Journal Home > Volume 16 , Issue 1

A large-scale industrial application of proton exchange membrane fuel cells (PEMFCs) greatly depends on both substantial cost reduction and continuous durability enhancement. However, compared to effects of material degradation on apparent activity loss, little attention has been paid to influences on the phenomena of mass transport. In this review, influences of the degradation of key materials in membrane electrode assemblies (MEAs) on oxygen transport resistance in both cathode catalyst layers (CCLs) and gas diffusion layers (GDLs) are comprehensively explored, including carbon support, electrocatalyst, ionomer in CCLs as well as carbon material and hydrophobic polytetrafluoroethylene (PTFE) in GDLs. It is analyzed that carbon corrosion in CCLs will result in pore structure destruction and impact ionomer distribution, thus affecting both the bulk and local oxygen transport behavior. Considering the catalyst degradation, an eventual decrease in electrochemical active surface area (ECSA) definitely increases the local oxygen transport resistance since a decrease in active sites will lead to a longer oxygen transport path. It is also noted that problems concerning oxygen transport caused by the degradation of ionomer chemical structure in CCLs should not be ignored. Both cation contamination and chemical decomposition will change the structure of ionomer, thus worsening the local oxygen transport. Finally, it is found that the loss of carbon and PTFE in GDLs lead to a higher hydrophilicity, which is related to an occurrence of water flooding and increase in the oxygen transport resistance.


menu
Abstract
Full text
Outline
About this article

A perspective on influences of cathode material degradation on oxygen transport resistance in low Pt PEMFC

Show Author's information Huiyuan Li1Xiaojing Cheng1Xiaohui Yan1Shuiyun Shen1( )Junliang Zhang1,2( )
Institute of Fuel Cells, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
MOE Key Laboratory of Power & Machinery Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

A large-scale industrial application of proton exchange membrane fuel cells (PEMFCs) greatly depends on both substantial cost reduction and continuous durability enhancement. However, compared to effects of material degradation on apparent activity loss, little attention has been paid to influences on the phenomena of mass transport. In this review, influences of the degradation of key materials in membrane electrode assemblies (MEAs) on oxygen transport resistance in both cathode catalyst layers (CCLs) and gas diffusion layers (GDLs) are comprehensively explored, including carbon support, electrocatalyst, ionomer in CCLs as well as carbon material and hydrophobic polytetrafluoroethylene (PTFE) in GDLs. It is analyzed that carbon corrosion in CCLs will result in pore structure destruction and impact ionomer distribution, thus affecting both the bulk and local oxygen transport behavior. Considering the catalyst degradation, an eventual decrease in electrochemical active surface area (ECSA) definitely increases the local oxygen transport resistance since a decrease in active sites will lead to a longer oxygen transport path. It is also noted that problems concerning oxygen transport caused by the degradation of ionomer chemical structure in CCLs should not be ignored. Both cation contamination and chemical decomposition will change the structure of ionomer, thus worsening the local oxygen transport. Finally, it is found that the loss of carbon and PTFE in GDLs lead to a higher hydrophilicity, which is related to an occurrence of water flooding and increase in the oxygen transport resistance.

Keywords: degradation, proton exchange membrane fuel cells (PEMFC), oxygen transport resistance, cathode catalyst layer, gas diffusion layer

References(114)

[1]

Jiao, K.; Xuan, J.; Du, Q.; Bao, Z. M.; Xie, B.; Wang, B. W.; Zhao, Y.; Fan, L. H.; Wang, H. Z.; Hou, Z. J. et al. Designing the next generation of proton-exchange membrane fuel cells. Nature 2021, 595, 361–369.

[2]

Suter, T. A. M.; Smith, K.; Hack, J.; Rasha, L.; Rana, Z.; Angel, G. M. A.; Shearing, P. R.; Miller, T. S.; Brett, D. J. L. Engineering catalyst layers for next-generation polymer electrolyte fuel cells: A review of design, materials, and methods. Adv. Energy Mater. 2021, 11, 2101025.

[3]

Thompson, S. T.; Wilson, A. R.; Zelenay, P.; Myers, D. J.; More, K. L.; Neyerlin, K. C.; Papageorgopoulos, D. ElectroCat: DOE’s approach to PGM-free catalyst and electrode R&D. Solid State Ionics 2018, 319, 68–76.

