Journal Home > Volume 15 , Issue 11

Nuclear pore complexes (NPCs) regulate all molecular transport between the nucleus and the cytoplasm in eukaryotic cells. Intrinsically disordered Phe-Gly nucleoporins (FG-Nups) line the central conduit of NPCs to impart a selective barrier where large proteins are excluded unless bound to a transport receptor (karyopherin; Kap). Here, we assess “Kap-centric” NPC models, which postulate that Kaps participate in establishing the selective barrier. We combine biomimetic nanopores, formed by tethering Nsp1 to the inner wall of a solid-state nanopore, with coarse-grained modeling to show that yeast Kap95 exhibits two populations in Nsp1-coated pores: one population that is transported across the pore in milliseconds, and a second population that is stably assembled within the FG mesh of the pore. Ionic current measurements show a conductance decrease for increasing Kap concentrations and noise data indicate an increase in rigidity of the FG-mesh. Modeling reveals an accumulation of Kap95 near the pore wall, yielding a conductance decrease. We find that Kaps only mildly affect the conformation of the Nsp1 mesh and that, even at high concentrations, Kaps only bind at most 8% of the FG-motifs in the nanopore, indicating that Kap95 occupancy is limited by steric constraints rather than by depletion of available FG-motifs. Our data provide an alternative explanation of the origin of bimodal NPC binding of Kaps, where a stable population of Kaps binds avidly to the NPC periphery, while fast transport proceeds via a central FG-rich channel through lower affinity interactions between Kaps and the cohesive domains of Nsp1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Transport receptor occupancy in nuclear pore complex mimics

Show Author's information Alessio Fragasso1,§Hendrik W. de Vries2,§John Andersson3Eli O. van der Sluis1Erik van der Giessen2Patrick R. Onck2( )Cees Dekker1( )
Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen 9747AG, The Netherlands
Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Kemivägen 10, Gothenburg SE-412 96, Sweden

§ Alessio Fragasso and Hendrik W. de Vries contributed equally to this work.

Abstract

Nuclear pore complexes (NPCs) regulate all molecular transport between the nucleus and the cytoplasm in eukaryotic cells. Intrinsically disordered Phe-Gly nucleoporins (FG-Nups) line the central conduit of NPCs to impart a selective barrier where large proteins are excluded unless bound to a transport receptor (karyopherin; Kap). Here, we assess “Kap-centric” NPC models, which postulate that Kaps participate in establishing the selective barrier. We combine biomimetic nanopores, formed by tethering Nsp1 to the inner wall of a solid-state nanopore, with coarse-grained modeling to show that yeast Kap95 exhibits two populations in Nsp1-coated pores: one population that is transported across the pore in milliseconds, and a second population that is stably assembled within the FG mesh of the pore. Ionic current measurements show a conductance decrease for increasing Kap concentrations and noise data indicate an increase in rigidity of the FG-mesh. Modeling reveals an accumulation of Kap95 near the pore wall, yielding a conductance decrease. We find that Kaps only mildly affect the conformation of the Nsp1 mesh and that, even at high concentrations, Kaps only bind at most 8% of the FG-motifs in the nanopore, indicating that Kap95 occupancy is limited by steric constraints rather than by depletion of available FG-motifs. Our data provide an alternative explanation of the origin of bimodal NPC binding of Kaps, where a stable population of Kaps binds avidly to the NPC periphery, while fast transport proceeds via a central FG-rich channel through lower affinity interactions between Kaps and the cohesive domains of Nsp1.

Keywords: molecular dynamics, nanopores, biomimetics, nuclear pore complex, intrinsically disordered proteins, nuclear transport receptors, karyopherins, coarse-grained modeling

References(103)

[1]

Kim, S. J.; Fernandez-Martinez, J.; Nudelman, I.; Shi, Y.; Zhang, W. Z.; Raveh, B.; Herricks, T.; Slaughter, B. D.; Hogan, J. A.; Upla, P. et al. Integrative structure and functional anatomy of a nuclear pore complex. Nature 2018, 555, 475–482.

[2]

Zimmerli, C. E.; Allegretti, M.; Rantos, V.; Goetz, S. K.; Obarska-Kosinska, A.; Zagoriy, I.; Halavatyi, A.; Hummer, G.; Mahamid, J.; Kosinski, J. et al. Nuclear pores dilate and constrict in cellulo. Science 2021, 374, eabd9776.

