AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Ce and Se co-doped MBG/SA/HLC microgel bone powder for repairing tumor bone defects

Miaolin Fan1Wan Liu2Cuiying Fan3Xiaoyan Zheng1Junfeng Hui1( )Chaoquan Hu4( )Daidi Fan1,2( )
Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R & D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi’an 710069, China
Biotech. & Biomed. Research Institute, Northwest University, Xi’an 710069, China
Xi’an Giant Biogene Technology Co., Ltd., Xi’an 710069, China
Nanjing IPE Institute of Green Manufacturing Industry, Nanjing 211100, China
Show Author Information

Graphical Abstract

The schematic diagram exhibited the preparation of organic/inorganic composite microgel bone powders and their application in tumor inhibition and bone repair.

Abstract

The repair and treatment of tumor bone defects is a difficult problem to solve urgently in clinical medicine. After tumor resection, patients are not only faced with a large area of bone defect, but also may have the risk of tumor recurrence, which can easily cause huge physical and mental harm to patients. In this study, we successfully designed and constructed an organic/inorganic composite microgel bone powder (S-H-M3%Ce/3%Se) based on cerium (Ce) and selenium (Se) elements co-doped mesoporous bioactive glass (M3%Ce/3%Se), sodium alginate (SA), and recombinant human-like collagen (HLC). The obtained S-H-M3%Ce/3%Se could inhibit the growth of osteoma cells and promote the growth of normal cells, and effectively promote the repair of defect bone. The integration of the “treatment and repair” organic/inorganic composite microgel bone powder provided a new strategy for the treatment of cancerous bone defects.

Electronic Supplementary Material

Download File(s)
12274_2022_4630_MOESM1_ESM.pdf (1.9 MB)

References

[1]

Gao, X.; Li, L.; Cai, X. P.; Huang, Q.; Xiao, J. R.; Cheng, Y. Y. Targeting nanoparticles for diagnosis and therapy of bone tumors: Opportunities and challenges. Biomaterials 2021, 265, 120404.

[2]

War, A. R.; Dang, K.; Jiang, S. F.; Xiao, Z. W.; Miao, Z. P.; Yang, T. M.; Li, Y.; Qian, A. R. Role of cancer stem cells in the development of giant cell tumor of bone. Cancer Cell Int. 2020, 20, 135.

[3]

Chen, H. Z.; Yao, Y. C. Progress of biomaterials for bone tumor therapy. J. Biomater. Appl. 2022, 36, 945–955.

[4]

Zhang, K.; Zhou, Y.; Xiao, C.; Zhao, W. L.; Wu, H. F.; Tang, J. Q.; Li, Z. T.; Yu, S.; Li, X. F.; Min, L. et al. Application of hydroxyapatite nanoparticles in tumor-associated bone segmental defect. Sci. Adv. 2019, 5, eaax6946.

[5]

Liao, J. F.; Han, R. X.; Wu, Y. Z.; Qian, Z. Y. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res. 2021, 9, 18.

[6]

Yin, J. H.; Pan, S. S.; Guo, X.; Gao, Y. S.; Zhu, D. Y.; Yang, Q. H.; Gao, J. J.; Zhang, C. Q.; Chen, Y. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/osteogenesis of bone defects. Nanomicro Lett. 2021, 13, 30.

[7]

Zhang, Y.; Cai, L. L.; Li, D.; Lao, Y. H.; Liu, D. Z.; Li, M. Q.; Ding, J. X.; Chen, X. S. Tumor microenvironment-responsive hyaluronate-calcium carbonate hybrid nanoparticle enables effective chemotherapy for primary and advanced osteosarcomas. Nano Res. 2018, 11, 4806–4822.

[8]

Gu, T. T.; Li, C. J.; Xu, Y. R.; Zhang, L.; Shan, X.; Huang, X. Y.; Guo, L. L.; Chen, K. R.; Wang, X. J.; Ge, H. X. et al. Stimuli-responsive combination therapy of cisplatin and Nrf2 siRNA for improving antitumor treatment of osteosarcoma. Nano Res. 2020, 13, 630–637.

[9]

Dang, W. T.; Li, T.; Li, B.; Ma, H. S.; Zhai, D.; Wang, X. C.; Chang, J.; Xiao, Y.; Wang, J. W.; Wu, C. T. A bifunctional scaffold with CuFeSe2 nanocrystals for tumor therapy and bone reconstruction. Biomaterials 2018, 160, 92–106.

