Journal Home > Volume 16 , Issue 1

Structural colors resulting from nanostructured metallic surfaces hold a series of advantages compared to conventional chemical pigments and dyes, such as enhanced durability, tunability, scalability, and low consumption, making them particularly promising for preparing color-tunable devices. However, once these structures are fabricated, they are almost all passive devices with static nanostructures and fixed optical properties, limiting their potential applications. Here, by using a specially designed array of ordered SiO2 nanoholes as a deposition template in conjunction with the traditional reversible metal electrodeposition device (RMED), we propose a tunable reflective surface where the color of the surface can be changed as a function of the thickness of the deposited Ag nanoparticles (AgNPs). Simplified manufacturability and a large range of color tunability are achieved over previous reports by utilizing the SiO2 nanohole template, which allows the direct deposition of AgNPs while forming an array structure of Ag nanocylinders. Besides, a further thematic analysis of the physical mechanism in the proposed structure is conducted. The results show that the structural colors induced by the longitudinal localized surface plasmon resonance (LSPR) mode can be dynamically tuned from brown to purple via increasing the deposition thickness. Additionally, in combination with SiO2 nanohole templates of varying parameters, a full gamut of colors spanning the entire visible spectrum is achieved, revealing the feasibility of utilizing the properties of the LSPR mode for satisfying various color requirements. We believe that this LSPR-based multicolor RMED design will contribute to the development of full color information displays and light-modulating devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Design of a widely adjustable electrochromic device based on the reversible metal electrodeposition of Ag nanocylinders

Show Author's information Jiangrong ZhouYuge Han( )
MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Abstract

Structural colors resulting from nanostructured metallic surfaces hold a series of advantages compared to conventional chemical pigments and dyes, such as enhanced durability, tunability, scalability, and low consumption, making them particularly promising for preparing color-tunable devices. However, once these structures are fabricated, they are almost all passive devices with static nanostructures and fixed optical properties, limiting their potential applications. Here, by using a specially designed array of ordered SiO2 nanoholes as a deposition template in conjunction with the traditional reversible metal electrodeposition device (RMED), we propose a tunable reflective surface where the color of the surface can be changed as a function of the thickness of the deposited Ag nanoparticles (AgNPs). Simplified manufacturability and a large range of color tunability are achieved over previous reports by utilizing the SiO2 nanohole template, which allows the direct deposition of AgNPs while forming an array structure of Ag nanocylinders. Besides, a further thematic analysis of the physical mechanism in the proposed structure is conducted. The results show that the structural colors induced by the longitudinal localized surface plasmon resonance (LSPR) mode can be dynamically tuned from brown to purple via increasing the deposition thickness. Additionally, in combination with SiO2 nanohole templates of varying parameters, a full gamut of colors spanning the entire visible spectrum is achieved, revealing the feasibility of utilizing the properties of the LSPR mode for satisfying various color requirements. We believe that this LSPR-based multicolor RMED design will contribute to the development of full color information displays and light-modulating devices.

Keywords: structural color, dynamic color tunability, nanocylinder, plasmonic nanostructures

References(48)

[1]

Ghiradella, H. Light and color on the wing: Structural colors in butterflies and moths. Appl. Opt. 1991, 30, 3492–3500.

[2]

Kinoshita, S.; Yoshioka, S.; Miyazaki, J. Physics of structural colors. Rep. Prog. Phys. 2008, 71, 076401.

[3]

Zhang, K.; Tang, Y. W.; Meng, J. S.; Wang, G.; Zhou, H.; Fan, T. X.; Zhang, D. Polarization-sensitive color in butterfly scales: Polarization conversion from ridges with reflecting elements. Opt. Express 2014, 22, 27437–27450.

[4]

Fu, Y. L.; Tippets, C. A.; Donev, E. U.; Lopez, R. Structural colors: From natural to artificial systems. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2016, 8, 758–775.

[5]

Clausen, J. S.; Højlund-Nielsen, E.; Christiansen, A. B.; Yazdi, S.; Grajower, M.; Taha, H.; Levy, U.; Kristensen, A.; Mortensen, N. A. Plasmonic metasurfaces for coloration of plastic consumer products. Nano Lett. 2014, 14, 4499–4504.

[6]

Tan, S. J.; Zhang, L.; Zhu, D.; Goh, X. M.; Wang, Y. M.; Kumar, K.; Qiu, C. W.; Yang, J. K. W. Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 2014, 14, 4023–4029.

[7]

Kumar, K.; Duan, H. G.; Hegde, R. S.; Koh, S. C. W.; Wei, J. N.; Yang, J. K. W. Printing colour at the optical diffraction limit. Nat. Nanotechnol. 2012, 7, 557–561.

