Journal Home > Volume 16 , Issue 1

Anti-perovskites A3SnO (A = Ca, Sr, and Ba) are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry, spin–orbit coupling, and band overlap. This provides an exciting playground for modulating their electronic properties in the two-dimensional (2D) limit. Herein, we employ first-principles density functional theory (DFT) calculations by combining dispersion-corrected SCAN + rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural, thermodynamic, dynamical, mechanical, electronic, and thermoelectric properties of bulk and monolayer (one unit cell thick) A3SnO anti-perovskites. Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable. Moreover, Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin–orbit coupling and inversion asymmetry. On the other hand, monolayer Ba3SnO exhibits Dirac cone at the high-symmetry Γ point due to the domination of band overlap. Based on the predicted electronic transport properties, it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Structure inversion asymmetry enhanced electronic structure and electrical transport in 2D A3SnO (A = Ca, Sr, and Ba) anti-perovskite monolayers

Show Author's information Syed Muhammad Alay-e-Abbas1,2( )Ghulam Abbas1Waqas Zulfiqar2,3Muhammad Sajjad1,4Nirpendra Singh4,5J. Andreas Larsson1( )
Applied Physics, Division of Materials Science, Department of Engineering Sciences and Mathematics, Luleå University of Technology, 97187 Luleå, Sweden
Computational Materials Modeling Laboratory, Department of Physics, Government College University, Faisalabad 38040, Pakistan
Department of Energy Conversion and Storage, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
Department of Physics, Khalifa University of Science and Technology, Abu Dhabi-127788, United Arab Emirates
Center for Catalysis and Separation (CeCaS), Khalifa University of Science and Technology, Abu Dhabi-127788, United Arab Emirates

Abstract

Anti-perovskites A3SnO (A = Ca, Sr, and Ba) are an important class of materials due to the emergence of Dirac cones and tiny mass gaps in their band structures originating from an intricate interplay of crystal symmetry, spin–orbit coupling, and band overlap. This provides an exciting playground for modulating their electronic properties in the two-dimensional (2D) limit. Herein, we employ first-principles density functional theory (DFT) calculations by combining dispersion-corrected SCAN + rVV10 and mBJ functionals for a comprehensive side-by-side comparison of the structural, thermodynamic, dynamical, mechanical, electronic, and thermoelectric properties of bulk and monolayer (one unit cell thick) A3SnO anti-perovskites. Our results show that 2D monolayers derived from bulk A3SnO anti-perovskites are structurally and energetically stable. Moreover, Rashba-type splitting in the electronic structure of Ca3SnO and Sr3SnO monolayers is observed owing to strong spin–orbit coupling and inversion asymmetry. On the other hand, monolayer Ba3SnO exhibits Dirac cone at the high-symmetry Γ point due to the domination of band overlap. Based on the predicted electronic transport properties, it is shown that inversion asymmetry plays an essential character such that the monolayers Ca3SnO and Sr3SnO outperform thermoelectric performance of their bulk counterparts.

Keywords: mechanical properties, electronic structure, electrical transport, anti-perovskites, low-dimensional materials

References(104)

[1]

Klitzing, K. V.; Dorda, G.; Pepper, M. New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance. Phys. Rev. Lett. 1980, 45, 494–497.

[2]

Landau, L. D. Zur theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 1937, 11, 26–35.

[3]

Thouless, D. J.; Kohmoto, M.; Nightingale, M. P.; den Nijs, M. Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 1982, 49, 405–408.

[4]

Haldane, F. D. M. Model for a quantum hall effect without landau levels: Condensed-matter realization of the “Parity Anomaly”. Phys. Rev. Lett. 1988, 61, 2015–2018.

[5]

Zou, J. Y.; He, Z. R.; Xu, G. The study of magnetic topological semimetals by first principles calculations. npj Comput. Mater. 2019, 5, 96.

[6]

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

[7]

Peierls, R. E. Quelques proprietes typiques des corpses solides. Ann. Inst. Henri Poincare 1935, 5, 177–222.

