Journal Home > Volume 16 , Issue 1

Exploring aqueous nano-fabrication with monodisperse and hierarchical characteristics is fundamentally and technically significant. Herein, we discover that inter-particle nano–nano scale interactions profoundly affect the products’ morphology ranging from polydisperse → monodisperse to individual → hierarchical manipulation. Accordingly, we present a “nucleation-growth-dispersion triple modulation” strategy for fabricating monodisperse Cu2−xE (E = S, Se, Te) nanocrystals (NCs) and supraparticles (SPs). Such full-process and cross-scale control is conducted by two rationally selected ligands (cysteine and citrate molecules), which are responsible for atom/molecule–nano and nano–nano interaction modulations, respectively. Cysteine reacts with the cations and forms low reactive (cysteine-Cu+)n coordination polymers, which overcomes the commonly concerned nucleation and particle growth induced polydispersity. Citrate, by virtue of its strong negative charge modulated NC–NC interactions, decides the products morphology from polydisperse products to monodisperse NCs to monodisperse hierarchical SPs. These findings not only present new insights into aqueous nano-synthesis chemistry but provide an eco-friendly system for versatile and high-quality nano-entity fabrication.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Cross-scale modulation for aqueous fabrication of monodisperse Cu2−xE (E = S, Se, Te) nanocrystals and supraparticles

Show Author's information Hui ZhuGe GuoYunsheng Xia( )
Key Laboratory of Functional Molecular Solids, Ministry of Education College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China

Abstract

Exploring aqueous nano-fabrication with monodisperse and hierarchical characteristics is fundamentally and technically significant. Herein, we discover that inter-particle nano–nano scale interactions profoundly affect the products’ morphology ranging from polydisperse → monodisperse to individual → hierarchical manipulation. Accordingly, we present a “nucleation-growth-dispersion triple modulation” strategy for fabricating monodisperse Cu2−xE (E = S, Se, Te) nanocrystals (NCs) and supraparticles (SPs). Such full-process and cross-scale control is conducted by two rationally selected ligands (cysteine and citrate molecules), which are responsible for atom/molecule–nano and nano–nano interaction modulations, respectively. Cysteine reacts with the cations and forms low reactive (cysteine-Cu+)n coordination polymers, which overcomes the commonly concerned nucleation and particle growth induced polydispersity. Citrate, by virtue of its strong negative charge modulated NC–NC interactions, decides the products morphology from polydisperse products to monodisperse NCs to monodisperse hierarchical SPs. These findings not only present new insights into aqueous nano-synthesis chemistry but provide an eco-friendly system for versatile and high-quality nano-entity fabrication.

Keywords: photoacoustic imaging, monodisperse, aqueous fabrication, Cu2−xE nanocrystals, Cu2−xE supraparticles

References(53)

[1]

Muzzio, M.; Li, J. R.; Yin, Z. Y.; Delahunty, I. M.; Xie, J.; Sun, S. H. Monodisperse nanoparticles for catalysis and nanomedicine. Nanoscale 2019, 11, 18946–18967.

[2]

Wu, L. H.; Mendoza-Garcia, A.; Li, Q.; Sun, S. H. Organic phase syntheses of magnetic nanoparticles and their applications. Chem. Rev. 2016, 116, 10473–10512.

[3]

Smith, B. R.; Gambhir, S. S. Nanomaterials for in vivo imaging. Chem. Rev. 2017, 117, 901–986.

[4]

Deng, K. R.; Luo, Z. S.; Tan, L.; Quan, Z. W. Self-assembly of anisotropic nanoparticles into functional superstructures. Chem. Soc. Rev. 2020, 49, 6002–6038.

[5]

Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthesis of monodisperse spherical nanocrystals. Angew. Chem., Int. Ed. 2007, 46, 4630–4660.

[6]

Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Ultra-large-scale syntheses of monodisperse nanocrystals. Nat. Mater. 2004, 3, 891–895.

[7]

Wintzheimer, S.; Granath, T.; Oppmann, M.; Kister, T.; Thai, T.; Kraus, T.; Vogel, N.; Mandel, K. Supraparticles: Functionality from uniform structural motifs. ACS Nano 2018, 12, 5093–5120.