[10]

Jiang, Y. A.; Pan, X. M.; Yao, M. Y.; Han, L.; Zhang, X.; Jia, Z. R.; Weng, J.; Chen, W. X.; Fang, L. M.; Wang, X. L. et al. Bioinspired adhesive and tumor microenvironment responsive nanoMOFs assembled 3D-printed scaffold for anti-tumor therapy and bone regeneration. Nano Today 2021, 39, 101182.

[11]

Feng, C.; Zhang, W. J.; Deng, C. J.; Li, G. L.; Chang, J.; Zhang, Z. Y.; Jiang, X. Q.; Wu, C. T. 3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration. Adv. Sci. 2017, 4, 1700401.

[12]

Ma, H. S.; Li, T.; Huan, Z. G.; Zhang, M.; Yang, Z. Z.; Wang, J. W.; Chang, J.; Wu, C. T. 3D printing of high-strength bioscaffolds for the synergistic treatment of bone cancer. NPG Asia Mater. 2018, 10, 31–44.

[13]

Kurtuldu, F.; Kaňková, H.; Beltrán, A. M.; Liverani, L.; Galusek, D.; Boccaccini, A. R. Anti-inflammatory and antibacterial activities of cerium-containing mesoporous bioactive glass nanoparticles for drug-free biomedical applications. Mater. Today Bio 2021, 12, 100150.

[14]

Yu, X. J.; Aodenggerile; Jiang, Z.; Shen, J. L.; Yan, Z. Q.; Li, W. W.; Qiu, H. B. Integrating the second near-infrared fluorescence imaging with clinical techniques for multimodal cancer imaging by neodymium-doped gadolinium tungstate nanoparticles. Nano Res. 2021, 14, 2160–2170.

[15]

Yang, Z. C.; Yao, T. Y.; Zheng, X. Y.; Hui, J. F.; Fan, D. D. Eu3+/Tb3+-doped whitlockite nanocrystals: Controllable synthesis, cell imaging, and the degradation process in the bone reconstruction. Nano Res. 2022, 15, 1303–1309.

[16]

Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.

[17]

Li, J. H.; Wen, J.; Li, B.; Li, W.; Qiao, W.; Shen, J.; Jin, W. H.; Jiang, X. Q.; Yeung, K. W. K.; Chu, P. K. Valence state manipulation of cerium oxide nanoparticles on a titanium surface for modulating cell fate and bone formation. Adv. Sci. 2018, 5, 1700678.

[18]

Zheng, K.; Torre, E.; Bari, A.; Taccardi, N.; Cassinelli, C.; Morra, M.; Fiorilli, S.; Vitale-Brovarone, C.; Iviglia, G.; Boccaccini, A. R. Antioxidant mesoporous Ce-doped bioactive glass nanoparticles with anti-inflammatory and pro-osteogenic activities. Mater. Today Bio 2020, 5, 100041.

[19]

Santi, C.; Bagnoli, L. Celebrating two centuries of research in selenium chemistry: State of the art and new prospective. Molecules 2017, 22, 2124.

[20]

Pang, K. L.; Chin, K. Y. Emerging anticancer potentials of selenium on osteosarcoma. Int. J. Mol. Sci. 2019, 20, 5318.

[21]

Zhou, L. N.; Song, Z. T.; Zhang, S. J.; Li, Y. L.; Xu, J.; Guo, Y. Q. Construction and antitumor activity of selenium nanoparticles decorated with the polysaccharide extracted from Citrus limon (L.) Burm. f. (Rutaceae). Int. J. Biol. Macromol. 2021, 188, 904–913.

[22]

Ekumah, J. N.; Ma, Y. K.; Akpabli-Tsigbe, N. D. K.; Kwaw, E.; Ma, S. M.; Hu, J. Global soil distribution, dietary access routes, bioconversion mechanisms and the human health significance of selenium: A review. Food Biosci. 2021, 41, 100960.

[23]

Yang, J. Y.; Chen, Y.; Zhao, L.; Feng, Z. P.; Peng, K. L.; Wei, A. L.; Wang, Y. L.; Tong, Z. R.; Cheng, B. Preparation of a chitosan/carboxymethyl chitosan/AgNPs polyelectrolyte composite physical hydrogel with self-healing ability, antibacterial properties, and good biosafety simultaneously, and its application as a wound dressing. Compos. Part B Eng. 2020, 197, 108139.

