Journal Home > Volume 16 , Issue 1

To achieve a complete industrial chain of hydrogen energy, the development of efficient electrocatalysts for hydrogen evolution reaction (HER) is of great concerns. Herein, a nickel nitride supported platinum (Pt) catalyst with highly exposed Pt(110) facets (Pt(110)-Ni3N) is obtained for catalyzing HER. Combined X-ray spectra and density functional theory studies demonstrate that the interfacial electronic interaction between Pt and Ni3N support can promote the hydrogen evolution on Pt(110) facets by weakening hydrogen adsorption. As a result, the Pt(110)-Ni3N catalyst delivers an obviously higher specific activity than commercial 20 wt.% Pt/C in acidic media. This work suggests that the suitable interface modulation may play a vital role in rationally designing advanced electrocatalysts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Interfacial electronic interaction enabling exposed Pt(110) facets with high specific activity in hydrogen evolution reaction

Show Author's information Sicong Qiao1,§Qun He1,§Quan Zhou1,§Yuzhu Zhou1Wenjie Xu1Hongwei Shou1Yuyang Cao1Shuangming Chen1Xiaojun Wu2Li Song1( )
National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei 230026, China
Hefei National Laboratory for Physical Science at the Microscale, Collaborative Innovation of Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Sciences, University of Science and Technology of China, Hefei 230026, China

§ Sicong Qiao, Qun He, and Quan Zhou contributed equally to this work.

Abstract

To achieve a complete industrial chain of hydrogen energy, the development of efficient electrocatalysts for hydrogen evolution reaction (HER) is of great concerns. Herein, a nickel nitride supported platinum (Pt) catalyst with highly exposed Pt(110) facets (Pt(110)-Ni3N) is obtained for catalyzing HER. Combined X-ray spectra and density functional theory studies demonstrate that the interfacial electronic interaction between Pt and Ni3N support can promote the hydrogen evolution on Pt(110) facets by weakening hydrogen adsorption. As a result, the Pt(110)-Ni3N catalyst delivers an obviously higher specific activity than commercial 20 wt.% Pt/C in acidic media. This work suggests that the suitable interface modulation may play a vital role in rationally designing advanced electrocatalysts.

Keywords: density functional theory, hydrogen evolution reaction, Interfacial electronic interaction, X-ray spectroscopy, Pt(110) facets

References(44)

[1]

Oener, S. Z.; Foster, M. J.; Boettcher, S. W. Accelerating water dissociation in bipolar membranes and for electrocatalysis. Science 2020, 369, 1099–1103.

[2]

He, T. O.; Wang, W. C.; Shi, F. L.; Yang, X. L.; Li, X.; Wu, J. B.; Yin, Y. D.; Jin, M. S. Mastering the surface strain of platinum catalysts for efficient electrocatalysis. Nature 2021, 598, 76–81.

[3]

Zhao, Y. Q.; Ling, T.; Chen, S. M.; Jin, B.; Vasileff, A.; Jiao, Y.; Song, L.; Luo, J.; Qiao, S. Z. Non-metal single-iodine-atom electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 12252–12257.

[4]

Zhu, S. Q.; Qin, X. P.; Xiao, F.; Yang, S. L.; Xu, Y.; Tan, Z.; Li, J. D.; Yan, J. W.; Chen, Q.; Chen, M. S. et al. The role of ruthenium in improving the kinetics of hydrogen oxidation and evolution reactions of platinum. Nat. Catal. 2021, 4, 711–718.

[5]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[6]
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res., in press, http://doi.org/10.1007/s12274-022-4265-y.
[7]

Huang, J. F.; Zeng, R. H.; Chen, J. L. Thermostable carbon-supported subnanometer-sized (< 1 nm) Pt clusters for the hydrogen evolution reaction. J. Mater. Chem. A 2021, 9, 21972–21980.

DOI
[8]

Wang, M. J.; Xu, Y.; Peng, C. K.; Chen, S. Y.; Lin, Y. G.; Hu, Z. W.; Sun, L.; Ding, S. Y.; Pao, C. W.; Shao, Q. et al. Site-specified two-dimensional heterojunction of Pt nanoparticles/metal-organic frameworks for enhanced hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 16512–16518.

[9]

Feng, G.; Ning, F. H.; Song, J.; Shang, H. F.; Zhang, K.; Ding, Z. P.; Gao, P.; Chu, W. S.; Xia, D. G. Sub-2 nm ultrasmall high-entropy alloy nanoparticles for extremely superior electrocatalytic hydrogen evolution. J. Am. Chem. Soc. 2021, 143, 17117–17127.