[8]

Novoselov, K. S.; Jiang, Z.; Zhang, Y.; Morozov, S. V.; Stormer, H. L.; Zeitler, U.; Maan, J. C.; Boebinger, G. S.; Kim, P.; Geim, A. K. Room-temperature quantum hall effect in graphene. Science 2007, 315, 1379.

[9]

Fiori, G.; Bonaccorso, F.; Iannaccone, G.; Palacios, T.; Neumaier, D.; Seabaugh, A.; Banerjee, S. K.; Colombo, L. Electronics based on two-dimensional materials. Nat. Nanotechnol. 2014, 9, 768–779.

[10]

Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 2005, 102, 10451–10453.

[11]

Feng, B. J.; Zhang, J.; Zhong, Q.; Li, W. B.; Li, S.; Li, H.; Cheng, P.; Meng, S.; Chen, L.; Wu, K. H. Experimental realization of two-dimensional boron sheets. Nat. Chem. 2016, 8, 563–568.

[12]

Glavin, N. R.; Rao, R.; Varshney, V.; Bianco, E.; Apte, A.; Roy, A.; Ringe, E.; Ajayan, P. M. Emerging applications of elemental 2D materials. Adv. Mater. 2020, 32, 1904302.

[13]

Splendiani, A.; Sun, L.; Zhang, Y. B.; Li, T. S.; Kim, J.; Chim, C. Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275.

[14]

Zhao, W. J.; Ghorannevis, Z.; Chu, L. Q.; Toh, M.; Kloc, C.; Tan, P. H.; Eda, G. Evolution of electronic structure in atomically thin sheets of WS2 and WSe2. ACS Nano 2013, 7, 791–797.

[15]

Ricciardulli, A. G.; Yang, S.; Smet, J. H.; Saliba, M. Emerging perovskite monolayers. Nat. Mater. 2021, 20, 1325–1336.

[16]

Paul, J. T.; Singh, A. K.; Dong, Z.; Zhuang, H.; Revard, B. C.; Rijal, B.; Ashton, M.; Linscheid, A.; Blonsky, M.; Gluhovic, D. et al. Computational methods for 2D materials: Discovery, property characterization, and application design. J. Phys. :Condens. Matter 2017, 29, 473001.

[17]

Hess, P. Bonding, structure, and mechanical stability of 2D materials: The predictive power of the periodic table. Nanoscale Horiz. 2021, 6, 856–892.

[18]

Björkman, T.; Gulans, A.; Krasheninnikov, A. V.; Nieminen, R. M. Van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 2022, 108, 235502.

[19]

Hong, S. S.; Yu, J. H.; Lu, D.; Marshall, A. F.; Hikita, Y.; Cui, Y.; Hwang, H. Y. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 2017, 3, eaao5173.

[20]

Ji, D. X.; Cai, S. H.; Paudel, T. R.; Sun, H. Y.; Zhang, C. C.; Han, L.; Wei, Y. F.; Zang, Y. P.; Gu, M.; Zhang, Y. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 2019, 570, 87–90.

[21]

Lu, D.; Baek, D. J.; Hong, S. S.; Kourkoutis, L. F.; Hikita, Y.; Hwang, H. Y. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 2016, 15, 1255–1260.

[22]

Han, L; Fang, Y. H.; Zhao, Y. Q.; Zang, Y. P.; Gu, Z. B.; Nie, Y. F.; Pan, X. Q. Giant uniaxial strain ferroelectric domain tuning in freestanding PbTiO3 films. Adv. Mater. Interfaces 2020, 7, 1901604.

[23]

Li, S. Y.; Zhang, Y.; Yang, W.; Liu, H.; Fang, X. S. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 2020, 32, 1905443.

[24]

Xue, Y. B.; Geng, C. H.; Guo, Y. Structural characterization and property modification for two-dimensional (001) SrTiO3 nanosheets. Appl. Nanosci. 2020, 10, 4273–4279.

