Journal Home > Volume 15 , Issue 12

The pursuit of energy conservation and environmental protection has always been a hot topic in the catalytic fields, which is inseparable from the rational designing of efficient catalysts and an in-depth understanding of the catalytic reaction mechanism. In this work, fully-exposed Pt clusters were fabricated on the atomically dispersed Sn decorated nanodiamond/graphene (Sn-ND@G) hybrid support and employed for direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The detailed structural characterizations revealed the fully-exposed Pt clusters were stabilized on Sn-ND@G, assisted by the spatial separation of atomically dispersed Sn species. The as-prepared Pt/Sn-ND@G catalyst showed enhanced ST yield (136.2 molEB·molPt−1·h−1 EB conversion rate and 99.7% ST selectivity) and robust long-term stability at 500 °C for the EB DDH reaction, compared with the traditional ND@G supported Pt nanoparticle catalyst (Pt/ND@G). The ST prefers to desorb from the fully-exposed Pt clusters, resulting in the enhanced DDH catalytic performance of the Pt/Sn-ND@G catalyst. The present work paves a new way for designing highly dispersed and stable supported metal catalysts for DDH reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Fully-exposed Pt clusters stabilized on Sn-decorated nanodiamond/graphene hybrid support for efficient ethylbenzene direct dehydrogenation

Show Author's information Linlin Wang1,2Xuetao Qin3Ting Sun1( )Xiangbin Cai4Mi Peng3Zhimin Jia2,5Xiaowen Chen2,5Ning Wang4Jiangyong Diao2( )Hongyang Liu2,5( )Ding Ma3
Department of Chemistry, Northeastern University, Shenyang 110819, China
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Beijing National Laboratory for Molecular Engineering, College of Chemistry and Molecular Engineering and College of Engineering, BIC-ESAT, Peking University, Beijing 100871, China
Department of Physics, Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China

Abstract

The pursuit of energy conservation and environmental protection has always been a hot topic in the catalytic fields, which is inseparable from the rational designing of efficient catalysts and an in-depth understanding of the catalytic reaction mechanism. In this work, fully-exposed Pt clusters were fabricated on the atomically dispersed Sn decorated nanodiamond/graphene (Sn-ND@G) hybrid support and employed for direct dehydrogenation (DDH) of ethylbenzene (EB) to styrene (ST). The detailed structural characterizations revealed the fully-exposed Pt clusters were stabilized on Sn-ND@G, assisted by the spatial separation of atomically dispersed Sn species. The as-prepared Pt/Sn-ND@G catalyst showed enhanced ST yield (136.2 molEB·molPt−1·h−1 EB conversion rate and 99.7% ST selectivity) and robust long-term stability at 500 °C for the EB DDH reaction, compared with the traditional ND@G supported Pt nanoparticle catalyst (Pt/ND@G). The ST prefers to desorb from the fully-exposed Pt clusters, resulting in the enhanced DDH catalytic performance of the Pt/Sn-ND@G catalyst. The present work paves a new way for designing highly dispersed and stable supported metal catalysts for DDH reactions.

Keywords: heterogeneous catalysis, Pt cluster, ethylbenzene dehydrogenation, fully-exposed catalyst

References(45)

[1]

Liu, J.; Yue, Y. Y.; Liu, H. Y.; Da, Z. J.; Liu, C. C.; Ma, A. Z.; Rong, J. F.; Su, D. S.; Bao, X. J.; Zheng, H. D. Origin of the robust catalytic performance of nanodiamond-graphene-supported Pt nanoparticles used in the propane dehydrogenation reaction. ACS Catal. 2017, 7, 3349–3355.

[2]

Zhang, Y. Y.; Zhao, Y.; Otroshchenko, T.; Perechodjuk, A.; Kondratenko, V. A.; Bartling, S.; Rodemerck, U.; Linke, D.; Jiao, H. J.; Jiang, G. Y. et al. Structure-activity-selectivity relationships in propane dehydrogenation over Rh/ZrO2 catalysts. ACS Catal. 2020, 10, 6377–6388.

[3]

Jia, X. Q.; Huang, Z. Conversion of alkanes to linear alkylsilanes using an iridium-iron-catalysed tandem dehydrogenation-isomerization-hydrosilylation. Nat. Chem. 2016, 8, 157–161.

[4]

Qiao, B. T.; Wang, A. Q.; Yang, X. F.; Allard, L. F.; Jiang, Z.; Cui, Y. T.; Liu, J. Y.; Li, J.; Zhang, T. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 2011, 3, 634–641.

