Journal Home > Volume 16 , Issue 1

X-ray microscopy is an essential imaging method in many scientific fields, which can be extended to three-dimensional (3D) using tomography. Recently, metal halide perovskite (MHP) nanomaterials have become a promising candidate for X-ray scintillators, due to their high light yield, high spatial resolution, and easy fabrication. Tomography requires many projections and therefore scintillators with excellent stability. This is challenging for MHPs, which often suffer from fast degradation under X-ray irradiation and ambient conditions. Here, we demonstrate that MHP scintillators of CsPbBr3 nanowires (diameter: 60 nm, length: 5–9 µm) grown in anodized aluminum oxide (CsPbBr3 NW/AAO) have sufficient stability for X-ray micro-tomography. A tomogram was taken with a Cu X-ray source over 41 h (dose 4.2 Gyair). During this period the scintillator brightness fluctuated less than 5%, which enabled a successful reconstruction. A long-term study with 2 weeks of continuous X-ray exposure (37.5 Gyair) showed less than 14% fluctuations in brightness and no long-term degradation, despite variations in the ambient relative humidity from 7.4 %RH to 34.2 %RH. The resolution was stable at (180 ± 20) lp·mm−1, i.e., about 2.8 micron. This demonstrates that CsPbBr3 NW/AAO scintillators are promising candidates for high resolution X-ray imaging detectors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

3D X-ray microscopy with a CsPbBr3 nanowire scintillator

Show Author's information Hanna Dierks( )Zhaojun Zhang( )Nils LamersJesper Wallentin
Lund University, Synchrotron Radiation Research and NanoLund, Box 118, SE-22100 Lund, Sweden

Abstract

X-ray microscopy is an essential imaging method in many scientific fields, which can be extended to three-dimensional (3D) using tomography. Recently, metal halide perovskite (MHP) nanomaterials have become a promising candidate for X-ray scintillators, due to their high light yield, high spatial resolution, and easy fabrication. Tomography requires many projections and therefore scintillators with excellent stability. This is challenging for MHPs, which often suffer from fast degradation under X-ray irradiation and ambient conditions. Here, we demonstrate that MHP scintillators of CsPbBr3 nanowires (diameter: 60 nm, length: 5–9 µm) grown in anodized aluminum oxide (CsPbBr3 NW/AAO) have sufficient stability for X-ray micro-tomography. A tomogram was taken with a Cu X-ray source over 41 h (dose 4.2 Gyair). During this period the scintillator brightness fluctuated less than 5%, which enabled a successful reconstruction. A long-term study with 2 weeks of continuous X-ray exposure (37.5 Gyair) showed less than 14% fluctuations in brightness and no long-term degradation, despite variations in the ambient relative humidity from 7.4 %RH to 34.2 %RH. The resolution was stable at (180 ± 20) lp·mm−1, i.e., about 2.8 micron. This demonstrates that CsPbBr3 NW/AAO scintillators are promising candidates for high resolution X-ray imaging detectors.

Keywords: X-ray imaging, perovskites, tomography, scintillators, micrometer spatial resolution

References(46)

[1]

Reichardt, M.; Frohn, J.; Khan, A.; Alves, F.; Salditt, T. Multi-scale X-ray phase-contrast tomography of murine heart tissue. Biomed. Opt. Express 2020, 11, 2633–2651.

[2]

Obata, Y.; Bale, H. A.; Barnard, H. S.; Parkinson, D. Y.; Alliston, T.; Acevedo, C. Quantitative and qualitative bone imaging: A review of synchrotron radiation microtomography analysis in bone research. J. Mech. Behav. Biomed. Mater. 2020, 110, 103887.

[3]

Kuan, A. T.; Phelps, J. S.; Thomas, L. A.; Nguyen, T. M.; Han, J. L.; Chen, C. L.; Azevedo, A. W.; Tuthill, J. C.; Funke, J.; Cloetens, P. et al. Dense neuronal reconstruction through X-ray holographic nano-tomography. Nat. Neurosci. 2020, 23, 1637–1643.

[4]

Massimi, L.; Bukreeva, I.; Santamaria, G.; Fratini, M.; Corbelli, A.; Brun, F.; Fumagalli, S.; Maugeri, L.; Pacureanu, A.; Cloetens, P. et al. Exploring alzheimer’s disease mouse brain through X-ray phase contrast tomography: From the cell to the organ. NeuroImage 2019, 184, 490–495.

