Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
The composition of materials in a micro-/nano-devices plays a key role in determining their mechanical, physical, and chemical properties. Especially, for devices with a compositional change on nanoscale which can often be achieved by point-by-point direct writing technology using a focused ion beam (FIB), electron beam (EB), or laser beam (LB), but so far, nanoscale composition analysis of a large-area micro/nano structures with a variation composition remains a big challenge in cost, simpleness, and flexibility. Here we present a feasible route to realize large-area composition analysis with nanoscale spatial resolution by using Raman spectroscopy. We experimentally verified the capability of this method by analyzing a complex Sn-SnOx system of a microscale grayscale mask with nanoscale spatial resolution of composition. Further analyses using Auger electron spectroscopy, transmission electron microscopy, and atomic force microscopy indicated the effectiveness and practicality of our method. This work opens up a way to analyze the composition of a large-area complex system at a nanoscale spatial resolution, and the method can be extended to many other material systems.
Chen, Y. Q.; Bi, K. X.; Wang, Q. J.; Zheng, M. J.; Liu, Q.; Han, Y. X.; Yang, J. B.; Chang, S. L.; Zhang, G. H.; Duan, H. G. Rapid focused ion beam milling based fabrication of plasmonic nanoparticles and assemblies via “sketch and peel” strategy. ACS Nano 2016, 10, 11228–11236.
Qin, L.; Huang, Y. Q.; Xia, F.; Wang, L.; Ning, J. Q.; Chen, H. M.; Wang, X.; Zhang, W.; Peng, Y.; Liu, Q. et al. 5 nm nanogap electrodes and arrays by super-resolution laser lithography. Nano Lett. 2020, 20, 4916–4923.
Lee, Y.; Canales, A.; Loke, G.; Kanik, M.; Fink, Y.; Anikeeva, P. Selectively micro-patternable fibers via in-fiber photolithography. ACS Cent. Sci. 2020, 6, 2319–2325.
Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K. Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 2017, 355, 1292–1296.
Zhou, X. L.; Feng, Z. Q.; Zhu, L. L.; Xu, J. N.; Miyagi, L.; Dong, H. L.; Sheng, H. W.; Wang, Y. J.; Li, Q.; Ma, Y. M. et al. High-pressure strengthening in ultrafine-grained metals. Nature 2020, 579, 67–72.
Zhou, Y.; Jin, C. C.; Li, Y.; Shen, W. J. Dynamic behavior of metal nanoparticles for catalysis. Nano Today 2018, 20, 101–120.
Wang, Q.; Zhou, Y. H.; Zhao, X.; Chen, K. L.; Gu, B. N.; Yang, T.; Zhang, H. T.; Yang, W. Q.; Chen, J. Tailoring carbon nanomaterials via a molecular scissor. Nano Today 2021, 36, 101033.
Cooperstein, I.; Indukuri, S. R. K. C.; Bouketov, A.; Levy, U.; Magdassi, S. 3D printing of micrometer-sized transparent ceramics with on-demand optical-gain properties. Adv. Mater. 2020, 32, 2001675.
Guo, C. F.; Cao, S. H.; Jiang, P.; Fang, Y.; Zhang, J. M.; Fan, Y. T.; Wang, Y. S.; Xu, W. D.; Zhao, Z. S.; Liu, Q. Grayscale photomask fabricated by laser direct writing in metallic nano-films. Opt. Express 2009, 17, 19981–19987.
Guo, C. F.; Zhang, J. M.; Miao, J. J.; Fan, Y. T.; Liu, Q. MTMO grayscale photomask. Opt. Express 2010, 18, 2621–2631.
Collins, S. M.; Kepaptsoglou, D. M.; Hou, J. W.; Ashling, C. W.; Radtke, G.; Bennett, T. D.; Midgley, P. A.; Ramasse, Q. M. Functional group mapping by electron beam vibrational spectroscopy from nanoscale volumes. Nano Lett. 2020, 20, 1272–1279.
Zamani, R. R.; Hage, F. S.; Lehmann, S.; Ramasse, Q. M.; Dick, K. A. Atomic-resolution spectrum imaging of semiconductor nanowires. Nano Lett. 2018, 18, 1557–1563.