[3]

Alber, F.; Dokudovskaya, S.; Veenhoff, L. M.; Zhang, W. Z.; Kipper, J.; Devos, D.; Suprapto, A.; Karni-Schmidt, O.; Williams, R.; Chait, B. T. et al. Determining the architectures of macromolecular assemblies. Nature 2007, 450, 683–694.

[4]

Wente, S. R. Gatekeepers of the nucleus. Science 2000, 288, 1374–1377.

[5]

Terry, L. J.; Wente, S. R. Flexible gates: Dynamic topologies and functions for FG nucleoporins in nucleocytoplasmic transport. Eukaryot. Cell 2009, 8, 1814–1827.

[6]

Yamada, J.; Phillips, J. L.; Patel, S.; Goldfien, G.; Calestagne-Morelli, A.; Huang, H.; Reza, R.; Acheson, J.; Krishnan, V. V.; Newsam, S. et al. A bimodal distribution of two distinct categories of intrinsically disordered structures with separate functions in FG nucleoporins. Mol. Cell. Proteomics 2010, 9, 2205–2224.

[7]

Popken, P.; Ghavami, A.; Onck, P. R.; Poolman, B.; Veenhoff, L. M. Size-dependent leak of soluble and membrane proteins through the yeast nuclear pore complex. Mol. Biol. Cell 2015, 26, 1386–1394.

[8]

Timney, B. L.; Raveh, B.; Mironska, R.; Trivedi, J. M.; Kim, S. J.; Russel, D.; Wente, S. R.; Sali, A.; Rout, M. P. Simple rules for passive diffusion through the nuclear pore complex. J. Cell Biol. 2016, 215, 57–76.

[9]

Stewart, M. Molecular mechanism of the nuclear protein import cycle. Nat. Rev. Mol. Cell Biol. 2007, 8, 195–208.

[10]

Paci G.; Zheng T. T.; Caria J.; Zilman A.; Lemke E. A. Molecular determinants of large cargo transport into the nucleus. eLife 2020, 9, e55963.

[11]

Frey, S.; Rees, R.; Schünemann, J.; Ng, S. C.; Fünfgeld, K.; Huyton, T.; Görlich, D. Surface properties determining passage rates of proteins through nuclear pores. Cell 2018, 174, 202–217.e9.

[12]

Yang, W. D.; Musser, S. M. Nuclear import time and transport efficiency depend on importin β concentration. J. Cell Biol. 2006, 174, 951–961.

[13]

Ma, J.; Goryaynov, A.; Sarma, A.; Yang, W. D. Self-regulated viscous channel in the nuclear pore complex. Proc. Natl. Acad. Sci. USA 2012, 109, 7326–7331.

[14]

Ribbeck, K.; Görlich, D. The permeability barrier of nuclear pore complexes appears to operate via hydrophobic exclusion. EMBO J. 2002, 21, 2664–2671.

[15]

Adams, R. L.; Terry, L. J.; Wente, S. R. A novel Saccharomyces cerevisiae FG nucleoporin mutant collection for use in nuclear pore complex functional experiments. G3 (Bethesda) 2016, 6, 51–58.

[16]

Strawn, L. A.; Shen, T. X.; Shulga, N.; Goldfarb, D. S.; Wente, S. R. Minimal nuclear pore complexes define FG repeat domains essential for transport. Nat. Cell Biol. 2004, 6, 197–206.

[17]

Hoelz, A.; Glavy, J. S.; Beck, M. Toward the atomic structure of the nuclear pore complex: When top down meets bottom up. Nat. Struct. Mol. Biol. 2016, 23, 624–630.

[18]

Lin, D. H.; Hoelz, A. The structure of the nuclear pore complex (an update). Annu. Rev. Biochem. 2019, 88, 725–783.

[19]

von Appen, A.; Kosinski, J.; Sparks, L.; Ori, A.; Diguilio, A. L.; Vollmer, B.; Mackmull, M. T.; Banterle, N.; Parca, L.; Kastritis, P. et al. In situ structural analysis of the human nuclear pore complex. Nature 2015, 526, 140–143.

[20]

Allegretti, M.; Zimmerli, C. E.; Rantos, V.; Wilfling, F.; Ronchi, P.; Fung, H. K. H.; Lee, C. W.; Hagen, W.; Turoňová, B.; Karius, K. et al. In-cell architecture of the nuclear pore and snapshots of its turnover. Nature 2020, 586, 796–800.