[8]

Valentine, J.; Zhang, S.; Zentgraf, T.; Ulin-Avila, E.; Genov, D. A.; Bartal, G.; Zhang, X. Three-dimensional optical metamaterial with a negative refractive index. Nature 2008, 455, 376–379.

[9]

Liu, Z. W.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X. Far-field optical hyperlens magnifying sub-diffraction-limited objects. Science 2007, 315, 1686.

[10]

Lal, S.; Link, S.; Halas, N. J. Nano-optics from sensing to waveguiding. Nat. Photonics 2007, 1, 641–648.

[11]

Fang, Y. R.; Sun, M. T. Nanoplasmonic waveguides: Towards applications in integrated nanophotonic circuits. Light Sci. Appl. 2015, 4, e294.

[12]

Atwater, H. A.; Polman, A. Plasmonics for improved photovoltaic devices. Nat. Mater. 2010, 9, 205–213.

[13]

Ma, R. M.; Oulton, R. F. Applications of nanolasers. Nat. Nanotechnol. 2019, 14, 12–22.

[14]

Neumann, O.; Feronti, C.; Neumann, A. D.; Dong, A. J.; Schell, K.; Lu, B. J. M.; Kim, E.; Quinn, M.; Thompson, S.; Grady, N. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl. Acad. Sci. USA 2013, 110, 11677–11681.

[15]

Zhou, L.; Tan, Y. L.; Wang, J. Y.; Xu, W. C.; Yuan, Y.; Cai, W. S.; Zhu, S. N.; Zhu, J. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photonics 2016, 10, 393–398.

[16]

Zhou, L.; Tan, Y. L.; Ji, D. X.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q. Q.; Yu, Z. F.; Zhu, J. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2016, 2, e1501227.

[17]

Chen, C. L.; Zhou, L.; Yu, J. Y.; Wang, Y. X.; Nie, S. M.; Zhu, S. N.; Zhu, J. Dual functional asymmetric plasmonic structures for solar water purification and pollution detection. Nano Energy 2018, 51, 451–456.

[18]

Wang, G. P.; Chen, X. C.; Liu, S.; Wong, C. P.; Chu, S. Mechanical chameleon through dynamic real-time plasmonic tuning. ACS Nano 2016, 10, 1788–1794.

[19]

Feng, Z. Y.; Jiang, C.; He, Y.; Chu, S.; Chu, G.; Peng, R. F.; Li, D. D. Widely adjustable and quasi-reversible electrochromic device based on core–shell Au-Ag plasmonic nanoparticles. Adv. Opt. Mater. 2014, 2, 1174–1180.

[20]

Morin, S. A.; Shepherd, R. F.; Kwok, S. W.; Stokes, A. A.; Nemiroski, A.; Whitesides, G. M. Camouflage and display for soft machines. Science 2012, 337, 828–832.

[21]

Brongersma, M. L. Introductory lecture: Nanoplasmonics. Faraday Discuss. 2015, 178, 9–36.

[22]

Neubrech, F.; Duan, X. Y.; Liu, N. Dynamic plasmonic color generation enabled by functional materials. Sci. Adv. 2020, 6, eabc2709.

[23]

Xu, C. Y.; Stiubianu, G. T.; Gorodetsky, A. A. Adaptive infrared-reflecting systems inspired by cephalopods. Science 2018, 359, 1495–1500.

[24]

Huang, Y. W.; Lee, H. W. H.; Sokhoyan, R.; Pala, R. A.; Thyagarajan, K.; Han, S.; Tsai, D. P.; Atwater, H. A. Gate-tunable conducting oxide metasurfaces. Nano Lett. 2016, 16, 5319–5325.

[25]

Duan, X. Y.; Kamin, S.; Liu, N. Dynamic plasmonic colour display. Nat. Commun. 2017, 8, 14606.

[26]

Song, S. C.; Ma, X. L.; Pu, M. B.; Li, X.; Liu, K. P.; Gao, P.; Zhao, Z. Y.; Wang, Y. Q.; Wang, C. T.; Luo, X. G. Actively tunable structural color rendering with tensile substrate. Adv. Opt. Mater. 2017, 5, 1600829.

[27]

Li, N.; Wei, P. P.; Yu, L. N.; Ji, J. Y.; Zhao, J. P.; Gao, C. B.; Li, Y.; Yin, Y. D. Dynamically switchable multicolor electrochromic films. Small 2019, 15, 1804974.

[28]

Liu, Y. D.; Han, X. G.; He, L.; Yin, Y. D. Thermoresponsive assembly of charged gold nanoparticles and their reversible tuning of plasmon coupling. Angew. Chem., Int. Ed. 2012, 51, 6373–6377.