[4]
USDOE. Multi-Year Research, Development, and Demonstration Plan: 2016 FUEL CELLS SECTION[Online]https://www.energy.gov/sites/default/files/2017/05/f34/fcto_myrdd_fuel_cells.pdf.
[5]

Kulikovsky, A. Impedance and resistivity of low-Pt cathode in a PEM fuel cell. J. Electrochem. Soc. 2021, 168, 044512.

[6]

Kongkanand, A.; Mathias, M. F. The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells. J. Phys. Chem. Lett. 2016, 7, 1127–1137.

[7]

Chowdhury, A.; Radke, C. J.; Weber, A. Z. Transport resistances in fuel-cell catalyst layers. ECS Trans. 2017, 80, 321–333.

[8]

Cheng, X. J.; Wang, C.; Wei, G. H.; Yan, X. H.; Shen, S. Y.; Ke, C. C.; Zhu, F. J.; Zhang, J. L. Insight into the effect of pore-forming on oxygen transport behavior in ultra-low Pt PEMFCs. J. Electrochem. Soc. 2019, 166, F1055–F1061.

[9]

Sun, X. D.; Li, Y. S. Understanding mass and charge transports to create anion-ionomer-free high-performance alkaline direct formate fuel cells. Int. J. Hydrog. Energy 2019, 44, 7538–7543.

[10]

Owejan, J. P.; Trabold, T. A.; Mench, M. M. Oxygen transport resistance correlated to liquid water saturation in the gas diffusion layer of PEM fuel cells. Int. J. Heat Mass Transf. 2014, 71, 585–592.

[11]

Jiang, J. H.; Li, Y. S.; Liang, J. R.; Yang, W. W.; Li, X. L. Modeling of high-efficient direct methanol fuel cells with order-structured catalyst layer. Appl. Energy 2019, 252, 113431.

[12]

Shen, S. Y.; Cheng, X. J.; Wang, C.; Yan, X. H.; Ke, C. C.; Yin, J. W.; Zhang, J. L. Exploration of significant influences of the operating conditions on the local O2 transport in proton exchange membrane fuel cells (PEMFCs). Phys. Chem. Chem. Phys. 2017, 19, 26221–26229.

[13]

Perry, M. L.; Newman, J.; Cairns, E. J. Mass transport in gas-diffusion electrodes: A diagnostic tool for fuel-cell cathodes. J. Electrochem. Soc. 1998, 145, 5–15.

[14]

Weber, A. Z.; Kusoglu, A. Unexplained transport resistances for low-loaded fuel-cell catalyst layers. J. Mater. Chem. A 2014, 2, 17207–17211.

[15]

Jomori, S.; Nonoyama, N.; Yoshida, T. Analysis and modeling of PEMFC degradation: Effect on oxygen transport. J. Power Sources 2012, 215, 18–27.

[16]

Kudo, K.; Jinnouchi, R.; Morimoto, Y. Humidity and temperature dependences of oxygen transport resistance of Nafion thin film on platinum electrode. Electrochim. Acta 2016, 209, 682–690.

[17]

Wijmans, J. G.; Baker, R. W. The solution-diffusion model: A review. J. Membr. Sci. 1995, 107, 1–21.

[18]

Greszler, T. A.; Caulk, D.; Sinha, P. The impact of platinum loading on oxygen transport resistance. J. Electrochem. Soc. 2012, 159, F831–F840.

[19]

Wang, C.; Cheng, X. J.; Lu, J. B.; Shen, S. Y.; Yan, X. H.; Yin, J. W.; Wei, G. H.; Zhang, J. L. The experimental measurement of local and bulk oxygen transport resistances in the catalyst layer of proton exchange membrane fuel cells. J. Phys. Chem. Lett. 2017, 8, 5848–5852.

[20]

Wang, H. J.; Wang, R. Q.; Sui, S.; Sun, T.; Yan, Y. C.; Du, S. F. Cathode design for proton exchange membrane fuel cells in automotive applications. Automot. Innov. 2021, 4, 144–164.

