Journal Home > Volume 16 , Issue 1

Three-dimensional (3D) nanostructured functional materials are important systems allowing new means for intricate control of electromagnetic properties. A key problem is realising a 3D printing methodology on the nanoscale that can yield a range of functional materials. In this article, it is shown that two-photon lithography, when combined with laser ablation of sacrificial layers, can be used to realise such a vision and produce 3D functional nanomaterials of complex geometry. Proof-of-principle is first shown by fabricating planar magnetic nanowires raised above the substrate that exhibit controlled domain wall injection and propagation. Secondly, 3D artificial spin-ice (3DASI) structures are fabricated, whose complex switching can be probed using optical magnetometry. We show that by careful analysis of the magneto-optical Kerr effect signal and by comparison with micro-magnetic simulations, depth dependent switching information can be obtained from the 3DASI lattice. The work paves the way for new materials, which exploit additional physics provided by non-trivial 3D geometries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Combining two-photon lithography with laser ablation of sacrificial layers: A route to isolated 3D magnetic nanostructures

Show Author's information Arjen van den Berg1Mylène Caruel2Matthew Hunt1Sam Ladak1( )
School of Physics and Astronomy, Cardiff University, Cardiff, CF24 3AA, UK
Institut National des Sciences Appliquées (INSA) of Toulouse, 35 Avenue de Rangueil, 31400 Toulouse, France

Abstract

Three-dimensional (3D) nanostructured functional materials are important systems allowing new means for intricate control of electromagnetic properties. A key problem is realising a 3D printing methodology on the nanoscale that can yield a range of functional materials. In this article, it is shown that two-photon lithography, when combined with laser ablation of sacrificial layers, can be used to realise such a vision and produce 3D functional nanomaterials of complex geometry. Proof-of-principle is first shown by fabricating planar magnetic nanowires raised above the substrate that exhibit controlled domain wall injection and propagation. Secondly, 3D artificial spin-ice (3DASI) structures are fabricated, whose complex switching can be probed using optical magnetometry. We show that by careful analysis of the magneto-optical Kerr effect signal and by comparison with micro-magnetic simulations, depth dependent switching information can be obtained from the 3DASI lattice. The work paves the way for new materials, which exploit additional physics provided by non-trivial 3D geometries.

Keywords: sacrificial layers, three-dimensional (3D) nanomagnetism, 3D lithography, 3D artificial spin ice, magneto-optical Kerr effect

References(30)

[1]

Skylar-Scott, M. A.; Mueller, J.; Visser, C. W.; Lewis, J. A. Voxelated soft matter via multimaterial multinozzle 3D printing. Nature 2019, 575, 330–335.

[2]

Elder, B.; Neupane, R.; Tokita, E.; Ghosh, U.; Hales, S.; Kong, Y. L. Nanomaterial patterning in 3D printing. Adv. Mater. 2020, 32, 1907142.

[3]

Bauer, J.; Schroer, A.; Schwaiger, R.; Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 2016, 15, 438–443.

[4]

Gernhardt, M.; Blasco, E.; Hippler, M.; Blinco, J.; Bastmeyer, M.; Wegener, M.; Frisch, H.; Barner‐Kowollik, C. Tailoring the mechanical properties of 3D microstructures using visible light post-manufacturing. Adv. Mater. 2019, 31, 1901269.

[5]

Kadic, M.; Milton, G. W.; Van Hecke, M.; Wegener, M. 3D metamaterials. Nat. Rev. Phys. 2019, 1, 198–210.

[6]

May, A.; Hunt, M.; Van Den Berg, A.; Hejazi, A.; Ladak, S. Realisation of a frustrated 3D magnetic nanowire lattice. Commun. Phys. 2019, 2, 13.

[7]

Kern, C.; Kadic, M.; Wegener, M. Experimental evidence for sign reversal of the hall coefficient in three-dimensional metamaterials. Phys. Rev. Lett. 2017, 118, 016601.

[8]

Cao, Y. Y.; Takeyasu, N.; Tanaka, T.; Duan, X. M.; Kawata, S. 3D metallic nanostructure fabrication by surfactant-assisted multiphoton-induced reduction. Small 2009, 5, 1144–1148.

[9]

Bernardeschi, I.; Ilyas, M.; Beccai, L. A review on active 3D microstructures via direct laser lithography. Adv. Intell. Syst. 2021, 3, 2100051.

[10]

Hunt, M.; Taverne, M.; Askey, J.; May, A.; Van Den Berg, A.; Ho, Y. L. D.; Rarity, J.; Ladak, S. Harnessing multi-photon absorption to produce three-dimensional magnetic structures at the nanoscale. Materials 2020, 13, 761.

[11]

Harinarayana, V.; Shin, Y. C. Two-photon lithography for three-dimensional fabrication in micro/nanoscale regime: A comprehensive review. Opt. Laser Technol. 2021, 142, 107180.