[29]

Wang, M. S.; Gao, C. B.; He, L.; Lu, Q. P.; Zhang, J. Z.; Tang, C.; Zorba, S.; Yin, Y. D. Magnetic tuning of plasmonic excitation of gold nanorods. J. Am. Chem. Soc. 2013, 135, 15302–15305.

[30]

Shi, Y.; Zhu, C.; Li, J. T.; Wei, J.; Guo, J. B. A color-changing plasmonic actuator based on silver nanoparticle array/liquid crystalline elastomer nanocomposites. New J. Chem. 2016, 40, 7311–7319.

[31]

Li, B.; Zhao, P. F.; Ma, W. T.; Sun, Y.; Chen, H. L.; Chen, G. M. Mechanochromics of stretchable nano metasurfaces: Non-close-packed hexagonal lattices and tunable structural coloration. Appl. Phys. Express 2020, 13, 015008.

[32]

Tsuboi, A.; Nakamura, K.; Kobayashi, N. A localized surface plasmon resonance-based multicolor electrochromic device with electrochemically size-controlled silver nanoparticles. Adv. Mater. 2013, 25, 3197–3201.

[33]

Qiu, M. J.; Sun, P.; Zhang, B.; Yu, J. H.; Fu, Y.; Yu, X.; Zhao, C. X.; Mai, W. J. Reliable information encryption and digital display applications based on multistate smart windows. Adv. Opt. Mater. 2018, 6, 1800338.

[34]

Landsiedel, J.; Root, W.; Schramm, C.; Menzel, A.; Witzleben, S.; Bechtold, T.; Pham, T. Tunable colors and conductivity by electroless growth of Cu/Cu2O particles on sol−gel modified cellulose. Nano Res. 2020, 13, 2658–2664.

[35]

Li, M. Y.; Liu, D. Q.; Cheng, H. F.; Peng, L.; Zu, M. Manipulating metals for adaptive thermal camouflage. Sci. Adv. 2020, 6, eaba3494.

[36]
ChartonC.FahlandM. Optical properties of thin Ag films deposited by magnetron sputteringSurf. Coat. Technol.2003174–17518118610.1016/S0257-8972(03)00700-X

Charton, C.; Fahland, M. Optical properties of thin Ag films deposited by magnetron sputtering. Surf. Coat. Technol. 2003, 174–175, 181–186.

[37]
Palik, E. D. Handbook of Optical Constants of Solids; Academic Press: Orlando, 1985.
[38]

Mohamed, M. B.; Ismail, K. Z.; Link, S.; El-Sayed, M. A. Thermal reshaping of gold nanorods in micelles. J. Phys. Chem. B 1998, 102, 9370–9374.

[39]

Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 3073–3077.

[40]

Chen, H. J.; Shao, L.; Li, Q.; Wang, J. F. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 2013, 42, 2679–2724.

[41]

Link, S.; El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 1999, 103, 8410–8426.

[42]

Garcia, M. A. Surface plasmons in metallic nanoparticles: Fundamentals and applications. J. Phys. D:Appl. Phys. 2011, 44, 283001.

[43]

Xia, Y. N.; Xiong, Y. J.; Lim, B.; Skrabalak, S. E. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angew. Chem., Int. Ed. 2008, 48, 60–103.

[44]

Wiley, B. J.; Im, S. H.; Li, Z. Y.; McLellan, J.; Siekkinen, A.; Xia, Y. N. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis. J. Phys. Chem. B 2006, 110, 15666–15675.

[45]

Wiley, B. J.; Chen, Y.; McLellan, J. M.; Xiong, Y. J.; Li, Z. Y.; Ginger, D.; Xia, Y. N. Synthesis and optical properties of silver nanobars and nanorice. Nano Lett. 2007, 7, 1032–1036.

[46]

Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C. The optical properties of metal nanoparticles:  The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677.

[47]

Haes, A. J.; Haynes, C. L.; McFarland, A. D.; Schatz, G. C.; Van Duyne, R. P.; Zou, S. L. Plasmonic materials for surface-enhanced sensing and spectroscopy. MRS Bull. 2005, 30, 368–375.

[48]

Zhou, J. R.; Zhan, Z. G.; Han, Y. G. Design of a microstructured surface for infrared radiation regulation based on structural combinations. J. Quant. Spectrosc. Radiat. Transfer 2020, 256, 107299.

File
12274_2022_4638_MOESM1_ESM.pdf (1.1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2022
Revised: 15 May 2022
Accepted: 08 June 2022
Published: 01 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors would like to thank Mr. Qing Chen for his help in grammar.

Return