Journal Home > Volume 16 , Issue 1

The composition of materials in a micro-/nano-devices plays a key role in determining their mechanical, physical, and chemical properties. Especially, for devices with a compositional change on nanoscale which can often be achieved by point-by-point direct writing technology using a focused ion beam (FIB), electron beam (EB), or laser beam (LB), but so far, nanoscale composition analysis of a large-area micro/nano structures with a variation composition remains a big challenge in cost, simpleness, and flexibility. Here we present a feasible route to realize large-area composition analysis with nanoscale spatial resolution by using Raman spectroscopy. We experimentally verified the capability of this method by analyzing a complex Sn-SnOx system of a microscale grayscale mask with nanoscale spatial resolution of composition. Further analyses using Auger electron spectroscopy, transmission electron microscopy, and atomic force microscopy indicated the effectiveness and practicality of our method. This work opens up a way to analyze the composition of a large-area complex system at a nanoscale spatial resolution, and the method can be extended to many other material systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

High-spatial-resolution composition analysis of micro/nanostructures with a nanoscale compositional variation

Show Author's information Meng Wang1,2,3,§Xiaofeng Wang1,§Zhican Zhou1,2Feng Xia2,5Haoran Zhang1,9Artem Shelaev6,7Xinzheng Zhang2( )Chuanfei Guo4,8( )Jingjun Xu2( )Qian Liu1,2( )
Chinese Academy of Sciences (CAS) Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology & University of Chinese Academy of Sciences, Beijing 100190, China
The MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics School, Nankai University, Tianjin 300457, China
Sino-German College of Intelligent Manufacturing, Shenzhen Technology University, Shenzhen 518118, China
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
College of Physics, Qingdao University, Qingdao 26607, China
NT-MDT Co. Building 100, Zelenograd, Moscow 124482, Russia
Institute of Physics, Kazan Federal University, Kazan 420008, Russia
Guangdong Provincial Key Laboratory of Functional Oxide Materials and Devices, Southern University of Science and Technology, Shenzhen 518055, China
College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

§ Meng Wang and Xiaofeng Wang contributed equally to this work.

Abstract

The composition of materials in a micro-/nano-devices plays a key role in determining their mechanical, physical, and chemical properties. Especially, for devices with a compositional change on nanoscale which can often be achieved by point-by-point direct writing technology using a focused ion beam (FIB), electron beam (EB), or laser beam (LB), but so far, nanoscale composition analysis of a large-area micro/nano structures with a variation composition remains a big challenge in cost, simpleness, and flexibility. Here we present a feasible route to realize large-area composition analysis with nanoscale spatial resolution by using Raman spectroscopy. We experimentally verified the capability of this method by analyzing a complex Sn-SnOx system of a microscale grayscale mask with nanoscale spatial resolution of composition. Further analyses using Auger electron spectroscopy, transmission electron microscopy, and atomic force microscopy indicated the effectiveness and practicality of our method. This work opens up a way to analyze the composition of a large-area complex system at a nanoscale spatial resolution, and the method can be extended to many other material systems.

Keywords: Raman spectroscopy, large-area, nanoscale resolution, composition analysis

References(32)

[1]
Hu, Y. Q. ; Luo, X. H. ; Chen, Y. Q. ; Liu, Q. ; Li, X. ; Wang, Y. S. ; Liu, N. ; Duan, H. G. 3D-integrated metasurfaces for full-colour holography. Light: Sci. Appl. 2019, 8, 86.
[2]

Chen, Y. Q.; Bi, K. X.; Wang, Q. J.; Zheng, M. J.; Liu, Q.; Han, Y. X.; Yang, J. B.; Chang, S. L.; Zhang, G. H.; Duan, H. G. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 2016, 10, 11228–11236.

[3]

Qin, L.; Huang, Y. Q.; Xia, F.; Wang, L.; Ning, J. Q.; Chen, H. M.; Wang, X.; Zhang, W.; Peng, Y.; Liu, Q. et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett. 2020, 20, 4916–4923.

[4]

Lee, Y.; Canales, A.; Loke, G.; Kanik, M.; Fink, Y.; Anikeeva, P. Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 2020, 6, 2319–2325.

[5]

Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296.

[6]

Zhou, X. L.; Feng, Z. Q.; Zhu, L. L.; Xu, J. N.; Miyagi, L.; Dong, H. L.; Sheng, H. W.; Wang, Y. J.; Li, Q.; Ma, Y. M. et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72.

[7]

Zhou, Y.; Jin, C. C.; Li, Y.; Shen, W. J. Dynamic behavior of metal nanoparticles for catalysis. Nano Today 2018, 20, 101–120.

[8]

Wang, Q.; Zhou, Y. H.; Zhao, X.; Chen, K. L.; Gu, B. N.; Yang, T.; Zhang, H. T.; Yang, W. Q.; Chen, J. Tailoring carbon nanomaterials via a molecular scissor. Nano Today 2021, 36, 101033.

[9]

Cooperstein, I.; Indukuri, S. R. K. C.; Bouketov, A.; Levy, U.; Magdassi, S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mater. 2020, 32, 2001675.