[21]

Long, Z.; Gao, L. Q.; Li, Y. K.; Kang, B. T.; Lee, J. Y.; Ge, J. J.; Liu, C. P.; Ma, S. H.; Jin, Z.; Ai, H. Q. Micro galvanic cell to generate PtO and extend the triple-phase boundary during self-assembly of Pt/C and Nafion for catalyst layers of PEMFC. ACS Appl. Mater. Interfaces 2017, 9, 38165–38169.

[22]

Dubau, L.; Castanheira, L.; Maillard, F.; Chatenet, M.; Lottin, O.; Maranzana, G.; Dillet, J.; Lamibrac, A.; Perrin, J. C.; Moukheiber, E. et al. A review of PEM fuel cell durability: Materials degradation, local heterogeneities of aging and possible mitigation strategies. WIREs Energy Environ. 2014, 3, 540–560.

[23]

Weber, A. Z.; Borup, R. L.; Darling, R. M.; Das, P. K.; Dursch, T. J.; Gu, W. B.; Harvey, D.; Kusoglu, A.; Litster, S.; Mench, M. M. et al. A critical review of modeling transport phenomena in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2014, 161, F1254–F1299.

[24]

Banerjee, R.; Kandlikar, S. G. Two-phase flow and thermal transients in proton exchange membrane fuel cells—A critical review. Int. J. Hydrog. Energy 2015, 40, 3990–4010.

[25]

Lopez-Haro, M.; Guétaz, L.; Printemps, T.; Morin, A.; Escribano, S.; Jouneau, P. H.; Bayle-Guillemaud, P.; Chandezon, F.; Gebel, G. Three-dimensional analysis of Nafion layers in fuel cell electrodes. Nat. Commun. 2014, 5, 5229.

[26]

Zhang, X.; Yang, Y. P.; Zhang, X. Y.; Liu, H. T. Identification of performance degradations in catalyst layer and gas diffusion layer in proton exchange membrane fuel cells. J. Power Sources 2020, 449, 227580.

[27]

Hiramitsu, Y.; Sato, H.; Hosomi, H.; Aoki, Y.; Harada, T.; Sakiyama, Y.; Nakagawa, Y.; Kobayashi, K.; Hori, M. Influence of humidification on deterioration of gas diffusivity in catalyst layer on polymer electrolyte fuel cell. J. Power Sources 2010, 195, 435–444.

[28]

Samad, S.; Loh, K. S.; Wong, W. Y.; Lee, T. K.; Sunarso, J.; Chong, S. T.; Daud, W. R. W. Carbon and non-carbon support materials for platinum-based catalysts in fuel cells. Int. J. Hydrog. Energy 2018, 43, 7823–7854.

[29]

Trogadas, P.; Fuller, T. F.; Strasser, P. Carbon as catalyst and support for electrochemical energy conversion. Carbon 2014, 75, 5–42.

[30]

Wang, C. M.; Ricketts, M.; Soleymani, A. P.; Jankovic, J.; Waldecker, J.; Chen, J. X. Effect of carbon support characteristics on fuel cell durability in accelerated stress testing. J. Electrochem. Soc. 2021, 168, 044507.

[31]

Meyer, Q.; Zeng, Y. C.; Zhao, C. Electrochemical impedance spectroscopy of catalyst and carbon degradations in proton exchange membrane fuel cells. J. Power Sources 2019, 437, 226922.

[32]

Zhao, J. J.; Tu, Z. K.; Chan, S. H. Carbon corrosion mechanism and mitigation strategies in a proton exchange membrane fuel cell (PEMFC): A review. J. Power Sources 2021, 488, 229434.

[33]

Park, Y. C.; Kakinuma, K.; Uchida, M.; Tryk, D. A.; Kamino, T.; Uchida, H.; Watanabe, M. Investigation of the corrosion of carbon supports in polymer electrolyte fuel cells using simulated start-up/shutdown cycling. Electrochim. Acta 2013, 91, 195–207.

[34]

Linse, N.; Gubler, L.; Scherer, G. G.; Wokaun, A. The effect of platinum on carbon corrosion behavior in polymer electrolyte fuel cells. Electrochim. Acta 2011, 56, 7541–7549.

[35]

Li, Y. Q.; Zheng, Z.; Chen, X. R.; Liu, Y. W.; Liu, M. T.; Li, J.; Xiong, D. P.; Xu, J. Carbon corrosion behaviors and the mechanical properties of proton exchange membrane fuel cell cathode catalyst layer. Int. J. Hydrog. Energy 2020, 45, 23519–23525.