Liu, H. H.; Schmidt, S.; Poulsen, H. F.; Godfrey, A.; Liu, Z. Q.; Sharon, J. A.; Huang, X. Three-dimensional orientation mapping in the transmission electron microscope. Science 2011, 332, 833–834.
Tipping, W. J.; Lee, M.; Serrels, A.; Brunton, V. G.; Hulme, A. N. Stimulated Raman scattering microscopy: An emerging tool for drug discovery. Chem. Soc. Rev. 2016, 45, 2075–2089.
Palonpon, A. F.; Ando, J.; Yamakoshi, H.; Dodo, K.; Sodeoka, M.; Kawata, S.; Fujita, K. Raman and SERS microscopy for molecular imaging of live cells. Nat. Protoc. 2013, 8, 677–692.
Alinovi, M.; Mucchetti, G.; Andersen, U.; Rovers, T. A. M.; Mikkelsen, B.; Wiking, L.; Corredig, M. Applicability of confocal Raman microscopy to observe microstructural modifications of cream cheeses as influenced by freezing. Foods 2020, 9, 679.
Oh, H. M.; Han, G. H.; Kim, H.; Bae, J. J.; Jeong, M. S.; Lee, Y. H. Photochemical reaction in monolayer MoS2 via correlated photoluminescence, Raman spectroscopy, and atomic force microscopy. ACS Nano 2016, 10, 5230–5236.
Gierlinger, N.; Keplinger, T.; Harrington, M. Imaging of plant cell walls by confocal Raman microscopy. Nat. Protoc. 2012, 7, 1694–1708.
Kong, L. B.; Zhang, P. F.; Setlow, P.; Li, Y. Q. Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers. Anal. Chem. 2010, 82, 3840–3847.
Zhang, Y.; Yang, B.; Ghafoor, A.; Zhang, Y.; Zhang, Y. F.; Wang, R. P.; Yang, J. L.; Luo, Y.; Dong, Z. C.; Hou, J. G. Visually constructing the chemical structure of a single molecule by scanning Raman picoscopy. Nat. Sci. Rev. 2019, 6, 1169–1175.
Xia, F.; Jiao, L. P.; Wu, D.; Li, S. X.; Zhang, K.; Kong, W. J.; Yun, M. J.; Liu, Q.; Zhang, X. Z. Mechanism of pulsed-laser-induced oxidation of titanium films. Opt. Mater. Express 2019, 9, 4097–4103.
Nikiforov, A.; Timofeev, V.; Mashanov, V.; Azarov, I.; Loshkarev, I.; Volodin, V.; Gulyaev, D.; Chetyrin, I.; Korolkov, I. Formation of SnO and SnO2 phases during the annealing of SnO(x) films obtained by molecular beam epitaxy. Appl. Surf. Sci. 2020, 512, 145735.
Li, Y. F.; Yin, W. J.; Deng, R.; Chen, R.; Chen, J.; Yan, Q. Y.; Yao, B.; Sun, H. D.; Wei, S. H.; Wu, T. Realizing a SnO2-based ultraviolet light-emitting diode via breaking the dipole-forbidden rule. NPG Asia Mater. 2012, 4, e30.
Diéguez, A.; Romano-Rodrı́guez, A.; Vilà, A.; Morante, J. R. The complete Raman spectrum of nanometric SnO2 particles. J. Appl. Phys. 2001, 90, 1550–1557.
Steidtner, J.; Pettinger, B. Tip-enhanced Raman spectroscopy and microscopy on single dye molecules with 15 nm resolution. Phys. Rev. Lett. 2008, 100, 236101.
Pettinger, B.; Ren, B.; Picardi, G.; Schuster, R.; Ertl, G. Nanoscale probing of adsorbed species by tip-enhanced Raman spectroscopy. Phys. Rev. Lett. 2004, 92, 096101.
Van Schrojenstein Lantman, E. M.; Deckert-Gaudig, T.; Mank, A. J. G.; Deckert, V.; Weckhuysen, B. M. Catalytic processes monitored at the nanoscale with tip-enhanced Raman spectroscopy. Nat. Nanotechnol. 2012, 7, 583–586.
Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X. et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.
Stöckle, R. M.; Suh, Y. D.; Deckert, V.; Zenobi, R. Nanoscale chemical analysis by tip-enhanced Raman spectroscopy. Chem. Phys. Lett. 2000, 318, 131–136.