[25]

Xiao, X. B.; Liu, B. G. Freestanding perovskite oxide monolayers as two-dimensional semiconductors. Nanotechnology 2021, 32, 145705.

[26]

Liu, C.; Zhao, G. D.; Hu, T.; Bellaiche, L.; Ren, W. Structural and magnetic properties of two-dimensional layered BiFeO3 from first principles. Phys. Rev. B 2021, 103, L081403.

[27]

Chen, J. J.; Wu, K.; Hu, W.; Yang, J. L. Tunable Rashba spin splitting in two-dimensional polar perovskites. J. Phys. Chem. Lett. 2021, 12, 1932–1939.

[28]

Vaqueiro, P.; Powell, A. V. Recent developments in nanostructured materials for high-performance thermoelectrics. J. Mater. Chem. 2010, 20, 9577–9584.

[29]

Hsieh, Y. Y.; Zhang, Y.; Zhang, L.; Fang, Y. B.; Kanakaraaj, S. N.; Bahk, J. H.; Shanov, V. High thermoelectric power-factor composites based on flexible three-dimensional graphene and polyaniline. Nanoscale 2019, 11, 6552–6560.

[30]

Yokomizo, Y.; Nakamura, J. Giant seebeck coefficient of the graphene/h-BN superlattices. Appl. Phys. Lett. 2013, 103, 113901.

[31]

Chang, P. H.; Nikolić, B. K. Edge currents and nanopore arrays in zigzag and chiral graphene nanoribbons as a route toward high-ZT thermoelectrics. Phys. Rev. B 2012, 86, 041406.

[32]

Juntunen, T.; Jussila, H.; Ruoho, M.; Liu, S. H.; Hu, G. H.; Albrow-Owen, T.; Ng, L. W. T.; Howe, R. C.; Hasan T.; Sun, Z. P. et al. Inkjet printed large-area flexible few-layer graphene thermoelectrics. Adv. Funct. Mater. 2018, 28, 1800480.

[33]

Zuev, Y. M.; Chang, W.; Kim, P. Thermoelectric and magnetothermoelectric transport measurements of graphene. Phys. Rev. Lett. 2009, 102, 096807.

[34]

Zhou, S.; Guo, Y.; Zhao, J. J. Enhanced thermoelectric properties of graphene oxide patterned by nanoroads. Phys. Chem. Chem. Phys. 2016, 18, 10607–10615.

[35]

Nakamura, H.; Huang, D.; Merz, J.; Khalaf, E.; Ostrovsky, P.; Yaresko, A.; Samal, D.; Takagi, H. Robust weak antilocalization due to spin–orbital entanglement in Dirac material Sr3SnO. Nat. Commun. 2020, 11, 1161.

[36]

Huang, D.; Nakamura, H.; Takagi, H. Planar hall effect with sixfold oscillations in a Dirac antiperovskite. Phys. Rev. Res. 2021, 3, 013268.

[37]

Huang, D.; Nakamura, H.; Küster, K.; Yaresko, A.; Samal, D.; Schröter, N. B. M.; Strocov, V. N.; Starke, U.; Takagi, H. Unusual valence state in the antiperovskites Sr3SnO and Sr3PbO revealed by X-ray photoelectron spectroscopy. Phys. Rev. Mater. 2019, 3, 124203.

[38]
Hsieh, T. H. ; Liu, J. W. ; Fu, L. Topological crystalline insulators and Dirac octets in antiperovskites. Phys. Rev. B 2014, 90, 081112(R).
[39]

Chiu, C. K.; Chan, Y. H.; Li, X.; Nohara, Y.; Schnyder, A. P. Type-II Dirac surface states in topological crystalline insulators. Phys. Rev. B 2017, 95, 035151.

[40]
Kariyado, T. ; Ogata, M. Evolution of band topology by competing band overlap and spin–orbit coupling: Twin Dirac cones in Ba3SnO as a prototype. Phys. Rev. Mater. 2017, 1, 061201(R).
[41]

Fu, L. Topological crystalline insulators. Phys. Rev. Lett. 2011, 106, 106802.