[21]

Schuller, A. P.; Wojtynek, M.; Mankus, D.; Tatli, M.; Kronenberg-Tenga, R.; Regmi, S. G.; Dip, P. V.; Lytton-Jean, A. K. R.; Brignole, E. J.; Dasso, M. et al. The cellular environment shapes the nuclear pore complex architecture. Nature 2021, 598, 667–671.

[22]

Rout, M. P.; Aitchison, J. D.; Magnasco, M. O.; Chait, B. T. Virtual gating and nuclear transport: The hole picture. Trends Cell Biol. 2003, 13, 622–628.

[23]

Frey, S.; Görlich, D. A saturated FG-repeat hydrogel can reproduce the permeability properties of nuclear pore complexes. Cell 2007, 130, 512–523.

[24]

Frey, S.; Richter, R. P.; Görlich, D. FG-rich repeats of nuclear pore proteins form a three-dimensional meshwork with hydrogel-like properties. Science 2006, 314, 815–817.

[25]

Pyhtila, B.; Rexach, M. A gradient of affinity for the karyopherin Kap95p along the yeast nuclear pore complex. J. Biol. Chem. 2003, 278, 42699–42709.

[26]

Mincer, J. S.; Simon, S. M. Simulations of nuclear pore transport yield mechanistic insights and quantitative predictions. Proc. Natl. Acad. Sci. USA 2011, 108, E351–E358.

[27]

Stewart, M. Ratcheting mRNA out of the nucleus. Mol. Cell 2007, 25, 327–330.

[28]

Raveh, B.; Karp, J. M.; Sparks, S.; Dutta, K.; Rout, M. P.; Sali, A.; Cowburn, D. Slide-and-exchange mechanism for rapid and selective transport through the nuclear pore complex. Proc. Natl. Acad. Sci. USA 2016, 113, E2489–E2497.

[29]

Kapinos, L. E.; Schoch, R. L.; Wagner, R. S.; Schleicher, K. D.; Lim, R. Y. H. Karyopherin-centric control of nuclear pores based on molecular occupancy and kinetic analysis of multivalent binding with FG nucleoporins. Biophys. J. 2014, 106, 1751–1762.

[30]

Peters, R. Translocation through the nuclear pore complex: Selectivity and speed by reduction-of-dimensionality. Traffic 2005, 6, 421–427.

[31]

Lim, R. Y. H.; Fahrenkrog, B.; Köser, J.; Schwarz-Herion, K.; Deng, J.; Aebi, U. Nanomechanical basis of selective gating by the nuclear pore complex. Science 2007, 318, 640–643.

[32]

Schleicher, K. D.; Dettmer, S. L.; Kapinos, L. E.; Pagliara, S.; Keyser, U. F.; Jeney, S.; Lim, R. Y. H. Selective transport control on molecular velcro made from intrinsically disordered proteins. Nat. Nanotechnol. 2014, 9, 525–530.

[33]

Kapinos, L. E.; Huang, B. L.; Rencurel, C.; Lim, R. Y. H. Karyopherins regulate nuclear pore complex barrier and transport function. J. Cell Biol. 2017, 216, 3609–3624.

[34]

Lim, R. Y. H.; Huang, B. L.; Kapinos, L. E. How to operate a nuclear pore complex by Kap-centric control. Nucleus 2015, 6, 366–372.

[35]

Bayliss, R.; Littlewood, T.; Stewart, M. Structural basis for the interaction between FxFG nucleoporin repeats and importin-β in nuclear trafficking. Cell 2000, 102, 99–108.

[36]

Aramburu, I. V.; Lemke, E. A. Floppy but not sloppy: Interaction mechanism of FG-nucleoporins and nuclear transport receptors. Semin. Cell Dev. Biol. 2017, 68, 34–41.

[37]

Sparks, S.; Temel, D. B.; Rout, M. P.; Cowburn, D. Deciphering the “fuzzy” interaction of FG nucleoporins and transport factors using small-angle neutron scattering. Structure 2018, 26, 477–484.e4.

[38]

Hough, L. E.; Dutta, K.; Sparks, S.; Temel, D. B.; Kamal, A.; Tetenbaum-Novatt, J.; Rout, M. P.; Cowburn, D. The molecular mechanism of nuclear transport revealed by atomic-scale measurements. eLife 2015, 4, e10027.