[36]

White, R. T.; Wu, A.; Najm, M.; Orfino, F. P.; Dutta, M.; Kjeang, E. 4D in situ visualization of electrode morphology changes during accelerated degradation in fuel cells by X-ray computed tomography. J. Power Sources 2017, 350, 94–102.

[37]

Schulenburg, H.; Schwanitz, B.; Linse, N.; Scherer, G. G.; Wokaun, A.; Krbanjevic, J.; Grothausmann, R.; Manke, I. 3D imaging of catalyst support corrosion in polymer electrolyte fuel cells. J. Phys. Chem. C 2011, 115, 14236–14243.

[38]

Hegge, F.; Sharman, J.; Moroni, R.; Thiele, S.; Zengerle, R.; Breitwieser, M.; Vierrath, S. Impact of carbon support corrosion on performance losses in polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2019, 166, F956–F962.

[39]

Page, K. A.; Kusoglu, A.; Stafford, C. M.; Kim, S.; Kline, R. J.; Weber, A. Z. Confinement-driven increase in ionomer thin-film modulus. Nano Lett. 2014, 14, 2299–2304.

[40]

Shen, S. Y.; Han, A. D.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Zhang, J. L. Influence of equivalent weight of ionomer on proton conduction behavior in fuel cell catalyst layers. J. Electrochem. Soc. 2019, 166, F724–F728.

[41]

Berlinger, S. A.; McCloskey, B. D.; Weber, A. Z. Probing ionomer interactions with electrocatalyst particles in solution. ACS Energy Lett. 2021, 6, 2275–2282.

[42]

Goswami, N.; Mistry, A. N.; Grunewald, J. B.; Fuller, T. F.; Mukherjee, P. P. Corrosion-induced microstructural variability affects transport-kinetics interaction in PEM fuel cell catalyst layers. J. Electrochem. Soc. 2020, 167, 084519.

[43]

Li, Y. Q.; Xiong, D. P.; Liu, Y. W.; Liu, M. T.; Liu, J. Z.; Liang, C.; Li, C. X.; Xu, J. Correlation between electrochemical performance degradation and catalyst structural parameters on polymer electrolyte membrane fuel cell. Nanotechnol. Rev. 2019, 8, 493–502.

[44]

Park, S.; Shao, Y. Y.; Kou, R.; Viswanathan, V. V.; Towne, S. A.; Rieke, P. C.; Liu, J.; Lin, Y. H.; Wang, Y. Polarization losses under accelerated stress test using multiwalled carbon nanotube supported Pt catalyst in PEM fuel cells. J. Electrochem. Soc. 2011, 158, B297.

[45]

Jeon, Y.; Ji, Y.; Cho, Y. I.; Lee, C.; Park, D. H.; Shul, Y. G. Oxide-carbon nanofibrous composite support for a highly active and stable polymer electrolyte membrane fuel-cell catalyst. ACS Nano 2018, 12, 6819–6829.

[46]

Dogan, D. C.; Cho, S.; Hwang, S. M.; Kim, Y. M.; Guim, H.; Yang, T. H.; Park, S. H.; Park, G. G.; Yim, S. D. Highly durable supportless Pt hollow spheres designed for enhanced oxygen transport in cathode catalyst layers of proton exchange membrane fuel cells. ACS Appl. Mater. Interfaces 2016, 8, 27730–27739.

[47]

Shao, Y. Y.; Yin, G. P.; Gao, Y. Z. Understanding and approaches for the durability issues of Pt-based catalysts for PEM fuel cell. J. Power Sources 2007, 171, 558–566.

[48]

Chourashiya, M.; Vindt, S. T.; Palenzuela, A. A. V.; Pedersen, C. M.; Kallesøe, C.; Andersen, S. M. Low-cost graphite as durable support for Pt-based cathode electrocatalysts for proton exchange membrane based fuel cells. Int. J. Hydrog. Energy 2018, 43, 23275–23284.

[49]

Pérez-Rodríguez, S.; Sebastián, D.; Lázaro, M. J. Electrochemical oxidation of ordered mesoporous carbons and the influence of graphitization. Electrochim. Acta 2019, 303, 167–175.