[42]

Fang, Y.; Cano, J. Higher-order topological insulators in antiperovskites. Phys. Rev. B 2020, 101, 245110.

[43]

Okamoto, Y.; Sakamaki, A.; Takenaka, K. Thermoelectric properties of antiperovskite calcium oxides Ca3PbO and Ca3SnO. J. Appl. Phys. 2016, 119, 205106.

[44]

Wu, W. Z.; Combs, N. G.; Stemmer, S. Molecular beam epitaxy of phase-pure antiperovskite Sr3SnO thin films. Appl. Phys. Lett. 2021, 119, 161903.

[45]

Ochi, M.; Kuroki, K. Comparative first-principles study of antiperovskite oxides and nitrides as thermoelectric material: Multiple Dirac cones, low-dimensional band dispersion, and high valley degeneracy. Phys. Rev. B 2019, 12, 034009.

[46]

Nuss, J.; Mühle, C.; Hayama, K.; Abdolazimi, V.; Takagi, H. Tilting structures in inverse perovskites, M3TtO (M = Ca, Sr, Ba, Eu; Tt = Si, Ge, Sn, Pb). Acta Cryst. B 2015, 71, 300–312.

[47]

Leuenberger, M. N.; Loss, D. Spintronics and quantum computing: Switching mechanisms for qubits. Phys. E:Low-Dimens. Syst. Nanostruct. 2001, 10, 452–457.

[48]

Zhu, G. Z.; Radtke, G.; Botton, G. A. Bonding and structure of a reconstructed (001) surface of SrTiO3 from TEM. Nature 2012, 490, 384–387.

[49]

Taylor, N. T.; Price, C. J.; Petkov, A.; Carr, M. I. R.; Hale, J. C.; Hepplestone, S. P. The potential of overlayers on Tin-based perovskites for water splitting. J. Phys. Chem. Lett. 2020, 11, 4124–4130.

[50]

Ando, Y.; Fu, L. Topological crystalline insulators and topological superconductors: From concepts to materials. Annu. Rev. Condens. Matter Phys. 2015, 6, 361–381.

[51]

Teo, J. C. Y.; Fu, L.; Kane, C. L. Surface states and topological invariants in three-dimensional topological insulators: Application to Bi1−xSbx. Phys. Rev. B 2008, 78, 045426.

[52]

Kariyado, T.; Ogata, M. Three-dimensional Dirac electrons at the Fermi energy in cubic inverse perovskites: Ca3PbO and its family. J. Phys. Soc. Jpn. 2011, 80, 083704.

[53]

Kariyado, T.; Ogata, M. Low-energy effective Hamiltonian and the surface states of Ca3PbO. J. Phys. Soc. Jpn. 2012, 81, 064701.

[54]

Fuseya, Y.; Ogata, M.; Fukuyama, H. Spin-polarization in magneto-optical conductivity of Dirac electrons. J. Phys. Soc. Jpn. 2012, 81, 013704.

[55]

Zintl, E. Intermetallische verbindungen. Angew. Chem. 1939, 52, 1–6.

[56]

Huang, B. Q.; Corbett, J. D. Ba21Ge2O5H24 and related phases. A corrected structure type and composition for a Zintl phase stabilized by hydrogen. Inorg. Chem. 1998, 37, 1892–1899.

[57]

Niewa, R. Alkaline-earth metal nitrides of the main-group elements: Crystal structures and properties of inverse perovskites. Z. Anorg. Allg. Chem. 2013, 639, 1699–1715.

[58]

Lee, Y. F.; Wu, F.; Kumar, R.; Hunte, F.; Schwartz, J.; Narayan, J. Epitaxial integration of dilute magnetic semiconductor Sr3SnO with Si(001). Appl. Phys. Lett. 2013, 103, 112101.