[39]

Milles, S.; Mercadante, D.; Aramburu, I.; Jensen, M.; Banterle, N.; Koehler, C.; Tyagi, S.; Clarke, J.; Shammas, S.; Blackledge, M. et al. Plasticity of an ultrafast interaction between nucleoporins and nuclear transport receptors. Cell 2015, 163, 734–745.

[40]

Dange, T.; Grünwald, D.; Grünwald, A.; Peters, R.; Kubitscheck, U. Autonomy and robustness of translocation through the nuclear pore complex: A single-molecule study. J. Cell Biol. 2008, 183, 77–86.

[41]

Ribbeck, K.; Görlich, D. Kinetic analysis of translocation through nuclear pore complexes. EMBO J. 2001, 20, 1320–1330.

[42]

Jovanovic-Talisman, T.; Tetenbaum-Novatt, J.; McKenney, A. S.; Zilman, A.; Peters, R.; Rout, M. P.; Chait, B. T. Artificial nanopores that mimic the transport selectivity of the nuclear pore complex. Nature 2009, 457, 1023–1027.

[43]

Celetti, G.; Paci, G.; Caria, J.; Vandelinder, V.; Bachand, G.; Lemke, E. A. The liquid state of FG-nucleoporins mimics permeability barrier properties of nuclear pore complexes. J. Cell Biol. 2020, 219, e201907157.

[44]

Lennon, K. M.; Soheilypour, M.; Peyro, M.; Wakefield, D. L.; Choo, G. E.; Mofrad, M. R. K.; Jovanovic-Talisman, T. Characterizing binding interactions that are essential for selective transport through the nuclear pore complex. Int. J. Mol. Sci. 2021, 22, 10898.

[45]

Kowalczyk, S. W.; Kapinos, L.; Blosser, T. R.; Magalhães, T.; van Nies, P.; Lim, R. Y. H.; Dekker, C. Single-molecule transport across an individual biomimetic nuclear pore complex. Nat. Nanotechnol. 2011, 6, 433–438.

[46]

Eisele, N. B.; Frey, S.; Piehler, J.; Görlich, D.; Richter, R. P. Ultrathin nucleoporin phenylalanine-glycine repeat films and their interaction with nuclear transport receptors. EMBO Rep. 2010, 11, 366–372.

[47]

Malekian, B.; Schoch, R. L.; Robson, T.; del Castillo, G. F. D.; Xiong, K. L.; Emilsson, G.; Kapinos, L. E.; Lim, R. Y. H.; Dahlin, A. Detecting selective protein binding inside plasmonic nanopores: Toward a mimic of the nuclear pore complex. Front. Chem. 2018, 6, 637.

[48]

Schoch, R. L.; Kapinos, L. E.; Lim, R. Y. H. Nuclear transport receptor binding avidity triggers a self-healing collapse transition in FG-nucleoporin molecular brushes. Proc. Natl. Acad. Sci. USA 2012, 109, 16911–16916.

[49]

Schmidt, H. B.; Görlich, D. Nup98 FG domains from diverse species spontaneously phase-separate into particles with nuclear pore-like permselectivity. eLife 2015, 4, e04251.

[50]

Fisher, P. D. E.; Shen, Q.; Akpinar, B.; Davis, L. K.; Chung, K. K. H.; Baddeley, D.; Šarić, A.; Melia, T. J.; Hoogenboom, B. W.; Lin, C. X. et al. A programmable DNA origami platform for organizing intrinsically disordered nucleoporins within nanopore confinement. ACS Nano 2018, 12, 1508–1518.

[51]

Stanley, G. J.; Akpinar, B.; Shen, Q.; Fisher, P. D. E.; Lusk, C. P.; Lin, C. X.; Hoogenboom, B. W. Quantification of biomolecular dynamics inside real and synthetic nuclear pore complexes using time-resolved atomic force microscopy. ACS Nano 2019, 13, 7949–7956.

[52]

Ketterer, P.; Ananth, A. N.; Laman Trip, D. S.; Mishra, A.; Bertosin, E.; Ganji, M.; van der Torre, J.; Onck, P.; Dietz, H.; Dekker, C. DNA origami scaffold for studying intrinsically disordered proteins of the nuclear pore complex. Nat. Commun. 2018, 9, 902.

[53]

Ananth, A. N.; Mishra, A.; Frey, S.; Dwarkasing, A.; Versloot, R.; van der Giessen, E.; Görlich, D.; Onck, P.; Dekker, C. Spatial structure of disordered proteins dictates conductance and selectivity in nuclear pore complex mimics. eLife 2018, 7, e31510.