[5]

Zhang, Q. Q.; Guan, J. Q. Applications of single-atom catalysts. Nano Res. 2021, 15, 38–70.

[6]

Wang, A. Q.; Li, J.; Zhang, T. Heterogeneous single-atom catalysis. Nat. Rev. Chem. 2018, 2, 65–81.

[7]

Lin, L. H.; Chen, Z.; Chen, W. X. Single atom catalysts by atomic diffusion strategy. Nano Res. 2021, 14, 4398–4416.

[8]

Zhou, D.; Zhang, L. L.; Liu, X. Y.; Qi, H. F.; Liu, Q. G.; Yang, J.; Su, Y.; Ma, J. Y.; Yin, J. Z.; Wang, A. Q. Tuning the coordination environment of single-atom catalyst M-N-C towards selective hydrogenation of functionalized nitroarenes. Nano Res. 2022, 15, 519–527.

[9]

Li, Z. J.; Zhang, M. Y.; Zhang, L. L.; Dong, X. L.; Leng, L. P.; Horton, J. H.; Wang, J. Engineering the atomic interface of porous ceria nanorod with single palladium atoms for hydrodehalogenation reaction. Nano Res. 2022, 15, 1338–1346.

[10]

Chen, Y. P.; Wei, J. T.; Duyar, M. S.; Ordomsky, V. V.; Khodakov, A. Y.; Liu, J. Carbon-based catalysts for Fischer–Tropsch synthesis. Chem. Soc. Rev. 2021, 50, 2337–2366.

[11]

Ren, X. M.; Guo, M.; Li, H.; Li, C. B.; Yu, L.; Liu, J.; Yang, Q. H. Microenvironment engineering of ruthenium nanoparticles incorporated into silica nanoreactors for enhanced hydrogenations. Angew. Chem., Int. Ed. 2019, 58, 14483–14488.

[12]

Wang, L. L.; Diao, J. Y.; Peng, M.; Chen, Y. L.; Cai, X. B.; Deng, Y. C.; Huang, F.; Qin, X. T.; Xiao, D. Q.; Jiang, Z. et al. Cooperative sites in fully exposed Pd clusters for low-temperature direct dehydrogenation reaction. ACS Catal. 2021, 11, 11469–11477.

[13]

Zhang, J. Y.; Deng, Y. C.; Cai, X. B.; Chen, Y. L.; Peng, M.; Jia, Z. M.; Jiang, Z.; Ren, P. J.; Yao, S. Y.; Xie, J. L. et al. Tin-assisted fully exposed platinum clusters stabilized on defect-rich graphene for dehydrogenation reaction. ACS Catal. 2019, 9, 5998–6005.

[14]

Chen, X. W.; Peng, M.; Cai, X. B.; Chen, Y. L.; Jia, Z. M.; Deng, Y. C.; Mei, B. B.; Jiang, Z.; Xiao, D. Q.; Wen, X. D. et al. Regulating coordination number in atomically dispersed Pt species on defect-rich graphene for n-butane dehydrogenation reaction. Nat. Commun. 2021, 12, 2664.

[15]

Peng, M.; Dong, C. Y.; Gao, R.; Xiao, D. Q.; Liu, H. Y.; Ma, D. Fully exposed cluster catalyst (FECC): Toward rich surface sites and full atom utilization efficiency. ACS Cent. Sci. 2021, 7, 262–273.

[16]

Lang, R.; Du, X. R.; Huang, Y. K.; Jiang, X. Z.; Zhang, Q.; Guo, Y. L.; Liu, K. P.; Qiao, B. T.; Wang, A. Q.; Zhang, T. Single-atom catalysts based on the metal-oxide interaction. Chem. Rev. 2020, 120, 11986–12043.

[17]

Liu, L. C.; Meira, D. M.; Arenal, R.; Concepcion, P.; Puga, A. V.; Corma, A. Determination of the evolution of heterogeneous single metal atoms and nanoclusters under reaction conditions: Which are the working catalytic sites? ACS Catal. 2019, 9, 10626–10639.

[18]

Dong, C.; Yu, Q.; Ye, R. P.; Su, P. P.; Liu, J.; Wang, G. H. Hollow carbon sphere nanoreactors loaded with PdCu nanoparticles: Void-confinement effects in liquid-phase hydrogenations. Angew. Chem., Int. Ed. 2020, 59, 18374–18379.