[8]

Piccinini, E.; Pallarola, D.; Battaglini, F.; Azzaroni, O. Self-limited self-assembly of nanoparticles into supraparticles: Towards supramolecular colloidal materials by design. Mol. Syst. Des. Eng. 2016, 1, 155–162.

[9]

Kim, D.; Kim, J.; Park, Y. I.; Lee, N.; Hyeon, T. Recent development of inorganic nanoparticles for biomedical imaging. ACS Cent. Sci. 2018, 4, 324–336.

[10]

De Crozals, G.; Bonnet, R.; Farre, C.; Chaix, C. Nanoparticles with multiple properties for biomedical applications: A strategic guide. Nano Today 2016, 11, 435–463.

[11]

McNamara, K.; Tofail, S. A. M. Nanoparticles in biomedical applications. Adv. Phys. X 2017, 2, 54–88.

[12]

Hou, K.; Han, J. Y.; Tang, Z. Y. Formation of supraparticles and their application in catalysis. ACS Materials Lett. 2019, 2, 95–106.

[13]

Zhu, H.; Wang, Y.; Chen, C.; Ma, M. R.; Zeng, J. F.; Li, S. Z.; Xia, Y. S.; Gao, M. Y. Monodisperse dual plasmonic Au@Cu2−xE (E = S, Se) core@shell supraparticles: Aqueous fabrication, multimodal imaging, and tumor therapy at in vivo level. ACS Nano 2017, 11, 8273–8281.

[14]

Ling, Y. Y.; Zhang, D.; Cui, X. M.; Wei, M. M.; Zhang, T.; Wang, J. F.; Xiao, L. H.; Xia, Y. S. Direct monitoring of cell membrane vesiculation with 2D AuNP@MnO2 nanosheet supraparticles at the single-particle level. Angew. Chem., Int. Ed. 2019, 58, 10542–10546.

[15]

Wang, W. W.; Hao, C. L.; Sun, M. Z.; Xu, L. G.; Xu, C. L.; Kuang, H. Spiky Fe3O4@Au supraparticles for multimodal in vivo imaging. Adv. Funct. Mater. 2018, 28, 1800310.

[16]

Park, B. K.; Jeong, S.; Kim, D.; Moon, J.; Lim, S.; Kim, J. S. Synthesis and size control of monodisperse copper nanoparticles by polyol method. J. Colloid Interface Sci. 2007, 311, 417–424.

[17]

Thanh, N. T. K.; Maclean, N.; Mahiddine, S. Mechanisms of nucleation and growth of nanoparticles in solution. Chem. Rev. 2014, 114, 7610–7630.

[18]
HensZ.ČapekR. K. Size tuning at full yield in the synthesis of colloidal semiconductor nanocrystals, reaction simulations and experimental verificationCoord. Chem. Rev.2014263–2641121120112310.1016/j.ccr.2013.09.022

Hens, Z.; Čapek, R. K. Size tuning at full yield in the synthesis of colloidal semiconductor nanocrystals, reaction simulations and experimental verification. Coord. Chem. Rev. 2014, 263–264, 1120–1123.

[19]

Thuy, U. T. D.; Huyen, T. T. T.; Liem, N. Q.; Reiss, P. Low temperature synthesis of InP nanocrystals. Mater. Chem. Phys. 2008, 112, 1120–1123.

[20]

Van Embden, J.; Chesman, A. S. R.; Jasieniak, J. J. The heat-up synthesis of colloidal nanocrystals. Chem. Mater. 2015, 27, 2246–2285.

[21]

Wang, Y. Z.; Zeiri, O.; Raula, M.; Le Ouay, B.; Stellacci, F.; Weinstock, I. A. Host–guest chemistry with water-soluble gold nanoparticle supraspheres. Nat. Nanotechnol. 2017, 12, 170–176.

[22]

Silveira, G. D. Q.; Ramesar, N. S.; Nguyen, T. D.; Bahng, J. H.; Glotzer, S. C.; Kotov, N. A. Supraparticle nanoassemblies with enzymes. Chem. Mater. 2019, 31, 7493–7500.

[23]

Xia, Y. S.; Nguyen, T. D.; Yang, M.; Lee, B.; Santos, A.; Podsiadlo, P.; Tang, Z. Y.; Glotzer, S. C.; Kotov, N. A. Self-assembly of self-limiting monodisperse supraparticles from polydisperse nanoparticles. Nat. Nanotechnol. 2011, 6, 580–588.