[59]

Oudah, M.; Ikeda, A.; Hausmann, J. N.; Yonezawa, S.; Fukumoto, T.; Kobayashi, S.; Sato, M.; Maeno, Y. Superconductivity in the antiperovskite Dirac-metal oxide Sr3−xSnO. Nat. Commun. 2016, 7, 13617.

[60]

Ma, Y. J.; Edgeton, A.; Paik, H.; Faeth, B. D.; Parzyck, C. T.; Pamuk, B.; Shang, S. L.; Liu, Z. K.; Shen, K. M.; Schlom, D. G. et al. Realization of epitaxial thin films of the topological crystalline insulator Sr3SnO. Adv. Mater. 2020, 32, 2000809.

[61]

Minohara, M.; Yukawa, R.; Kitamura, M.; Kumai, R.; Murakami, Y.; Kumigashira, H. Growth of antiperovskite oxide Ca3SnO films by pulsed laser deposition. J. Cryst. Growth 2018, 500, 33–37.

[62]

Bilal, M.; Alay-e-Abbas, S. M.; Laref, A.; Noor, M.; Amin, N. First-principles investigations of structural, energetic and electronic properties of (001) surfaces of cubic inverse-perovskite Sr3SnO. J. Phys. Chem. Solids 2020, 136, 109191.

[63]

Bilal, M.; Alay-e-Abbas, S. M.; Sluydts, M.; Batool, J.; Laref, A.; Abbas, G.; Amin, N. DFT insights into surface properties of anti-perovskite 3D topological crystalline insulators: A case study of (001) surfaces of Ca3SnO. Phys. Lett. A 2021, 408, 127469.

[64]

Arras, R.; Gosteau, J.; Huang, D.; Nakamura, H.; Zhao, H. J.; Paillard, C.; Bellaiche, L. Spin-polarized electronic states and atomic reconstructions at antiperovskite Sr3SnO(001) polar surfaces. Phys. Rev. B. 2021, 104, 045411.

[65]

Goniakowski, J.; Finocchi, F.; Noguera, C. Polarity of oxide surfaces and nanostructures. Rep. Prog. Phys. 2008, 71, 016501.

[66]

Savoia, A.; Paparo, D.; Perna, P.; Ristic, Z.; Salluzzo, M.; Miletto Granozio, F.; Scotti di Uccio, U.; Richter, C.; Thiel, S.; Mannhart, J. et al. Polar catastrophe and electronic reconstructions at the LaAlO3/SrTiO3 interface: Evidence from optical second harmonic generation. Phys. Rev. B 2009, 80, 075110.

[67]

Bychkov, Y. A.; Rashba, E. I. Properties of a 2D electron gas with lifted spectral degeneracy. JETP Lett. 1984, 39, 78–83.

[68]

Nitta, J.; Akazaki, T.; Takayanagi, H.; Enoki, T. Gate control of spin–orbit interaction in an inverted In0.53Ga0.47As/In0.52Al0.48 as heterostructure. Phys. Rev. Lett. 1997, 78, 1335–1338.

[69]

Hong, M.; Lyv, W.; Li, M.; Xu, S. D.; Sun, Q.; Zou, J.; Chen, Z. G. Rashba effect maximizes thermoelectric performance of GeTe derivatives. Joule 2020, 4, 2030–2043.

[70]
Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J.; Laskowski, R.; Tran, F.; Marks, L. D. WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties. Karlheinz Schwarz, Techn. Universität Wien, Austria, 2018.
[71]

Madsen, G. K. H.; Carrete, J.; Verstraete, M. J. BoltzTraP2, a program for interpolating band structures and calculating semi-classical transport coefficients. Comput. Phys. Commun. 2018, 231, 140–145.

[72]

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

[73]

Togo, A.; Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 2015, 108, 1–5.

[74]

Sun, J. W.; Ruzsinszky, A.; Perdew, J. P. Strongly constrained and appropriately normed semilocal density functional. Phys. Rev. Lett. 2015, 115, 036402.