[54]

Fragasso, A.; de Vries, H. W.; Andersson, J.; van der Sluis, E. O.; van der Giessen, E.; Dahlin, A.; Onck, P. R.; Dekker, C. A designer FG-Nup that reconstitutes the selective transport barrier of the nuclear pore complex. Nat. Commun. 2021, 12, 2010.

[55]

Hoogenboom, B. W.; Hough, L. E.; Lemke, E. A.; Lim, R. Y. H.; Onck, P. R.; Zilman, A. Physics of the nuclear pore complex: Theory, modeling and experiment. Phys. Rep. 2021, 921, 1–53.

[56]

Wagner, R. S.; Kapinos, L. E.; Marshall, N. J.; Stewart, M.; Lim, R. Y. H. Promiscuous binding of karyopherinβ1 modulates FG nucleoporin barrier function and expedites NTF2 transport kinetics. Biophys. J. 2015, 108, 918–927.

[57]

Kalita, J.; Kapinos, L. E.; Zheng, T. T.; Rencurel, C.; Zilman, A.; Lim, R. Y. H. Karyopherin enrichment and compensation fortifies the nuclear pore complex against nucleocytoplasmic leakage. J. Cell Biol. 2022, 221, e202108107.

[58]

Hooge, F. N. 1/f noise. Phys. B+C 1976, 83, 14–23.

[59]

Smeets, R. M. M.; Dekker, N. H.; Dekker, C. Low-frequency noise in solid-state nanopores. Nanotechnology 2009, 20, 095501.

[60]

Smeets, R. M. M.; Keyser, U. F.; Dekker, N. H.; Dekker, C. Noise in solid-state nanopores. Proc. Natl. Acad. Sci. USA 2008, 105, 417–421.

[61]

Fragasso, A.; Pud, S.; Dekker, C. 1/f noise in solid-state nanopores is governed by access and surface regions. Nanotechnology 2019, 30, 395202.

[62]

Fragasso, A.; Schmid, S.; Dekker, C. Comparing current noise in biological and solid-state nanopores. ACS Nano 2020, 14, 1338–1349.

[63]
Otto, O. ; Keyser, U. F. DNA translocation. In Engineered Nanopores for Bioanalytical Applications: A Volume in Micro and Nano Technologies; Edel, J. B.; Albrecht, T., Eds.; William Andrew: Boston, 2013; pp 31–58.
DOI
[64]

Ghavami, A.; Van der Giessen, E.; Onck, P. R. Sol-gel transition in solutions of FG-Nups of the nuclear pore complex. Extreme Mech. Lett. 2018, 22, 36–41.

[65]

Ghavami, A.; van der Giessen, E.; Onck, P. R. Energetics of transport through the nuclear pore complex. PLoS One 2016, 11, e0148876.

[66]

Mishra, A.; Sipma, W.; Veenhoff, L. M.; van der Giessen, E.; Onck, P. R. The effect of FG-Nup phosphorylation on NPC selectivity: A one-bead-per-amino-acid molecular dynamics study. Int. J. Mol. Sci. 2019, 20, 596.

[67]

Isgro, T. A.; Schulten, K. Binding dynamics of isolated nucleoporin repeat regions to importin-β. Structure 2005, 13, 1869–1879.

[68]

Liu, S. M.; Stewart, M. Structural basis for the high-affinity binding of nucleoporin Nup1p to the Saccharomyces cerevisiae importin-β homologue, Kap95p. J. Mol. Biol. 2005, 349, 515–525.

[69]

Bednenko, J.; Cingolani, G.; Gerace, L. Importin β contains a COOH-terminal nucleoporin binding region important for nuclear transport. J. Cell Biol. 2003, 162, 391–401.

[70]

Colwell, L. J.; Brenner, M. P.; Ribbeck, K. Charge as a selection criterion for translocation through the nuclear pore complex. PLoS Comput. Biol. 2010, 6, e1000747.

[71]

Forwood, J. K.; Lange, A.; Zachariae, U.; Marfori, M.; Preast, C.; Grubmüller, H.; Stewart, M.; Corbett, A. H.; Kobe, B. Quantitative structural analysis of importin-β flexibility: Paradigm for solenoid protein structures. Structure 2010, 18, 1171–1183.