[24]

Ma, M. R.; Zhu, H.; Ling, J.; Gong, S. Q.; Zhang, Y.; Xia, Y. S.; Tang, Z. Y. Quasi-amorphous and hierarchical Fe2O3 Supraparticles: Active T1-weighted magnetic resonance imaging in vivo and renal clearance. ACS Nano 2020, 14, 4036–4044.

[25]

Ling, J.; Gong, S. Q.; Xia, Y. S. Monodisperse Fe2O3 supraparticles: Eco-friendly fabrication, gallic acid modification, size-dependent photothermal conversion efficiency, and cellular uptake. Adv. Mater. Interfaces 2020, 7, 2000804.

[26]

Spanhel, L.; Haase, M.; Weller, H.; Henglein, A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987, 109, 5649–5655.

[27]

Jing, L. H.; Kershaw, S. V.; Li, Y. L.; Huang, X. D.; Li, Y. Y.; Rogach, A. L.; Gao, M. Y. Aqueous based semiconductor nanocrystals. Chem. Rev. 2016, 116, 10623–10730.

[28]

Lesnyak, V.; Gaponik, N.; Eychmüller, A. Colloidal semiconductor nanocrystals: The aqueous approach. Chem. Soc. Rev. 2013, 42, 2905–2929.

[29]

Murray, C. B.; Norris, D. J.; Bawendi, M. G. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J. Am. Chem. Soc. 1993, 115, 8706–8715.

[30]

Peng, Z. A.; Peng, X. G. Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. J. Am. Chem. Soc. 2001, 123, 183–184.

[31]

Korgel, B. A.; Monbouquette, H. G. Synthesis of size-monodisperse CdS nanocrystals using phosphatidylcholine vesicles as true reaction compartments. J. Phys. Chem. 1996, 100, 346–351.

[32]

Li, J. J.; Wang, Y. A.; Guo, W. Z.; Keay, J. C.; Mishima, T. D.; Johnson, M. B.; Peng, X. G. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction. J. Am. Chem. Soc. 2003, 125, 12567–12575.

[33]

Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II-VI and III-V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

[34]

Peng, Y.; Shang, L.; Cao, Y. T.; Waterhouse, G. I.; Zhou, C.; Bian, T.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. Copper(I) cysteine complexes: Efficient earth-abundant oxidation co-catalysts for visible light-driven photocatalytic H2 production. Chem. Commun. 2015, 51, 12556–12559.

[35]

Wang, X.; Zhang, Q.; Zou, L.; Hu, H. S.; Zhang, M. X.; Dai, J. W. Facile-synthesized ultrasmall CuS nanocrystals as drug nanocarriers for highly effective chemo-photothermal combination therapy of cancer. RSC Adv. 2016, 6, 20949–20960.

[36]

Hao, C. L.; Gao, R.; Li, Y.; Xu, L. G.; Sun, M. Z.; Xu, C. L.; Kuang, H. Chiral semiconductor nanoparticles for protein catalysis and profiling. Angew. Chem., Int. Ed. 2019, 131, 7449–7452.

[37]

Li, Q.; Wang, X. F.; Tang, K.; Wang, M. F.; Wang, C.; Yan, C. L. Electronic modulation of electrocatalytically active center of Cu7S4 nanodisks by cobalt-doping for highly efficient oxygen evolution reaction. ACS Nano 2017, 11, 12230–12239.

[38]

Wang, Y.; Xia, Y. S. Near-infrared optically active Cu2−xS nanocrystals: Sacrificial template-ligand exchange integration fabrication and chirality dependent autophagy effects. J. Mater. Chem. B 2020, 8, 7921–7930.

[39]

Luther, J. M.; Jain, P. K.; Ewers, T.; Alivisatos, A. P. Localized surface plasmon resonances arising from free carriers in doped quantum dots. Nat. Mater. 2011, 10, 361–366.

[40]

Li, C.; Deng, K.; Tang, Z. Y.; Jiang, L. Twisted metal-amino acid nanobelts: Chirality transcription from molecules to frameworks. J. Am. Chem. Soc. 2010, 132, 8202–8209.