[10]

He, Q.; Tian, D.; Jiang, H. L.; Cao, D. F.; Wei, S. Q.; Liu, D. B.; Song, P.; Lin, Y.; Song, L. Achieving efficient alkaline hydrogen evolution reaction over a Ni5P4 catalyst incorporating single-atomic Ru sites. Adv. Mater. 2020, 32, 1906972.

[11]

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

[12]

Fan, J. C.; Qi, K.; Zhang, L.; Zhang, H. Y.; Yu, S. S.; Cui, X. Q. Engineering Pt/Pd interfacial electronic structures for highly efficient hydrogen evolution and alcohol oxidation. ACS Appl. Mater. Interfaces 2017, 9, 18008–18014.

[13]

Yu, Q. M.; Zhang, Z. Y.; Qiu, S. Y.; Luo, Y. T.; Liu, Z. B.; Yang, F. N.; Liu, H. M.; Ge, S. Y.; Zou, X. L.; Ding, B. F. et al. A Ta-TaS2 monolith catalyst with robust and metallic interface for superior hydrogen evolution. Nat. Commun. 2021, 12, 6051.

[14]

Wang, X.; Zhang, Y. W.; Si, H. N.; Zhang, Q. H.; Wu, J.; Gao, L.; Wei, X. F.; Sun, Y.; Liao, Q. L.; Zhang, Z. et al. Single-atom vacancy defect to trigger high-efficiency hydrogen evolution of MoS2. J. Am. Chem. Soc. 2020, 142, 4298–4308.

[15]

Yu, L.; Zhou, T. T.; Cao, S. H.; Tai, X. S.; Liu, L. L.; Wang, Y. Suppressing the surface passivation of Pt-Mo nanowires via constructing Mo–Se coordination for boosting HER performance. Nano Res. 2021, 14, 2659–2665.

[16]

Qiao, S. C.; He, Q.; Zhang, P. J.; Zhou, Y. Z.; Chen, S. M.; Song, L.; Wei, S. Q. Synchrotron-radiation spectroscopic identification towards diverse local environments of single-atom catalysts. J. Mater. Chem. A 2022, 10, 5771–5791.

[17]

Yoon, H.; Song, H. J.; Ju, B.; Kim, D. W. Cobalt phosphide nanoarrays with crystalline-amorphous hybrid phase for hydrogen production in universal-pH. Nano Res. 2020, 13, 2469–2477.

[18]

Song, F. Z.; Li, W.; Yang, J. Q.; Han, G. Q.; Liao, P. L.; Sun, Y. J. Interfacing nickel nitride and nickel boosts both electrocatalytic hydrogen evolution and oxidation reactions. Nat. Commun. 2018, 9, 4531.

[19]

Gao, D. Q.; Zhang, J. Y.; Wang, T. T.; Xiao, W.; Tao, K.; Xue, D. S.; Ding, J. Metallic Ni3N nanosheets with exposed active surface sites for efficient hydrogen evolution. J. Mater. Chem. A 2016, 4, 17363–17369.

[20]

Zhang, H.; Wang, J.; Qin, F. Q.; Liu, H. L.; Wang, C. V-doped Ni3N/Ni heterostructure with engineered interfaces as a bifunctional hydrogen electrocatalyst in alkaline solution: Simultaneously improving water dissociation and hydrogen adsorption. Nano Res. 2021, 14, 3489–3496.

[21]

Kosmala, T.; Baby, A.; Lunardon, M.; Perilli, D.; Liu, H. S.; Durante, C.; Di Valentin, C.; Agnoli, S.; Granozzi, G. Operando visualization of the hydrogen evolution reaction with atomic-scale precision at different metal–graphene interfaces. Nat. Catal. 2021, 4, 850–859.

[22]

Wu, L. P.; Li, B.; Li, Y.; Fan, X. B.; Zhang, F. B.; Zhang, G. L.; Xia, Q.; Peng, W. C. Preferential growth of the cobalt(200) facet in Co@N-C for enhanced performance in a Fenton-like reaction. ACS Catal. 2021, 11, 5532–5543.

[23]

Janssen, A.; Pawlik, V.; von Rueden, A. D.; Xu, L.; Wang, C. X.; Mavrikakis, M.; Xia, Y. N. Facile synthesis of palladium-based nanocrystals with different crystal phases and a comparison of their catalytic properties. Adv. Mater. 2021, 33, 2103801.

[24]

Conway, B. E.; Barber, J.; Morin, S. Comparative evaluation of surface structure specificity of kinetics of UPD and OPD of H at single-crystal Pt electrodes. Electrochim. Acta 1998, 44, 1109–1125.