[50]

Cheng, X. J.; Wei, G. H.; Wang, C.; Shen, S. Y.; Zhang, J. L. Experimental probing of effects of carbon support on bulk and local oxygen transport resistance in ultra-low Pt PEMFCs. Int. J. Heat Mass Transf. 2021, 164, 120549.

[51]

Ahluwalia, R. K.; Arisetty, S.; Peng, J. K.; Subbaraman, R.; Wang, X. P.; Kariuki, N.; Myers, D. J.; Mukundan, R.; Borup, R.; Polevaya, O. Dynamics of particle growth and electrochemical surface area loss due to platinum dissolution. J. Electrochem. Soc. 2014, 161, F291–F304.

[52]

Ferreira, P. J.; La O’, G. J.; Shao-Horn, Y.; Morgan, D.; Makharia, R.; Kocha, S.; Gasteiger, H. A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells: A mechanistic investigation. J. Electrochem. Soc. 2005, 152, A2256.

[53]

Jahnke, T.; Futter, G. A.; Baricci, A.; Rabissi, C.; Casalegno, A. Physical modeling of catalyst degradation in low temperature fuel cells: Platinum oxidation, dissolution, particle growth and platinum band formation. J. Electrochem. Soc. 2020, 167, 013523.

[54]

Meier, J. C.; Galeano, C.; Katsounaros, I.; Witte, J.; Bongard, H. J.; Topalov, A. A.; Baldizzone, C.; Mezzavilla, S.; Schüth, F.; Mayrhofer, K. J. J. Design criteria for stable Pt/C fuel cell catalysts. Beilstein J. Nanotechnol. 2014, 5, 44–67.

[55]

Chen, S.; Gasteiger, H. A.; Hayakawa, K.; Tada, T.; Shao-Horn, Y. Platinum-alloy cathode catalyst degradation in proton exchange membrane fuel cells: Nanometer-scale compositional and morphological changes. J. Electrochem. Soc. 2010, 157, A82–A97.

[56]

Kneer, A.; Jankovic, J.; Susac, D.; Putz, A.; Wagner, N.; Sabharwal, M.; Secanell, M. Correlation of changes in electrochemical and structural parameters due to voltage cycling induced degradation in PEM fuel cells. J. Electrochem. Soc. 2018, 165, F3241–F3250.

[57]

Ono, Y.; Mashio, T.; Takaichi, S.; Ohma, A.; Kanesaka, H.; Shinohara, K. The analysis of performance loss with low platinum loaded cathode catalyst layers. ECS Trans. 2010, 28, 69–78.

[58]

Ono, Y.; Ohma, A.; Shinohara, K.; Fushinobu, K. Influence of equivalent weight of ionomer on local oxygen transport resistance in cathode catalyst layers. J. Electrochem. Soc. 2013, 160, F779–F787.

[59]

Darling, R. M.; Burlatsky, S. F. An analysis of the impact of particle growth on transport losses in polymer-electrolyte fuel cells. J. Electrochem. Soc. 2021, 168, 054512.

[60]

Gwak, G.; Lee, J.; Ghasemi, M.; Choi, J.; Lee, S. W.; Jang, S. S.; Ju, H. Analyzing oxygen transport resistance and Pt particle growth effect in the cathode catalyst layer of polymer electrolyte fuel cells. Int. J. Hydrog. Energy 2020, 45, 13414–13427.

[61]

Owejan, J. P.; Owejan, J. E.; Gu, W. B. Impact of platinum loading and catalyst layer structure on PEMFC performance. J. Electrochem. Soc. 2013, 160, F824–F833.

[62]

Zhou, Y. K.; Neyerlin, K.; Olson, T. S.; Pylypenko, S.; Bult, J.; Dinh, H. N.; Gennett, T.; Shao, Z. P.; O’Hayre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446.

[63]

Yu, X. W.; Ye, S. Y. Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC: Part I. Physico-chemical and electronic interaction between Pt and carbon support, and activity enhancement of Pt/C catalyst. J. Power Sources 2007, 172, 133–144.

[64]

Wang, X. F.; Qi, J.; Ozdemir, O.; Pasaogullari, U.; Bonville, L. J.; Molter, T. Effect of Ca2+ as an air impurity on polymer electrolyte fuel cells. ECS Trans. 2013, 58, 529–536.