[5]

Töpperwien, M.; Van Der Meer, F.; Stadelmann, C.; Salditt, T. Three-dimensional virtual histology of human cerebellum by X-ray phase-contrast tomography. Proc. Natl. Acad. Sci. USA 2018, 115, 6940–6945.

[6]

Taiwo, O. O.; Paz-García, J. M.; Hall, S. A.; Heenan, T. M. M.; Finegan, D. P.; Mokso, R.; Villanueva-Pérez, P.; Patera, A.; Brett, D. J. L.; Shearing, P. R. Microstructural degradation of silicon electrodes during lithiation observed via operando X-ray tomographic imaging. J. Power Sources 2017, 342, 904–912.

[7]

Erb, A.; Turner, A. H. Braincase anatomy of the paleocene crocodyliform Rhabdognathus revealed through high resolution computed tomography. PeerJ 2021, 9, e11253.

[8]
Ferreira, E. S. B.; Boon, J. J.; Van Der Horst, J.; Scherrer, N. C.; Marone, F.; Stampanoni, M. 3D synchrotron X-ray microtomography of paint samples. In Proceedings of SPIE 7391, O3A: Optics for Arts, Architecture, and Archaeology II, Munich, 2009.
[9]

Lee, W. K.; Fezzaa, K.; Wang, J. Metrology of steel micronozzles using X-ray propagation-based phase-enhanced microimaging. Appl. Phys. Lett. 2005, 87, 084105.

[10]

Withers, P. J.; Bouman, C.; Carmignato, S.; Cnudde, V.; Grimaldi, D.; Hagen, C. K.; Maire, E.; Manley, M.; Du Plessis, A.; Stock, S. R. X-ray computed tomography. Nat. Rev. Methods Primers 2021, 1, 18.

[11]

Kalbfleisch, S.; Zhang, Y.; Kahnt, M.; Buakor, K.; Langer, M.; Dreier, T.; Dierks, H.; Stjarneblad, P.; Larsson, E.; Gordeyeva, K. et al. X-ray in-line holography and holotomography at the nanomax beamline. J. Synchrotron Radiat. 2022, 29, 224–229.

[12]

Sala, S.; Batey, D. J.; Prakash, A.; Ahmed, S.; Rau, C.; Thibault, P. Ptychographic X-ray computed tomography at a high-brilliance X-ray source. Opt. Express 2019, 27, 533–542.

[13]

Smith, D. B.; Bernhardt, G.; Raine, N. E.; Abel, R. L.; Sykes, D.; Ahmed, F.; Pedroso, I.; Gill, R. J. Exploring miniature insect brains using micro-CT scanning techniques. Sci. Rep. 2016, 6, 21768.

[14]

Müller, M.; De Sena Oliveira, I.; Allner, S.; Ferstl, S.; Bidola, P.; Mechlem, K.; Fehringer, A.; Hehn, L.; Dierolf, M.; Achterhold, K. et al. Myoanatomy of the velvet worm leg revealed by laboratory-based nanofocus X-ray source tomography. Proc. Natl. Acad. Sci. USA 2017, 114, 12378–12383.

[15]

Chen, Q. S.; Wu, J.; Ou, X. Y.; Huang, B. L.; Almutlaq, J.; Zhumekenov, A. A.; Guan, X. W.; Han, S. Y.; Liang, L. L.; Yi, Z. G. et al. All-inorganic perovskite nanocrystal scintillators. Nature 2018, 561, 88–93.

[16]

Heo, J. H.; Shin, D. H.; Park, J. K.; Kim, D. H.; Lee, S. J.; Im, S. H. High-performance next-generation perovskite nanocrystal scintillator for nondestructive X-ray imaging. Adv. Mater. 2018, 30, 1801743.

[17]

Zhang, Y. H.; Sun, R. J.; Ou, X. Y.; Fu, K. F.; Chen, Q. S.; Ding, Y. C.; Xu, L. J.; Liu, L. M.; Han, Y.; Malko, A. V. et al. Metal halide perovskite nanosheet for X-ray high-resolution scintillation imaging screens. ACS Nano 2019, 13, 2520–2525.

[18]

Wang, L. L.; Fu, K. F.; Sun, R. J.; Lian, H. Q.; Hu, X.; Zhang, Y. H. Ultra-stable CsPbBr3 perovskite nanosheets for X-ray imaging screen. Nano-Micro Lett. 2019, 11, 52.

[19]

Cao, F.; Yu, D. J.; Ma, W. B.; Xu, X. B.; Cai, B.; Yang, Y. M.; Liu, S. N.; He, L. H.; Ke, Y. B.; Lan, S. et al. Shining emitter in a stable host: Design of halide perovskite scintillators for X-ray imaging from commercial concept. ACS Nano 2020, 14, 5183–5193.