[24]

Wang, T.; Liao, Q.; Wu, Y. H.; Wang, X.; Fu, C. M.; Geng, F. N.; Qu, Y.; Zhang, J. M. A composite hydrogel loading natural polysaccharides derived from Periplaneta americana herbal residue for diabetic wound healing. Int. J. Biol. Macromol. 2020, 164, 3846–3857.

[25]

Ma, W.; Chen, Q. L.; Xu, W. G.; Yu, M.; Yang, Y. Y.; Zou, B. H.; Zhang, Y. S.; Ding, J. X.; Yu, Z. Q. Self-targeting visualizable hyaluronate nanogel for synchronized intracellular release of doxorubicin and cisplatin in combating multidrug-resistant breast cancer. Nano Res. 2021, 14, 846–857.

[26]

Zhai, X. Y.; Ruan, C. S.; Shen, J.; Zheng, C. P.; Zhao, X. L.; Pan, H. B.; Lu, W. W. Clay-based nanocomposite hydrogel with attractive mechanical properties and sustained bioactive ion release for bone defect repair. J. Mater. Chem. B 2021, 9, 2394–2406.

[27]

He, J. Q.; Chen, G. Q.; Zhao, P.; Ou, C. W. Near-infrared light-controllable bufalin delivery from a black phosphorus-hybrid supramolecular hydrogel for synergistic photothermal-chemo tumor therapy. Nano Res. 2021, 14, 3988–3998.

[28]

Yu, H. P.; Zhu, Y. J. Bioinspired flexible, high-strength, and versatile hydrogel with the fiberboard-and-mortar hierarchically ordered structure. Nano Res. 2021, 14, 3643–3652.

[29]

Yang, W.; Xu, H. J.; Lan, Y.; Zhu, Q. Y.; Liu, Y.; Huang, S. S.; Shi, S. J.; Hancharou, A.; Tang, B.; Guo, R. Preparation and characterisation of a novel silk fibroin/hyaluronic acid/sodium alginate scaffold for skin repair. Int. J. Biol. Macromol. 2019, 130, 58–67.

[30]

Yuan, H. F.; Zheng, X. Y.; Liu, W.; Zhang, H.; Shao, J. J.; Yao, J. X.; Mao, C. Y.; Hui, J. F.; Fan, D. D. A novel bovine serum albumin and sodium alginate hydrogel scaffold doped with hydroxyapatite nanowires for cartilage defects repair. Colloids Surf. B Biointerfaces 2020, 192, 111041.

[31]

Wang, Y.; Wang, P.; Ji, H. R.; Ji, G. Y.; Wang, M. S.; Wang, X. S. Analysis of safety and effectiveness of sodium alginate/poly(γ-glutamic acid) microspheres for rapid hemostasis. ACS Appl. Bio Mater. 2021, 4, 6539–6548.

[32]

Qin, D.; Wang, N.; You, X. G.; Zhang, A. D.; Chen, X. G.; Liu, Y. Collagen-based biocomposites inspired by bone hierarchical structures for advanced bone regeneration: Ongoing research and perspectives. Biomater. Sci. 2022, 10, 318–353.

[33]

Lin, M. L.; Liu, H. H.; Deng, J. J.; An, R.; Shen, M. J.; Li, Y. Q.; Zhang, X. Carboxymethyl chitosan as a polyampholyte mediating intrafibrillar mineralization of collagen via collagen/ACP self-assembly. J. Mater. Sci. Technol. 2019, 35, 1894–1905.

[34]

Zhu, C. H.; Lei, H.; Wang, S. S.; Duan, Z. G.; Fu, R. Z.; Deng, J. J.; Fan, D. D.; Lv, X. Q. The effect of human-like collagen calcium complex on osteoporosis mice. Mater. Sci. Eng. C 2018, 93, 630–639.

[35]

Xing, M. M.; Fu, R. Z.; Liu, Y. N.; Wang, P.; Ma, P.; Zhu, C. H.; Fan, D. D. Human-like collagen promotes the healing of acetic acid-induced gastric ulcers in rats by regulating NOS and growth factors. Food Funct. 2020, 11, 4123–4137.