[65]

Coms, F. D.; Liu, H.; Owejan, J. E. Mitigation of perfluorosulfonic acid membrane chemical degradation using cerium and manganese ions. ECS Trans. 2008, 16, 1735–1747.

[66]

Cheng, X.; Shi, Z.; Glass, N.; Zhang, L.; Zhang, J. J.; Song, D. T.; Liu, Z. S.; Wang, H. J.; Shen, J. A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation. J. Power Sources 2007, 165, 739–756.

[67]

Xiong, Y.; Xiao, L.; Yang, Y.; DiSalvo, F. J.; Abruña, H. D. High-loading intermetallic Pt3Co/C core–shell nanoparticles as enhanced activity electrocatalysts toward the oxygen reduction reaction (ORR). Chem. Mater. 2018, 30, 1532–1539.

[68]

Tesfaye, M.; Kusoglu, A. Impact of Co-alloy leaching and cation in ionomer thin-films. ECS Trans. 2018, 86, 359–367.

[69]

Yoshida, T.; Kojima, K. Toyota MIRAI fuel cell vehicle and progress toward a future hydrogen society. Electrochem. Soc. Interface 2015, 24, 45–49.

[70]

Okada, T.; Nakamura, N.; Yuasa, M.; Sekine, I. Ion and water transport characteristics in membranes for polymer electrolyte fuel cells containing H+ and Ca2+ cations. J. Electrochem. Soc. 1997, 144, 2744–2750.

[71]

Okada, T. Theory for water management in membranes for polymer electrolyte fuel cells: Part 1. The effect of impurity ions at the anode side on the membrane performances. J. Electroanal. Chem. 1999, 465, 1–17.

[72]

Okada, T.; Møller-Holst, S.; Gorseth, O.; Kjelstrup, S. Transport and equilibrium properties of Nafion® membranes with H+ and Na+ ions. J. Electroanal. Chem. 1998, 442, 137–145.

[73]

Han, A. D.; Fu, C. H.; Yan, X. H.; Chen, J. R.; Cheng, X. J.; Ke, C. C.; Hou, J. B.; Shen, S. Y.; Zhang, J. L. Effect of cobalt ion contamination on proton conduction of ultrathin Nafion film. Int. J. Hydrog. Energy 2020, 45, 25276–25285.

[74]

Braaten, J. P.; Xu, X. M.; Cai, Y.; Kongkanand, A.; Litster, S. Contaminant cation effect on oxygen transport through the ionomers of polymer electrolyte membrane fuel cells. J. Electrochem. Soc. 2019, 166, F1337–F1343.

[75]

Mohamed, H. F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A. Effects of ion exchange on the free volume and oxygen permeation in Nafion for fuel cells. J. Phys. Chem. B 2009, 113, 2247–2252.

[76]

Mohamed, H. F. M.; Kobayashi, Y.; Kuroda, C. S.; Ohira, A. Free volume and gas permeation in ion-exchanged forms of the Nafion® membrane. J. Phys.: Conf. Ser. 2010, 225, 012038.

[77]

Mukaddam, M.; Wang, Y. G.; Pinnau, I. Structural, thermal, and gas-transport properties of Fe3+ ion-exchanged Nafion membranes. ACS Omega 2018, 3, 7474–7482.

[78]

Jalani, N. H.; Datta, R. The effect of equivalent weight, temperature, cationic forms, sorbates, and nanoinorganic additives on the sorption behavior of Nafion®. J. Membr. Sci. 2005, 264, 167–175.

[79]

Shi, S. W.; Weber, A. Z.; Kusoglu, A. Structure-transport relationship of perfluorosulfonic-acid membranes in different cationic forms. Electrochim. Acta 2016, 220, 517–528.

[80]

Hsu, W. Y.; Gierke, T. D. Ion transport and clustering in Nafion perfluorinated membranes. J. Membr. Sci. 1983, 13, 307–326.

[81]

Kusoglu, A.; Santare, M. H.; Karlsson, A. M. Mechanics-based model for non-affine swelling in perfluorosulfonic acid (PFSA) membranes. Polymer 2009, 50, 2481–2491.