[75]

Peng, H. W.; Yang, Z. H.; Perdew, J. P.; Sun, J. W. Versatile van der Waals density functional based on a meta-generalized gradient approximation. Phys. Rev. X 2016, 6, 041005.

[76]
Sabatini, R. ; Gorni, T. ; de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 2013, 87, 041108(R).
[77]

Kirklin, S.; Saal, J. E.; Meredig, B.; Thompson, A.; Doak, J. W.; Aykol, M.; Rühl, S.; Wolverton, C. The open quantum materials database (OQMD): Assessing the accuracy of DFT formation energies. npj Comput. Mater. 2015, 1, 15010.

[78]

Tran, F.; Blaha, P. Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 2009, 102, 226401.

[79]

Koller, D.; Tran, F.; Blaha, P. Merits and limits of the modified Becke–Johnson exchange potential. Phys. Rev. B 2011, 83, 195134.

[80]

Tang, F.; Po, H. C.; Vishwanath, A.; Wan, X. G. Comprehensive search for topological materials using symmetry indicators. Nature 2019, 566, 486–489.

[81]

Rauch, T.; Marques, M. A. L.; Botti, S. Local modified Becke–Johnson exchange-correlation potential for interfaces, surfaces, and two-dimensional materials. J. Chem. Theory Comput. 2020, 16, 2654–2660.

[82]

Tran, F.; Doumont, J.; Kalantari, L.; Blaha, P.; Rauch, T.; Borlido, P.; Botti, S.; Marques, M. A. L.; Patra, A.; Jana, S. et al. Bandgap of two-dimensional materials: Thorough assessment of modern exchange-correlation functionals. J. Chem. Phys. 2021, 155, 104103.

[83]

Widera, A.; Schäfer, H. Übergangsformen zwischen zintlphasen und echten salzen:Die verbindungen A3BO (MIT A = Ca, Sr, Ba and B = Sn, Pb). Mater. Res. Bull. 1980, 15, 1805–1809.

[84]

Batool, J.; Alay-e-Abbas, S. M.; Amin, N. Thermodynamic, electronic, and magnetic properties of intrinsic vacancy defects in antiperovskite Ca3SnO. J. Appl. Phys. 2018, 123, 161516.

[85]

Batool, J.; Alay-e-Abbas, S. M.; Johansson, G.; Zulfiqar, W.; Danish, M. A.; Bilal, M; Larsson, J. A.; Amin, N. Oxygen-vacancy-induced magnetism in anti-Perovskite topological Dirac semimetal Ba3SnO. Phys. Chem. Chem. Phys. 2021, 23, 24878–24891.

[86]

Zhang, Y. B.; Sun, J. W.; Perdew, J. P.; Wu, X. F. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA. Phys. Rev. B 2017, 96, 035143.

[87]

Li, D. L.; Gong, Y. N.; Chen, Y. X.; Lin, J. M.; Khan, Q.; Zhang, Y. P.; Li, Y.; Zhang, H.; Xie, H. P. Recent progress of two-dimensional thermoelectric materials. Nano-Micro Lett. 2020, 12, 36.

[88]

Mouhat, F.; Coudert, F. X. Necessary and sufficient elastic stability conditions in various crystal systems. Phys. Rev. B 2014, 90, 224104.

[89]
Kittel, C. Introduction to Solid State Physics; 8th ed. Wiley: New York, 2005; pp 105.
[90]

Jain, A.; Ong, S. P.; Hautier, G.; Chen, W.; Richards, W. D.; Dacek, S.; Cholia, S.; Gunter, D.; Skinner, D.; Ceder, G. et al. Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Mater. 2013, 1, 011002.

[91]

Becke, A. D.; Edgecombe, K. E. A simple measure of electron localization in atomic and molecular systems. J. Chem. Phys. 1990, 92, 5397–5403.

[92]

Koumpouras, K.; Larsson, J. A. Distinguishing between chemical bonding and physical binding using electron localization function (ELF). J. Phys. :Condens. Matter 2020, 32, 315502.