[19]

Huang, H. G.; Shen, K.; Chen, F. F.; Li, Y. W. Metal-organic frameworks as a good platform for the fabrication of single-atom catalysts. ACS Catal. 2020, 10, 6579–6586.

[20]

Ding, S. P.; Guo, Y. L.; Hülsey, M. J.; Zhang, B.; Asakura, H.; Liu, L. M.; Han, Y.; Gao, M.; Hasegawa, J. Y.; Qiao, B. T. et al. Electrostatic stabilization of single-atom catalysts by ionic liquids. Chem 2019, 5, 3207–3219.

[21]

Yang, H. Z.; Shang, L.; Zhang, Q. H.; Shi, R.; Waterhouse, G. I. N.; Gu, L.; Zhang, T. R. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 2019, 10, 4585.

[22]

Li, Z. X.; Hu, M. L.; Liu, J. H.; Wang, W. W.; Li, Y. J.; Fan, W. B.; Gong, Y. X.; Yao, J. S.; Wang, P.; He, M. et al. Mesoporous silica stabilized MOF nanoreactor for highly selective semi-hydrogenation of phenylacetylene via synergistic effect of Pd and Ru single site. Nano Res. 2022, 15, 1983–1992.

[23]

Keller, N.; Maksimova, N. I.; Roddatis, V. V.; Schur, M.; Mestl, G.; Butenko, Y. V.; Kuznetsov, V. L.; Schlögl, R. The catalytic use of onion-like carbon materials for styrene synthesis by oxidative dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2002, 41, 1885–1888.

DOI
[24]

Zhang, J.; Su, D. S.; Blume, R.; Schlögl, R.; Wang, R.; Yang, X. G.; Gajoviić, A. Surface chemistry and catalytic reactivity of a nanodiamond in the steam-free dehydrogenation of ethylbenzene. Angew. Chem., Int. Ed. 2010, 49, 8640–8644.

[25]

Meima, G. R.; Menon, P. G. Catalyst deactivation phenomena in styrene production. Appl. Catal. A Gen. 2001, 212, 239–245.

[26]

Lee, E. H. Iron oxide catalysts for dehydrogenation of ethylbenzene in the presence of steam. Catal. Rev. 1974, 8, 285–305.

[27]

Muhler, M.; Schütze, J.; Wesemann, M.; Raymen, T.; Dent, A.; Schlögl, R.; Ertl, G. The nature of the iron oxide-based catalyst for dehydrogenation of ethylbenzene to styrene: I. Solid-state chemistry and bulk characterization. J. Catal. 1990, 126, 339–360.

[28]

Nakaya, Y.; Hirayama, J.; Yamazoe, S.; Shimizu, K. I.; Furukawa, S. Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation. Nat. Commun. 2020, 11, 2838.

[29]

Sun, Q. M.; Wang, N.; Fan, Q. Y.; Zeng, L.; Mayoral, A.; Miao, S.; Yang, R. Q.; Jiang, Z.; Zhou, W.; Zhang, J. C. et al. Subnanometer bimetallic platinum-zinc clusters in zeolites for propane dehydrogenation. Angew. Chem., Int. Ed. 2020, 59, 19450–19459.

[30]

Sun, G. D.; Zhao, Z. J.; Mu, R. T.; Zha, S.; Li, L. L.; Chen, S.; Zang, K. T.; Luo, J.; Li, Z. L.; Purdy, S. C. et al. Breaking the scaling relationship via thermally stable Pt/Cu single atom alloys for catalytic dehydrogenation. Nat. Commun. 2018, 9, 4454.

[31]

Zha, S. J.; Sun, G. D.; Wu, T. F.; Zhao, J. B.; Zhao, Z. J.; Gong, J. L. Identification of Pt-based catalysts for propane dehydrogenation via a probability analysis. Chem. Sci. 2018, 9, 3925–3931.

[32]

Dervishi, E.; Ji, Z. Q.; Htoon, H.; Sykora, M.; Doorn, S. K. Raman spectroscopy of bottom-up synthesized graphene quantum dots: Size and structure dependence. Nanoscale 2019, 11, 16571–16581.

[33]

Huang, H.; Wang, C.; Zhang, S. H.; Zhang, L.; Pan, G. B. Electrodeposition of platinum nanoparticles onto porous GaN as a binder-free electrode for hydrogen evolution reaction. Chem. Phys. Lett. 2019, 737, 136796.

