 2, 2708–2716.
Shen, X.; Zhang, R.; Chen, X.; Cheng, X. B.; Li, X. Y.; Zhang, Q. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength? Adv. Energy Mater. 2020, 10, 1903645.
Zhou, H. M.; Yang, Z. H.; Xiao, D. M.; Xiao, K. W.; Li, J. An electrolyte to improve the deep charge-discharge performance of LiNi0.8Co0.15Al0.05O2 cathode. J. Mater. Sci. Mater. Electron. 2018, 29, 6648–6659.
Feng, D. J.; Chen, S. M.; Wang, R. M.; Chen, T. H.; Gu, S. J.; Su, J. L.; Dong, T.; Liu, Y. W. Mixed lithium salts electrolyte improves the high-temperature performance of nickel-rich based lithium-ion batteries. J. Electrochem. Soc. 2020, 167, 110544.
Zhou, H. M.; Xiao, K. W.; Li, J. Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1. 5O4 cathode material. J. Power Sources 2016, 302, 274–282.
Du, K.; Wang, C.; Balaya, P.; Gajjela, S. R.; Law, M. A fire-retarding electrolyte using triethyl phosphate as a solvent for sodium-ion batteries. Chem. Commun. 2022, 58, 533–536.
Yang, H. J.; Li, Q. Y.; Guo, C.; Naveed, A.; Yang, J.; Nuli, T.; Wang, J. L. Safer lithium-sulfur battery based on nonflammable electrolyte with sulfur composite cathode. Chem. Commun. 2018, 54, 4132–4135.
Weber, I.; Wang, B.; Bodirsky, C.; Chakraborty, M.; Wachtler, M.; Diemant, T.; Schnaidt, J.; Behm, R. J. Model studies on solid electrolyte interphase formation on graphite electrodes in ethylene carbonate and dimethyl carbonate II: Graphite powder electrodes. ChemElectroChem 2020, 7, 4794–4809.
Holoubek, J.; Liu, H. D.; Wu, Z. H.; Yin, Y. J.; Xing, X.; Cai, G. R.; Yu, S. C.; Zhou, H. Y.; Pascal, T. A.; Chen, Z. et al. Tailoring electrolyte solvation for Li metal batteries cycled at ultra-low temperature. Nat. Energy 2021, 6, 303–313.