[72]

Ghavami, A.; van der Giessen, E.; Onck, P. R. Coarse-grained potentials for local interactions in unfolded proteins. J. Chem. Theory Comput. 2013, 9, 432–440.

[73]

Ghavami, A.; Veenhoff, L. M.; van der Giessen, E.; Onck, P. R. Probing the disordered domain of the nuclear pore complex through coarse-grained molecular dynamics simulations. Biophys. J. 2014, 107, 1393–1402.

[74]

Davis, L. K.; Ford, I. J.; Hoogenboom, B. W. Crowding-induced phase separation of nuclear transport receptors in FG nucleoporin assemblies. eLife 2022, 11, e72627.

[75]

Bestembayeva, A.; Kramer, A.; Labokha, A. A.; Osmanović, D.; Liashkovich, I.; Orlova, E. V.; Ford, I. J.; Charras, G.; Fassati, A.; Hoogenboom, B. W. Nanoscale stiffness topography reveals structure and mechanics of the transport barrier in intact nuclear pore complexes. Nat. Nanotechnol. 2015, 10, 60–64.

[76]

Zahn, R.; Osmanović, D.; Ehret, S.; Araya Callis, C.; Frey, S.; Stewart, M.; You, C. J.; Görlich, D.; Hoogenboom, B. W.; Richter, R. P. A physical model describing the interaction of nuclear transport receptors with FG nucleoporin domain assemblies. eLife 2016, 5, e14119.

[77]

Kowalczyk, S. W.; Grosberg, A. Y.; Rabin, Y.; Dekker, C. Modeling the conductance and DNA blockade of solid-state nanopores. Nanotechnology 2011, 22, 315101.

[78]

Matsuda, A.; Mofrad, M. R. K. Free energy calculations shed light on the nuclear pore complex’s selective barrier nature. Biophys. J. 2021, 120, 3628–3640.

[79]

Tagliazucchi, M.; Huang, K.; Szleifer, I. Routes for nanoparticle translocation through polymer-brush-modified nanopores. J. Phys. Condens. Matter 2018, 30, 274006.

[80]

Chowdhury, R.; Sau, A.; Musser, S. M. Super-resolved 3D tracking of cargo transport through nuclear pore complexes. Nat. Cell Biol. 2022, 24, 112–122.

[81]

Barbato, S.; Kapinos, L. E.; Rencurel, C.; Lim, R. Y. H. Karyopherin enrichment at the nuclear pore complex attenuates Ran permeability. J. Cell Sci. 2020, 133, jcs238121.

[82]

Fu, G.; Tu, L. C.; Zilman, A.; Musser, S. M. Investigating molecular crowding within nuclear pores using polarization-PALM. eLife 2017, 6, e28716.

[83]

Pulupa, J.; Prior, H.; Johnson, D. S.; Simon, S. M. Conformation of the nuclear pore in living cells is modulated by transport state. eLife 2020, 9, e60654.

[84]

Tagliazucchi, M.; Peleg, O.; Kröger, M.; Rabin, Y.; Szleifer, I. Effect of charge, hydrophobicity, and sequence of nucleoporins on the translocation of model particles through the nuclear pore complex. Proc. Natl. Acad. Sci. USA 2013, 110, 3363–3368.

[85]

Huang, K.; Tagliazucchi, M.; Park, S. H.; Rabin, Y.; Szleifer, I. Nanocompartmentalization of the nuclear pore lumen. Biophys. J. 2020, 118, 219–231.

[86]

Shen, Q.; Tian, T. R.; Xiong, Q. C.; Ellis Fisher, P. D.; Xiong, Y.; Melia, T. J.; Lusk, C. P.; Lin, C. X. DNA-origami nanotrap for studying the selective barriers formed by phenylalanine-glycine-rich nucleoporins. J. Am. Chem. Soc. 2021, 143, 12294–12303.

[87]

Klughammer, N.; Dekker, C. Palladium zero-mode waveguides for optical single-molecule detection with nanopores. Nanotechnology 2021, 32, 18LT01.

[88]

van den Hout, M.; Hall, A. R.; Wu, M. Y.; Zandbergen, H. W.; Dekker, C.; Dekker, N. H. Controlling nanopore size, shape and stability. Nanotechnology 2010, 21, 115304.

[89]

Plesa, C.; Dekker, C. Data analysis methods for solid-state nanopores. Nanotechnology 2015, 26, 084003.