[41]

Ma, B. J.; Wang, S.; Liu, F.; Zhang, S.; Duan, J. Z.; Li, Z.; Kong, Y.; Sang, Y. H.; Liu, H.; Bu, W. B. et al. Self-assembled copper-amino acid nanoparticles for in situ glutathione “AND” H2O2 sequentially triggered chemodynamic therapy. J. Am. Chem. Soc. 2018, 141, 849–857.

[42]

Martínez-Esaín, J.; Faraudo, J.; Puig, T.; Obradors, X.; Ros, J.; Ricart, S.; Yáñez, R. Tunable self-assembly of YF3 nanoparticles by citrate-mediated ionic bridges. J. Am. Chem. Soc. 2018, 140, 2127–2134.

[43]

Wang, C. L.; Zhang, H.; Xu, S. H.; Lv, N.; Liu, Y.; Li, M. J.; Sun, H. Z.; Zhang, J. H.; Yang, B. Sodium-citrate-assisted synthesis of aqueous CdTe nanocrystals: Giving new insight into the effect of ligand shell. J. Phys. Chem. C 2009, 113, 827–833.

[44]

Lee, H.; Yoon, D. E.; Koh, S.; Kang, M. S.; Lim, J.; Lee, D. C. Ligands as a universal molecular toolkit in synthesis and assembly of semiconductor nanocrystals. Chem. Sci. 2020, 11, 2318–2329.

[45]

Pradhan, N.; Reifsnyder, D.; Xie, R. G.; Aldana, J.; Peng, X. G. Surface ligand dynamics in growth of nanocrystals. J. Am. Chem. Soc. 2007, 129, 9500–9509.

[46]

Henglein, A.; Giersig, M. Formation of colloidal silver nanoparticles: Capping action of citrate. J. Phys. Chem. B 1999, 103, 9533–9539.

[47]

Jiang, C. Y.; Liu, W. Y.; Talapin, D. V. Role of precursor reactivity in crystallization of solution-processed semiconductors: The case of Cu2ZnSnS4. Chem. Mater. 2014, 26, 4038–4043.

[48]

Tamang, S.; Lincheneau, C.; Hermans, Y.; Jeong, S.; Reiss, P. Chemistry of InP nanocrystal syntheses. Chem. Mater. 2016, 28, 2491–2506.

[49]

Zhang, S. H.; Sun, C. X.; Zeng, J. F.; Sun, Q.; Wang, G. L.; Wang, Y.; Wu, Y.; Dou, S. X.; Gao, M. Y.; Li, Z. Ambient aqueous synthesis of ultrasmall PEGylated Cu2−xSe nanoparticles as a multifunctional theranostic agent for multimodal imaging guided photothermal therapy of cancer. Adv. Mater. 2016, 28, 8927–8936.

[50]

Lord, R. W.; Fanghanel, J.; Holder, C. F.; Dabo, I.; Schaak, R. E. Colloidal nanoparticles of a metastable copper selenide phase with near-infrared Plasmon resonance. Chem. Mater. 2020, 32, 10227–10234.

[51]

Deka, S.; Genovese, A.; Zhang, Y.; Miszta, K.; Bertoni, G.; Krahne, R.; Giannini, C.; Manna, L. Phosphine-free synthesis of p-type copper(I) selenide nanocrystals in hot coordinating solvents. J. Am. Chem. Soc. 2010, 132, 8912–8914.

[52]

Li, H. B.; Brescia, R.; Povia, M.; Prato, M.; Bertoni, G.; Manna, L.; Moreels, I. Synthesis of uniform disk-shaped copper telluride nanocrystals and cation exchange to cadmium telluride quantum disks with stable red emission. J. Am. Chem. Soc. 2013, 135, 12270–12278.

[53]

Li, B.; Xie, Y.; Huang, J. X.; Liu, Y.; Qian, Y. T. Sonochemical synthesis of nanocrystalline copper tellurides Cu7Te4 and Cu4Te3 at room temperature. Chem. Mater. 2000, 12, 2614–2616.

File
12274_2022_4651_MOESM1_ESM.pdf (3.5 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 April 2022
Revised: 25 May 2022
Accepted: 11 June 2022
Published: 10 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21775004) and Wanjiang Scholar program.

Return