[25]

Kobayashi, S.; Tryk, D. A.; Uchida, H. Enhancement of hydrogen evolution activity on Pt-skin/Pt3Co[(111), (100), and (110)] single crystal electrodes. Electrochem. Commun. 2020, 110, 106615.

[26]

He, Q.; Wan, Y. Y.; Jiang, H. L.; Pan, Z. W.; Wu, C. Q.; Wang, M.; Wu, X. J.; Ye, B. J.; Ajayan, P. M.; Song, L. Nickel vacancies boost reconstruction in nickel hydroxide electrocatalyst. ACS Energy Lett. 2018, 3, 1373–1380.

[27]

Ni, W. Y.; Krammer, A.; Hsu, C. S.; Chen, H. M.; Schüler, A.; Hu, X. L. Ni3N as an active hydrogen oxidation reaction catalyst in alkaline medium. Angew. Chem., Int. Ed. 2019, 58, 7445–7449.

[28]
RavelB.NewvilleM. Athena, artemis, hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFITJ. Synchrotron Radiat.20051253754110.1107/S0909049505012719

Ravel, B.; Newville, M. Athena, artemis, hephaestus: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 2005, 12, 537–541.

[29]

Luo, M. C.; Zhao, Z. L.; Zhang, Y. L.; Sun, Y. J.; Xing, Y.; Lv, F.; Yang, Y.; Zhang, X.; Hwang, S.; Qin, Y. N. et al. PdMo bimetallene for oxygen reduction catalysis. Nature 2019, 574, 81–85.

[30]

Amorim, I.; Xu, J.; Zhang, N.; Yu, Z. P.; Araújo, A.; Bento, F.; Liu, L. F. Dual-phase CoP-CoTe2 nanowires as an efficient bifunctional electrocatalyst for bipolar membrane-assisted acid-alkaline water splitting. Chem. Eng. J. 2021, 420, 130454.

[31]

Kohn, W.; Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 1965, 140, A1133–A1138.

[32]

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

[33]

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mater. Sci. 1996, 6, 15–50.

[34]

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

[35]

Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104.

[36]

Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465.

[37]

Liang, L. H.; Jin, H. H.; Zhou, H.; Liu, B. S.; Hu, C. X.; Chen, D.; Wang, Z.; Hu, Z. Y.; Zhao, Y. F.; Li, H. W. et al. Cobalt single atom site isolated Pt nanoparticles for efficient ORR and HER in acid media. Nano Energy 2021, 88, 106221.

[38]

Cao, B. F.; Veith, G. M.; Neuefeind, J. C.; Adzic, R. R.; Khalifah, P. G. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 19186–19192.

[39]

He, Q.; Liu, D. B.; Lee, J. H.; Liu, Y. M.; Xie, Z. H.; Hwang, S.; Kattel, S.; Song, L.; Chen, J. G. Electrochemical conversion of CO2 to syngas with controllable CO/H2 ratios over Co and Ni single-atom catalysts. Angew. Chem., Int. Ed. 2020, 59, 3033–3037.

[40]

Tiwari, J. N.; Sultan, S.; Myung, C. W.; Yoon, T.; Li, N. N.; Ha, M. R.; Harzandi, A. M.; Park, H. J.; Kim, D. Y.; Chandrasekaran, S. S. et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity. Nat. Energy 2018, 3, 773–782.

[41]

Jia, Q. Y.; Zhao, Z. P.; Cao, L.; Li, J. K.; Ghoshal, S.; Davies, V.; Stavitski, E.; Attenkofer, K.; Liu, Z. Y.; Li, M. F. et al. Roles of Mo surface dopants in enhancing the ORR performance of octahedral PtNi nanoparticles. Nano Lett. 2018, 18, 798–804.

[42]

Jiao, Y.; Zheng, Y.; Davey, K.; Qiao, S. Z. Activity origin and catalyst design principles for electrocatalytic hydrogen evolution on heteroatom-doped graphene. Nat. Energy 2016, 1, 16130.

[43]

Liu, D. B.; Li, X. Y.; Chen, S. M.; Yan, H.; Wang, C. D.; Wu, C. Q.; Haleem, Y. A.; Duan, S.; Lu, J. L.; Ge, B. H. et al. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat. Energy 2019, 4, 512–518.

[44]

Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276.

File
12274_2022_4654_MOESM1_ESM.pdf (4.9 MB)
Publication history
Copyright

Publication history

Received: 15 April 2022
Revised: 21 May 2022
Accepted: 13 June 2022
Published: 27 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022
Return