[34]

Bauters, S.; Scheinost, A. C.; Schmeide, K.; Weiss, S.; Dardenne, K.; Rothe, J.; Mayordomo, N.; Steudtner, R.; Stumpf, T.; Abram, U. et al. Signatures of technetium oxidation states: A new approach. Chem. Commun. 2020, 56, 9608–9611.

[35]

Deng, Y. C.; Guo, Y.; Jia, Z. M.; Liu, J. C.; Guo, J. Q.; Cai, X. B.; Dong, C. Y.; Wang, M.; Li, C. Y.; Diao, J. Y. et al. Few-atom Pt ensembles enable efficient catalytic cyclohexane dehydrogenation for hydrogen production. J. Am. Chem. Soc. 2022, 144, 3535–3542.

[36]

Chen, S.; Huang, L.; Sun, Z. H.; Cao, L. N.; Ying, W. X.; Shi, X. X.; Liu, W.; Gu, J.; Zheng, X. S.; Zhu, J. F. et al. Synthesis of quasi-bilayer subnano metal-oxide interfacial cluster catalysts for advanced catalysis. Small 2020, 16, 2005571.

[37]

Zeng, R. J.; Wang, W. J.; Cai, G. N.; Huang, Z. L.; Tao, J. M.; Tang, D. P.; Zhu, C. Z. Single-atom platinum nanocatalyst-improved catalytic efficiency with enzyme-DNA supermolecular architectures. Nano Energy 2020, 74, 104931.

[38]

Shang, H. S.; Chen, W. X.; Jiang, Z. L.; Zhou, D. N.; Zhang, J. T. Atomic-dispersed platinum anchored on porous alumina sheets as an efficient catalyst for diboration of alkynes. Chem. Commun. 2020, 56, 3127–3130.

[39]

Liu, Q.; Zhang, Z. L. Platinum single-atom catalysts: A comparative review towards effective characterization. Catal. Sci. Technol. 2019, 9, 4821–4834.

[40]

Chen, Y. J.; Ji, S. F.; Sun, W. M.; Chen, W. X.; Dong, J. C.; Wen, J. F.; Zhang, J.; Li, Z.; Zheng, L. R.; Chen, C. et al. Discovering partially charged single-atom Pt for enhanced anti-markovnikov alkene hydrosilylation. J. Am. Chem. Soc. 2018, 140, 7407–7410.

[41]

Dai, Y. H.; Wang, Y.; Liu, B.; Yang, Y. H. Metallic nanocatalysis: An accelerating seamless integration with nanotechnology. Small 2015, 11, 268–289.

[42]

Zhang, H. B.; Liu, G. G.; Shi, L.; Ye, J. H. Single-atom catalysts: Emerging multifunctional materials in heterogeneous catalysis. Adv. Energy Mater. 2018, 8, 1701343.

[43]

Schwach, P.; Pan, X. L.; Bao, X. H. Direct conversion of methane to value-added chemicals over heterogeneous catalysts: Challenges and prospects. Chem. Rev. 2017, 117, 8497–8520.

[44]

Shen, C. Q.; Ji, Y. J.; Wang, P. T.; Bai, S. X.; Wang, M.; Li, Y. Y.; Huang, X. Q.; Shao, Q. Interface confinement in metal nanosheet for high-efficiency semi-hydrogenation of alkynes. ACS Catal. 2021, 11, 5231–5239.

[45]

Ren, Z.; Yang, Y. S.; Wang, S.; Li, X. L.; Feng, H. S.; Wang, L.; Li, Y. M.; Zhang, X.; Wei, M. Pt atomic clusters catalysts with local charge transfer towards selective oxidation of furfural. Appl. Catal. B Environ. 2021, 295, 120290.

File
12274_2022_4650_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 March 2022
Revised: 09 June 2022
Accepted: 10 June 2022
Published: 30 June 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2021YFA1502802), the National Natural Science Foundation of China (Nos. 21961160722, 92145301, U21B2092, 22072162, and 91845201), the Liaoning Revitalization Talents Program (No. XLYC1907055), Natural Science Foundation of Liaoning Province (No. 2021-MS-001), IMR Innovation Fund (No. 2022-PY05), Dalian National Lab for Clean Energy (No. DNL Cooperation Fund 202001), and the Sinopec China. N. W. hereby acknowledges the funding support from the Research Grants Council of Hong Kong (Nos. C6021-14E, N_HKUST624/19, and 16306818). The XAS experiments were conducted in Shanghai Synchrotron Radiation Facility (SSRF).

Return