[20]

Zhang, H.; Yang, Z.; Zhou, M.; Zhao, L.; Jiang, T. M.; Yang, H. Y.; Yu, X.; Qiu, J. B.; Yang, Y.; Xu, X. H. Reproducible X-ray imaging with a perovskite nanocrystal scintillator embedded in a transparent amorphous network structure. Adv. Mater. 2021, 33, 2102529.

[21]

Li, H. H; Yang, H.; Yuan, R.; Sun, Z. X.; Yang, Y. L.; Zhao, J. T.; Li, Q. L.; Zhang, Z. J. Ultrahigh spatial resolution, fast decay, and stable X-ray scintillation screen through assembling CsPbBr3 nanocrystals arrays in anodized aluminum oxide. Adv. Opt. Mater. 2021, 9, 2101297.

[22]

Xu, Q.; Guo, Y.; Li, C.; Wang, X.; Li, Y.; Zhang, B. H.; Ouyang, X. P. Vertical nanowires enhanced spatial resolution of X-ray imaging. IEEE Photon. Technol. Lett. 2021, 33, 73–76.

[23]

Wang, Z. F.; Sun, R. J.; Liu, N. Q.; Fan, H. L. ; Hu, X.; Shen, D. P.; Zhang, Y. H.; Liu, H. X-ray imager of 26-µm resolution achieved by perovskite assembly. Nano Res. 2022, 15, 2399–2404.

[24]

Nikl, M.; Yoshikawa, A. Recent R&D trends in inorganic single-crystal scintillator materials for radiation detection. Adv. Opt. Mater. 2015, 3, 463–481.

[25]
Tisseur, D.; Estre, N.; Tamagno, L.; Eleon, C.; Eck, D.; Payan, E.; Cherepy, N. Performance evaluation of several well-known and new scintillators for MeV X-ray imaging. In 2018 IEEE Nuclear Science Symposium and Medical Imaging Conference Proceedings (NSS/MIC), Sydney, 2018, pp 1–3.
[26]

Moszyński, M.; Wolski, D.; Ludziejewski, T.; Kapusta, M.; Lempicki, A.; Brecher, C.; Wiśniewski, D.; Wojtowicz, A. J. Properties of the new LuAP:Ce scintillator. Nucl. Instrum. Methods Phys. Res. Sect. A: Accel., Spectrom., Detect. Assoc. Equip. 1997, 385, 123–131.

[27]

Zhou, Y.; Chen, J.; Bakr, O. M.; Mohammed, O. F. Metal halide perovskites for X-ray imaging scintillators and detectors. ACS Energy Lett. 2021, 6, 739–768.

[28]

Wu, H. D.; Ge, Y. S.; Niu, G. D.; Tang, J. Metal halide perovskites for X-ray detection and imaging. Matter 2021, 4, 144–163.

[29]

Zhou, F. G.; Li, Z. Z.; Lan, W.; Wang, Q.; Ding, L. M.; Jin, Z. W. Halide perovskite, a potential scintillator for X-ray detection. Small Methods 2020, 4, 2000506.

[30]

Luo, Z. P.; Moch, J. G.; Johnson, S. S.; Chen, C. C. A review on X-ray detection using nanomaterials. Curr. Nanosci. 2017, 13, 364–372.

[31]

Zhang, Z. J.; Dierks, H.; Lamers, N.; Sun, C.; Nováková, K.; Hetherington, C.; Scheblykin, I. G.; Wallentin, J. Single-crystalline perovskite nanowire arrays for stable X-ray scintillators with micrometer spatial resolution. ACS Appl. Nano Mater. 2022, 5, 881–889.

[32]

Wei, J.; Wang, Q. W.; Huo, J. D.; Gao, F.; Gan, Z. Y.; Zhao, Q.; Li, H. B. Mechanisms and suppression of photoinduced degradation in perovskite solar cells. Adv. Energy Mater. 2021, 11, 2002326.

[33]

Zhou, J. E.; An, K.; He, P.; Yang, J.; Zhou, C.; Luo, Y.; Kang, W.; Hu, W.; Feng, P.; Zhou, M. et al. Solution-processed lead-free perovskite nanocrystal scintillators for high-resolution X-ray CT imaging. Adv. Opt. Mater. 2021, 9, 2002144.