[12]
Puce, S. ; Sciurti, E. ; Rizzi, F. ; Spagnolo, B. ; Qualtieri, A. ; De Vittorio, M. ; Staufer, U. 3D-microfabrication by two-photon polymerization of an integrated sacrificial stencil mask. Micro Nano Eng. 2019, 2, 70–75.
[13]

Liao, P.; Xing, L. X.; Zhang, S. W.; Sun, D. Magnetically driven undulatory microswimmers integrating multiple rigid segments. Small 2019, 15, 1901197.

[14]

Fernández-Pacheco, A.; Streubel, R.; Fruchart, O.; Hertel, R.; Fischer, P.; Cowburn, R. P. Three-dimensional nanomagnetism. Nat. Commun. 2017, 8, 15756.

[15]

Askey, J.; Hunt, M. O.; Langbein, W.; Ladak, S. Use of two-photon lithography with a negative resist and processing to realise cylindrical magnetic nanowires. Nanomaterials 2020, 10, 429.

[16]

Sahoo, S.; Mondal, S.; Williams, G.; May, A.; Ladak, S.; Barman, A. Ultrafast magnetization dynamics in a nanoscale three-dimensional cobalt tetrapod structure. Nanoscale 2018, 10, 9981–9986.

[17]

Williams, G.; Hunt, M.; Boehm, B.; May, A.; Taverne, M.; Ho, D.; Giblin, S.; Read, D.; Rarity, J.; Allenspach, R. et al. Two-photon lithography for 3D magnetic nanostructure fabrication. Nano Res. 2018, 11, 845–854.

[18]

Parkin, S. S. P.; Hayashi, M.; Thomas, L. Magnetic domain-wall racetrack memory. Science 2008, 320, 190–194.

[19]

Parkin, S.; Yang, S. H. Memory on the racetrack. Nat. Nanotechnol. 2015, 10, 195–198.

[20]

Sanz-Hernández, D.; Hamans, R. F.; Liao, J. W.; Welbourne, A.; Lavrijsen, R.; Fernández-Pacheco, A. Fabrication, detection, and operation of a three-dimensional nanomagnetic conduit. ACS Nano 2017, 11, 11066–11073.

[21]

Linder, V.; Gates, B. D.; Ryan, D.; Parviz, B. A.; Whitesides, G. M. Water-soluble sacrificial layers for surface micromachining. Small 2005, 1, 730–736.

[22]

Kumagai, H.; Midorikawa, K.; Toyoda, K.; Nakamura, S.; Okamoto, T.; Obara, M. Ablation of polymer films by a femtosecond high-peak-power Ti: sapphire laser at 798 nm. Appl. Phys. Lett. 1994, 65, 1850–1852.

[23]

Rethfeld, B.; Ivanov, D. S.; Garcia, M. E.; Anisimov, S. I. Modelling ultrafast laser ablation. J. Phys. D:Appl. Phys. 2017, 50, 193001.

[24]

May, A.; Saccone, M.; Van Den Berg, A.; Askey, J.; Hunt, M.; Ladak, S. Magnetic charge propagation upon a 3D artificial spin-ice. Nat. Commun. 2021, 12, 3217.

[25]

Sahoo, S.; May, A.; Van Den Berg, A.; Mondal, A. K.; Ladak, S.; Barman, A. Observation of coherent spin waves in a three-dimensional artificial spin ice structure. Nano Lett. 2021, 21, 4629–4635.

[26]

Allwood, D. A.; Xiong, G.; Cooke, M. D.; Cowburn, R. P. Magneto-optical kerr effect analysis of magnetic nanostructures. J. Phys. D:Appl. Phys. 2003, 36, 2175–2182.

[27]

Ladak, S.; Read, D. E.; Perkins, G. K.; Cohen, L. F.; Branford, W. R. Direct observation of magnetic monopole defects in an artificial spin-ice system. Nat. Phys. 2010, 6, 359–363.

[28]

Kondorsky, E. On hysteresis in ferromagnetics. J. Phys. 1940, 2, 161–181.

[29]

Fernández-Pacheco, A.; Serrano-Ramón, L.; Michalik, J. M.; Ibarra, M. R.; De Teresa, J. M.; O'Brien, L.; Petit, D.; Lee, J.; Cowburn, R. P. Three dimensional magnetic nanowires grown by focused electron-beam induced deposition. Scientific Reports 2013, 3, 1492.

[30]

Fischbacher, T.; Franchin, M.; Bordignon, G.; Fangohr, H. A systematic approach to multiphysics extensions of finite-element-based micromagnetic simulations: Nmag. IEEE Trans. Magn. 2007, 43, 2896–2898.

File
12274_2022_4649_MOESM1_ESM.pdf (833.9 KB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 23 March 2022
Revised: 20 May 2022
Accepted: 13 June 2022
Published: 30 July 2022
Issue date: January 2023

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

S. L. acknowledges funding from the Engineering and Physics Research Council (EP/R009147/1) and from the Leverhulme Trust (RPG-2021-139). The data that support the findings of this research can be found in the Cardiff University data repository at http://doi.org/10.17035/d.2022.0199664747.

Rights and permissions

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return