[10]
Zhuang, P. Y. ; Sun, Y. Y. ; Li, L. ; Chee, M. O. L. ; Dong, P. ; Pei, L. Y. ; Chu, H. ; Sun, Z. Z. ; Shen, J. F. ; Ye, M. X. et al. FIB-patterned nano-supercapacitors: Minimized size with ultrahigh performances. Adv. Mater. 2020, 32, 1908072.
[11]

Guo, C. F.; Cao, S. H.; Jiang, P.; Fang, Y.; Zhang, J. M.; Fan, Y. T.; Wang, Y. S.; Xu, W. D.; Zhao, Z. S.; Liu, Q. Grayscale photomask fabricated by laser direct writing in metallic nano-films. Opt. Express 2009, 17, 19981–19987.

[12]

Guo, C. F.; Zhang, J. M.; Miao, J. J.; Fan, Y. T.; Liu, Q. MTMO grayscale photomask. Opt. Express 2010, 18, 2621–2631.

[13]

Collins, S. M.; Kepaptsoglou, D. M.; Hou, J. W.; Ashling, C. W.; Radtke, G.; Bennett, T. D.; Midgley, P. A.; Ramasse, Q. M. Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes. Nano Lett. 2020, 20, 1272–1279.

[14]

Zamani, R. R.; Hage, F. S.; Lehmann, S.; Ramasse, Q. M.; Dick, K. A. Atomic-resolution spectrum imaging of semiconductor nanowires. Nano Lett. 2018, 18, 1557–1563.

[15]

Liu, H. H.; Schmidt, S.; Poulsen, H. F.; Godfrey, A.; Liu, Z. Q.; Sharon, J. A.; Huang, X. Three-dimensional orientation mapping in the transmission electron microscope. Science 2011, 332, 833–834.

[16]

Tipping, W. J.; Lee, M.; Serrels, A.; Brunton, V. G.; Hulme, A. N. Stimulated Raman scattering microscopy: An emerging tool for drug discovery. Chem. Soc. Rev. 2016, 45, 2075–2089.

[17]

Palonpon, A. F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 2013, 8, 677–692.

[18]

Alinovi, M.; Mucchetti, G.; Andersen, U.; Rovers, T. A. M.; Mikkelsen, B.; Wiking, L.; Corredig, M. Applicability of confocal Raman microscopy to observe microstructural modifications of cream cheeses as influenced by freezing. Foods 2020, 9, 679.

[19]

Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.

[20]

Gierlinger, N.; Keplinger, T.; Harrington, M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 2012, 7, 1694–1708.

[21]

Kong, L. B.; Zhang, P. F.; Setlow, P.; Li, Y. Q. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers. Anal. Chem. 2010, 82, 3840–3847.

[22]

Zhang, Y.; Yang, B.; Ghafoor, A.; Zhang, Y.; Zhang, Y. F.; Wang, R. P.; Yang, J. L.; Luo, Y.; Dong, Z. C.; Hou, J. G. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Nat. Sci. Rev. 2019, 6, 1169–1175.

[23]
Chen, C. ; Hayazawa, N. ; Kawata, S. A 1.7 nm resolution chemical analysis of carbon nanotubes by tip-enhanced Raman imaging in the ambient. Nat. Commun. 2014, 5, 3312.
[24]

Xia, F.; Jiao, L. P.; Wu, D.; Li, S. X.; Zhang, K.; Kong, W. J.; Yun, M. J.; Liu, Q.; Zhang, X. Z. Mechanism of pulsed-laser-induced oxidation of titanium films. Opt. Mater. Express 2019, 9, 4097–4103.

[25]

Nikiforov, A.; Timofeev, V.; Mashanov, V.; Azarov, I.; Loshkarev, I.; Volodin, V.; Gulyaev, D.; Chetyrin, I.; Korolkov, I. Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Appl. Surf. Sci. 2020, 512, 145735.

[26]

Li, Y. F.; Yin, W. J.; Deng, R.; Chen, R.; Chen, J.; Yan, Q. Y.; Yao, B.; Sun, H. D.; Wei, S. H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 2012, 4, e30.

[27]

Diéguez, A.; Romano-Rodrı́guez, A.; Vilà, A.; Morante, J. R. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 2001, 90, 1550–1557.

[28]

Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.

[29]

Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 2004, 92, 096101.

[30]

Van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586.

[31]

Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

[32]

Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136.

File
12274_2022_4648_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 March 2022
Revised: 12 June 2022
Accepted: 13 June 2022
Published: 17 September 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51971070, and 10974037), the national Key Research and Development Program of China (No. 2016YFA0200403), the CAS Strategy Pilot Program (No. XDA 09020300), Eu-FP7 Project (No 247644), and Guangdong Provincial Key Laboratory Program (No. 2021B1212040001) from the Department of Science and Technology of Guangdong Province. The work performed at SZTU was supported by NSFC (No. 61805156). M. W. and X. F. W. designed the experiments. M. W., X. F. W., Z. C. Z., H. R. Z. performed experiments. F. X. did the simulation. A. S. performed Raman scanning on eagle eye. X. Z. Z., C. F. G., J. J. X., and Q. L. conceived the work and wrote the manuscript. All authors discussed the results and commented on the manuscript.

Return