[82]

Gierke, T. D.; Munn, G. E.; Wilson, F. C. The morphology in Nafion perfluorinated membrane products, as determined by wide- and small-angle X-ray studies. J. Polym. Sci. Polym. Phys. Ed. 1981, 19, 1687–1704.

[83]

Lee, K.; Ishihara, A.; Mitsushima, S.; Kamiya, N.; Ota, K. I. Effect of recast temperature on diffusion and dissolution of oxygen and morphological properties in recast Nafion. J. Electrochem. Soc. 2004, 151, A639.

[84]

Catalano, J.; Myezwa, T.; De Angelis, M. G.; Baschetti, M. G.; Sarti, G. C. The effect of relative humidity on the gas permeability and swelling in PFSI membranes. Int. J. Hydrog. Energy 2012, 37, 6308–6316.

[85]

Sethuraman, V. A.; Khan, S.; Jur, J. S.; Haug, A. T.; Weidner, J. W. Measuring oxygen, carbon monoxide and hydrogen sulfide diffusion coefficient and solubility in Nafion membranes. Electrochim. Acta 2009, 54, 6850–6860.

[86]

Wakabayashi, N.; Takeichi, M.; Itagaki, M.; Uchida, H.; Watanabe, M. Temperature-dependence of oxygen reduction activity at a platinum electrode in an acidic electrolyte solution investigated with a channel flow double electrode. J. Electroanal. Chem. 2005, 574, 339–346.

[87]

Ban, S.; Huang, C.; Yuan, X. Z.; Wang, H. J. Molecular simulation of gas adsorption, diffusion, and permeation in hydrated Nafion membranes. J. Phys. Chem. B 2011, 115, 11352–11358.

[88]

Huang, D.; Song, B. Y.; Li, M. J.; Li, X. Y. Oxygen diffusion in cation-form Nafion membrane of microbial fuel cells. Electrochim. Acta 2018, 276, 268–283.

[89]

Fan, Y. F.; Tongren, D.; Cornelius, C. J. The role of a metal ion within Nafion upon its physical and gas transport properties. Eur. Polym. J. 2014, 50, 271–278.

[90]

Pan, M. Z.; Pan, C. J.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 2021, 141, 110771.

[91]

Uchiyama, T.; Kato, M.; Yoshida, T. Buckling deformation of polymer electrolyte membrane and membrane electrode assembly under humidity cycles. J. Power Sources 2012, 206, 37–46.

[92]

Rodgers, M. P.; Bonville, L. J.; Kunz, H. R.; Slattery, D. K.; Fenton, J. M. Fuel cell perfluorinated sulfonic acid membrane degradation correlating accelerated stress testing and lifetime. Chem. Rev. 2012, 112, 6075–6103.

[93]

Uchiyama, T.; Kato, M.; Ikogi, Y.; Yoshida, T. Mechanical degradation mechanism of membrane electrode assemblies in buckling test under humidity cycles. J. Fuel Cell Sci. Technol. 2012, 9, 061005.

[94]

Bas, C.; Flandin, L.; Danerol, A. S.; Claude, E.; Rossinot, E.; Alberola, N. D. Changes in the chemical structure and properties of a perfluorosulfonated acid membrane induced by fuel-cell operation. J. Appl. Polym. Sci. 2010, 117, 2121–2132.

[95]

Tang, H. L.; Peikang, S.; Jiang, S. P.; Wang, F.; Pan, M. A degradation study of Nafion proton exchange membrane of PEM fuel cells. J. Power Sources 2007, 170, 85–92.

[96]

Shi, W. Q.; Baker, L. A. Imaging heterogeneity and transport of degraded Nafion membranes. RSC Adv. 2015, 5, 99284–99290.

[97]

Xiao, S. H.; Zhang, H. M. The investigation of resin degradation in catalyst layer of proton exchange membrane fuel cell. J. Power Sources 2014, 246, 858–861.

[98]

Gao, Y. Y.; Hou, M.; Jiang, Y. Y.; Liang, D.; Ai, J.; Zheng, L. M. Chemical stability investigations of catalyst layer in PEMFC. J. Electrochem. 2018, 24, 227–234.

[99]

Bass, M.; Berman, A.; Singh, A.; Konovalov, O.; Freger, V. Surface-induced micelle orientation in Nafion films. Macromolecules 2011, 44, 2893–2899.