[36]

Zheng, X. Y.; Hui, J. F.; Li, H.; Zhu, C. H.; Hua, X. F.; Ma, H. X.; Fan, D. D. Fabrication of novel biodegradable porous bone scaffolds based on amphiphilic hydroxyapatite nanorods. Mater. Sci. Eng. C 2017, 75, 699–705.

[37]

Chen, Z. Y.; Zhang, Z.; Ma, X. X.; Duan, Z. G.; Hui, J. F.; Zhu, C. H.; Zhang, D. G.; Fan, D. D.; Shang, L. J.; Chen, F. L. Newly designed human-like collagen to maximize sensitive release of BMP-2 for remarkable repairing of bone defects. Biomolecules 2019, 9, 450.

[38]

Kokubo, T.; Takadama, H. How useful is SBF in predictingin vivo bone bioactivity? Biomaterials 2006, 27, 2907–2915.

[39]

Liu, Y. Q.; Lin, R. C.; Ma, L. L.; Zhuang, H.; Feng, C.; Chang, J.; Wu, C. T. Mesoporous bioactive glass for synergistic therapy of tumor and regeneration of bone tissue. Appl. Mater. Today 2020, 19, 100578.

[40]

Xue, Y. M.; Niu, W.; Wang, M.; Chen, M.; Guo, Y.; Lei, B. Engineering a biodegradable multifunctional antibacterial bioactive nanosystem for enhancing tumor photothermo-chemotherapy and bone regeneration. ACS Nano 2020, 14, 442–453.

[41]

Huang, C.; Yu, M.; Li, H.; Wan, X. F.; Ding, Z. C.; Zeng, W. N.; Zhou, Z. K. Research progress of bioactive glass and its application in orthopedics. Adv. Mater. Interfaces 2021, 8, 2100606.

[42]

Zhou, Z. F.; Sun, T. W.; Qin, Y. H.; Zhu, Y. J.; Jiang, Y. Y.; Zhang, Y.; Liu, J. J.; Wu, J.; He, S. S.; Chen, F. Selenium-doped hydroxyapatite biopapers with an anti-bone tumor effect by inducing apoptosis. Biomater. Sci. 2019, 7, 5044–5053.

[43]

Li, X.; Wang, Y. F.; Chen, Y.; Zhou, P.; Wei, K.; Wang, H.; Wang, J. L.; Fang, H.; Zhang, S. M. Hierarchically constructed selenium-doped bone-mimetic nanoparticles promote ROS-mediated autophagy and apoptosis for bone tumor inhibition. Biomaterials 2020, 257, 120253.

[44]

Abdulah, R.; Miyazaki, K.; Nakazawa, M.; Koyama, H. Chemical forms of selenium for cancer prevention. J. Trace Elem. Med. Biol. 2005, 19, 141–150.

[45]

Zhao, G. S.; Wu, X. M.; Chen, P. P.; Zhang, L. Y.; Yang, C. S.; Zhang, J. S. Selenium nanoparticles are more efficient than sodium selenite in producing reactive oxygen species and hyper-accumulation of selenium nanoparticles in cancer cells generates potent therapeutic effects. Free Radical Biol. Med. 2018, 126, 55–66.

[46]
WangY. F.WangJ. L.HaoH.CaiM. L.WangS. Y.MaJ.LiY.MaoC. B.ZhangS. M. In vitro and in vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticlesACS Nano2016109927993710.1021/acsnano.6b03835

Wang, Y. F.; Wang, J. L.; Hao, H.; Cai, M. L.; Wang, S. Y.; Ma, J.; Li, Y.; Mao, C. B.; Zhang, S. M. In vitro andin vivo mechanism of bone tumor inhibition by selenium-doped bone mineral nanoparticles. ACS Nano 2016, 10, 9927–9937.

Nano Research
Pages 746-756
Cite this article:
Fan M, Liu W, Fan C, et al. Ce and Se co-doped MBG/SA/HLC microgel bone powder for repairing tumor bone defects. Nano Research, 2023, 16(1): 746-756. https://doi.org/10.1007/s12274-022-4630-x
Topics:

873

Views

6

Crossref

7

Web of Science

7

Scopus

0

CSCD

Altmetrics

Received: 14 May 2022
Revised: 05 June 2022
Accepted: 05 June 2022
Published: 30 July 2022
© Tsinghua University Press 2022
Return