[34]

Zhang, Z. J.; Suchan, K.; Li, J.; Hetherington, C.; Kiligaridis, A.; Unger, E.; Scheblykin, I. G.; Wallentin, J. Vertically aligned CsPbBr3 nanowire arrays with template-induced crystal phase transition and stability. J. Phys. Chem. C 2021, 125, 4860–4868.

[35]

Henke, B. L.; Gullikson, E. M.; Davis, J. C. X-ray interactions:Photoabsorption, scattering, transmission, and reflection at E = 50–30, 000 eV, Z = 1–92. Atom. Data Nucl. Data Tables 1993, 54, 181–342.

[36]

Rodová, M.; Brožek, J.; Knížek, K.; Nitsch, K. Phase transitions in ternary caesium lead bromide. J. Therm. Anal. Calorim. 2003, 71, 667–673.

[37]
Salplachta, J.; Zikmund, T.; Horvath, M.; Takeda, Y.; Omote, K.; Pina, L.; Kaiser, J. CCD and scientific-CMOS detectors for submicron laboratory based X-ray computed tomography. In 9th Conference on Industrial Computed Tomography, Padova, Italy, 2019.
[38]

Li, X. M.; Cao, F.; Yu, D. J.; Chen, J.; Sun, Z. G.; Shen, Y. L.; Zhu, Y.; Wang, L.; Wei, Y.; Wu, Y. et al. All inorganic halide perovskites nanosystem: Synthesis, structural features, optical properties and optoelectronic applications. Small 2017, 13, 1603996.

[39]

Xiang, X. X.; Ouyang, H.; Li, J. Z.; Fu, Z. F. Humidity-sensitive CsPbBr3 perovskite based photoluminescent sensor for detecting water content in herbal medicines. Sens. Actuators B: Chem. 2021, 346, 130547.

[40]

Di Girolamo, D.; Dar, M. I.; Dini, D.; Gontrani, L.; Caminiti, R.; Mattoni, A.; Graetzel, M.; Meloni, S. Dual effect of humidity on cesium lead bromide: Enhancement and degradation of perovskite films. J. Mater. Chem. A 2019, 7, 12292–12302.

[41]

Liu, M.; Zhao, J. T.; Luo, Z. L.; Sun, Z. H.; Pan, N.; Ding, H. Y.; Wang, X. P. Unveiling solvent-related effect on phase transformations in CsBr-PbBr2 system: Coordination and ratio of precursors. Chem. Mater. 2018, 30, 5846–5852.

[42]

Zhou, B.; Ding, D.; Wang, Y.; Fang, S. F.; Liu, Z. X.; Tang, J.; Li, H. N.; Zhong, H. Z.; Tian, B. B.; Shi, Y. M. A scalable H2O-DMF-DMSO solvent synthesis of highly luminescent inorganic perovskite-related cesium lead bromides. Adv. Opt. Mater. 2021, 9, 2170012.

[43]
Abels, A.; Plado, J.; Pesonen, L. J.; Lehtinen, M. The impact cratering record of fennoscandia—A close look at the database. In Impacts in Precambrian Shields. Plado, J.; Pesonen, L. J., Eds.; Springer: Berlin, 2002; pp 1–58.
[44]

Vo, N. T.; Atwood, R. C.; Drakopoulos, M. Superior techniques for eliminating ring artifacts in X-ray micro-tomography. Opt. Express 2018, 26, 28396–28412.

[45]
Limaye, A. Drishti: A volume exploration and presentation tool. In Proceedings of SPIE 8506, Developments in X-Ray Tomography VIII, San Diego, 2012.
[46]
De Man, B.; Nuyts, J.; Dupont, P.; Marcha, G.; Suetens, P. Metal streak artifacts in X-ray computed tomography: A simulation study. In 1998 IEEE Nuclear Science Symposium Conference Record. 1998 IEEE Nuclear Science Symposium and Medical Imaging Conference (Cat. No. 98CH36255), Toronto, Canada, 1998, pp 1860–1865.
File
12274_2022_4633_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 24 March 2022
Revised: 05 May 2022
Accepted: 07 June 2022
Published: 23 July 2022
Issue date: January 2023

Copyright

© The author(s) 2022

Acknowledgements

Acknowledgements

This project received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (Grant 801847). This research was also funded by the Olle Engkvist Foundation, the Crafoord foundation and NanoLund. We thank Josefin Martell and Carl Alwmark for supplying the Siljan sample.

Rights and permissions

Copyright: 2022 by the author(s). This article is an open access article distributed under Creative Commons Attribution License (CC BY 4.0), visit https://creativecommons.org/licenses/by/4.0/.

Return