[90]

Emilsson, G.; Schoch, R. L.; Feuz, L.; Höök, F.; Lim, R. Y. H.; Dahlin, A. B. Strongly stretched protein resistant poly(ethylene glycol) brushes prepared by grafting-to. ACS Appl. Mater. Interfaces 2015, 7, 7505–7515.

[91]

Emilsson, G.; Schoch, R. L.; Oertle, P.; Xiong, K. L.; Lim, R. Y. H.; Dahlin, A. B. Surface plasmon resonance methodology for monitoring polymerization kinetics and morphology changes of brushes-evaluated with poly(N-isopropylacrylamide). Appl. Surf. Sci. 2017, 396, 384–392.

[92]

Fischer, H.; Polikarpov, I.; Craievich, A. F. Average protein density is a molecular-weight-dependent function. Protein Sci. 2009, 13, 2825–2828.

[93]

Rodríguez-de Marcos, L. V.; Larruquert, J. I.; Méndez, J. A.; Aznárez, J. A. Self-consistent optical constants of SiO2 and Ta2O5 films. Opt. Mater. Express 2016, 6, 3622–3637.

[94]

Benesch, J.; Askendal, A.; Tengvall, P. The determination of thickness and surface mass density of mesothick immunoprecipitate layers by null ellipsometry and protein 125iodine labeling. J. Colloid Interface Sci. 2002, 249, 84–90.

[95]

Van Der Spoel, D.; Lindahl, E.; Hess, B.; Groenhof, G.; Mark, A. E.; Berendsen, H. J. C. GROMACS: Fast, flexible, and free. J. Comput. Chem. 2005, 26, 1701–1718.

[96]

Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1–2, 19–25.

[97]

Lee, S. J.; Sekimoto, T.; Yamashita, E.; Nagoshi, E.; Nakagawa, A.; Imamoto, N.; Yoshimura, M.; Sakai, H.; Chong, K. T.; Tsukihara, T. et al. The structure of importin-β bound to SREBP-2: Nuclear import of a transcription factor. Science 2003, 302, 1571–1575.

[98]

Larkin, M. A.; Blackshields, G.; Brown, N.; Chenna, R.; McGettigan, P.; McWilliam, H.; Valentin, F.; Wallace, I.; Wilm, A.; Lopez, R. Clustal W and clustal X version 2.0. Bioinformatics 2007, 23, 2947–2948.

[99]

Madeira, F.; Park, Y. M.; Lee, J.; Buso, N.; Gur, T.; Madhusoodanan, N.; Basutkar, P.; Tivey, A. R. N.; Potter, S. C.; Finn, R. D. et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res. 2019, 47, W636–W641.

[100]

Humphrey, W.; Dalke, A.; Schulten, K. VMD:Visual molecular dynamics. J. Mol. Graph. 1996, 14, 33–38.

[101]

Jost Lopez, A.; Quoika, P. K.; Linke, M.; Hummer, G.; Köfinger, J. Quantifying protein–protein interactions in molecular simulations. J. Phys. Chem. B 2020, 124, 4673–4685.

[102]

Michaud-Agrawal, N.; Denning, E. J.; Woolf, T. B.; Beckstein, O. MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 2011, 32, 2319–2327.

[103]

Machlup, S. Noise in semiconductors: Spectrum of a two-parameter random signal. J. Appl. Phys. 1954, 25, 341–343.

File
12274_2022_4647_MOESM1_ESM.pdf (2.5 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 21 December 2021
Revised: 03 June 2022
Accepted: 06 June 2022
Published: 01 July 2022
Issue date: November 2022

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

We would like to thank the Görlich Lab for sharing purified Nsp1, Meng-yue Wu for technical assistance on the TEM, and Marc op den Kamp, Sjoerd Meesters, and Koen Wortelboer for their assistance in developing precursors to the Kap95 model. This research was funded by NWO-I programme “Projectruimte”, Grant No. 16PR3242-1. We acknowledge discussions with Nils Klughammer, Paola de Magistris, Anders Barth, Adithya Ananth, Sonja Schmid, Hamid Jafarinia, and Mark Driver. H. W. d. V. acknowledges support from the CIT of the University of Groningen and the Berendsen Centre for Multiscale Modeling for providing access to the Peregrine and Nieuwpoort high performance computing clusters. C. D. acknowledges support from the ERC Advanced Grant No. 883684 and the NanoFront and BaSyC programmes.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return