[93]

Zulfiqar, W.; Alay-e-Abbas, S. M.; Abbas, G.; Laref, A.; Larsson, J. A.; Shaukat, A. Revisiting the structural, electronic and photocatalytic properties of Ti and Zr based Perovskites with meta-GGA functionals of DFT. J. Mater. Chem. C 2021, 9, 4862–4876.

[94]

Radescu, S.; Machon, D.; Mélinon, P. Origin of dynamical instabilities in some simulated two-dimensional materials: GaSe as a case study. Phys. Rev. Mater. 2019, 3, 074002.

[95]

Yang, Y.; Gao, F.; Gao, S. W.; Wei, S. H. Origin of the stability of two-dimensional perovskites: A first-principles study. J. Mater. Chem. A 2018, 6, 14949–14955.

[96]

Pojani, A.; Finocchi, F.; Noguera, C. Polarity on the SrTiO3(111) and (110) surfaces. Surf. Sci. 1999, 442, 179–198.

[97]

Wang, L. X.; Lai, K. C.; Huang, L.; Evans, J. W.; Han, Y. Low-index surface energies, cleavage energies, and surface relaxations for crystalline NiAl from first-principles calculations. Surf. Sci. 2020, 695, 121532.

[98]

Cadelano, E.; Palla, P. L.; Giordano, S.; Colombo, L. Elastic properties of hydrogenated graphene. Phys. Rev. B 2010, 82, 235414.

[99]

Feng, Y.; Jiang, Q.; Feng, B. J.; Yang, M.; Xu, T.; Liu, W. J.; Yang, X. F.; Arita, M.; Schwier, E. F.; Shimada, K. et al. Rashba-like spin splitting along three momentum directions in trigonal layered PtBi2. Nat. Commun. 2019, 10, 4765.

[100]

Shao, Y.; Gao, W.; Yan, H. J.; Li, R. L.; Abdelwahab, I.; Chi, X.; Rogée, L.; Zhuang, L.; Fu, W.; Lau, S. P. et al. Unlocking surface octahedral tilt in two-dimensional ruddlesden-popper perovskites. Nat. Commun. 2022, 13, 138.

[101]

Pham, M. T.; Amerling, E.; Ngo, T. A.; Luong, H. M.; Hansen, K.; Pham, H. T.; Vu, T. N.; Tran, H.; Whittaker-Brooks, L.; Nguyen, T. D. Strong rashba-dresselhaus effect in nonchiral 2D ruddlesden-popper perovskites. Adv. Opt. Mater. 2022, 10, 2101232.

[102]

Lin, Z. Z.; Si, C.; Duan, S. R.; Wang, C.; Duan, W. H. Rashba splitting in bilayer transition metal dichalcogenides controlled by electronic ferroelectricity. Phys. Rev. B 2019, 100, 155408.

[103]

Zhai, Y. X.; Baniya, S.; Zhang, C.; Li, J. W.; Haney, P.; Sheng, C. X.; Ehrenfreund, E.; Vardeny, Z. V. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 2017, 3, e1700704.

[104]

Sajjad, M.; Singh, N.; Sattar, S.; De Wolf, S.; Schwingenschlögl, U. Ultralow lattice thermal conductivity and thermoelectric properties of monolayer Tl2O. ACS Appl. Energy Mater. 2019, 2, 3004–3008.

File
12274_2022_4637_MOESM1_ESM.pdf (3 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 25 March 2022
Revised: 09 May 2022
Accepted: 08 June 2022
Published: 12 July 2022
Issue date: January 2023

Copyright

© The Author(s) 2022

Acknowledgements

S. M. A. A. and J. A. L. thank the Knut and Alice Wallenberg Foundation, and Kempestiftelserna for financial support. The computations were enabled by resources provided by the Swedish National Infrastructure for Computing (SNIC) at HPC2N and NSC partially funded by the Swedish Research Council through grant agreement no. 2018-05973.

Rights and permissions

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return