[100]

Tesfaye, M.; Kushner, D. I.; Kusoglu, A. Interplay between swelling kinetics and nanostructure in perfluorosulfonic acid thin-films: Role of hygrothermal aging. ACS Appl. Polym. Mater. 2019, 1, 631–635.

[101]

Yagi, I.; Inokuma, K.; Kimijima, K.; Notsu, H. Molecular structure of buried perfluorosulfonated ionomer/Pt interface probed by vibrational sum frequency generation spectroscopy. J. Phys. Chem. C 2014, 118, 26182–26190.

[102]

Xing, Y. J.; Li, H. B.; Avgouropoulos, G. Research progress of proton exchange membrane failure and mitigation strategies. Materials 2021, 14, 2591.

[103]

Zhao, N.; Chu, Y.; Xie, Z.; Eggen, K.; Girard, F.; Shi, Z. Effects of fuel cell operating conditions on proton exchange membrane durability at open-circuit voltage. Fuel Cells 2020, 20, 176–184.

[104]

Atiyeh, H. K.; Karan, K.; Peppley, B.; Phoenix, A.; Halliop, E.; Pharoah, J. Experimental investigation of the role of a microporous layer on the water transport and performance of a PEM fuel cell. J. Power Sources 2007, 170, 111–121.

[105]

Gostick, J. T.; Ioannidis, M. A.; Fowler, M. W.; Pritzker, M. D. On the role of the microporous layer in PEMFC operation. Electrochem. Commun. 2009, 11, 576–579.

[106]

Navarro, A. J.; Gómez, M. A.; Daza, L.; López-Cascales, J. J. Production of gas diffusion layers with cotton fibers for their use in fuel cells. Sci. Rep. 2022, 12, 4219.

[107]

Yousfi-Steiner, N.; Moçotéguy, P.; Candusso, D.; Hissel, D. A review on polymer electrolyte membrane fuel cell catalyst degradation and starvation issues: Causes, consequences and diagnostic for mitigation. J. Power Sources 2009, 194, 130–145.

[108]

Borup, R.; Meyers, J.; Pivovar, B.; Kim, Y. S.; Mukundan, R.; Garland, N.; Myers, D.; Wilson, M.; Garzon, F.; Wood, D. et al. Scientific aspects of polymer electrolyte fuel cell durability and degradation. Chem. Rev. 2007, 107, 3904–3951.

[109]

Yang, Y. G.; Zhou, X. Y.; Li, B.; Zhang, C. M. Failure of cathode gas diffusion layer in 1 kW fuel cell stack under new European driving cycle. Appl. Energy 2021, 303, 117688.

[110]

Oh, H.; Lee, Y. I.; Lee, G.; Min, K.; Yi, J. S. Experimental dissection of oxygen transport resistance in the components of a polymer electrolyte membrane fuel cell. J. Power Sources 2017, 345, 67–77.

[111]

Pang, J.; Li, S.; Wang, R. Y.; Zhu, K.; Liu, S. C.; Guo, Z.; Pan, M. Durability failure analysis of proton exchange membrane fuel cell and its effect on oxygen transport in gas diffusion layer. J. Electrochem. Soc. 2019, 166, F1016–F1021.

[112]

Jayakumar, A. A comprehensive assessment on the durability of gas diffusion electrode materials in PEM fuel cell stack. Front. Energy 2019, 13, 325–338.

[113]

Huang, S. Y.; Ganesan, P.; Jung, H. Y.; Popov, B. N. Development of supported bifunctional oxygen electrocatalysts and corrosion-resistant gas diffusion layer for unitized regenerative fuel cell applications. J. Power Sources 2012, 198, 23–29.

[114]

Yang, P. P.; Wu, X. B.; Xie, Z. Y.; Wang, P.; Liu, C. B.; Huang, Q. Z. Durability improving and corrosion-resistance mechanism of graphene oxide modified ultra-thin carbon paper used in PEM fuel cell. Corros Sci 2018, 130, 95–102.

Publication history
Copyright
Acknowledgements

Publication history

Received: 27 April 2022
Revised: 30 May 2022
Accepted: 08 June 2022
Published: 09 August 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This study was supported by the National Key Research and Development Program of China (No. 2021YFB4001303) and the Science and Technology Commission of Shanghai Municipality (No. 21DZ1208601)

Return