Journal Home > Volume 15 , Issue 9

Flexible electromagnetic interference (EMI) shielding films with high stability have shown promising prospect in harsh working conditions such as military, communication, and special protection fields. Herein, flexible aramid nanofibers@polypyrrole (ANF@PPy) films with high stability were easily achieved by the in-situ growth of PPy on the surface of ANF and the subsequent pressured-filtration film-forming process. When the amount of pyrrole (Py) monomer is 40 µL, the ANF@PPy (AP40) film exhibited excellent EMI shielding performance with shielding effectiveness (SE) of 41.69 dB, tensile strength of 96.01 MPa, and fracture strain of 21.95% at the thickness of 75.76 μm. Particularly, the anticipated EMI shielding performance can be maintained even after being heated at 200 °C in air, soaked in 3.5% NaCl solution, repeated folding for one million times, or burned directly, indicating superior environmental durability in harsh conditions. Therefore, it is believed that the ANF@PPy films with high stability offer a facile solution for practical protection for high-performance EMI shielding applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

In-situ growth of polypyrrole on aramid nanofibers for electromagnetic interference shielding films with high stability

Show Author's information Jianyu Zhou1Sineenat Thaiboonrod2Jianhui Fang1Shaomei Cao1Miao Miao1Xin Feng1( )
Research Center of Nano Science and Technology, College of Sciences, Shanghai University, Shanghai 200444, China
National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Thailand Science Park, Pathum Thani 12120, Thailand

Abstract

Flexible electromagnetic interference (EMI) shielding films with high stability have shown promising prospect in harsh working conditions such as military, communication, and special protection fields. Herein, flexible aramid nanofibers@polypyrrole (ANF@PPy) films with high stability were easily achieved by the in-situ growth of PPy on the surface of ANF and the subsequent pressured-filtration film-forming process. When the amount of pyrrole (Py) monomer is 40 µL, the ANF@PPy (AP40) film exhibited excellent EMI shielding performance with shielding effectiveness (SE) of 41.69 dB, tensile strength of 96.01 MPa, and fracture strain of 21.95% at the thickness of 75.76 μm. Particularly, the anticipated EMI shielding performance can be maintained even after being heated at 200 °C in air, soaked in 3.5% NaCl solution, repeated folding for one million times, or burned directly, indicating superior environmental durability in harsh conditions. Therefore, it is believed that the ANF@PPy films with high stability offer a facile solution for practical protection for high-performance EMI shielding applications.

Keywords: high stability, in-situ growth of polypyrrole (PPy) on aramid nanofibers (ANF) , electromagnetic interference (EMI) shielding films, water-resistance, thermal mechanical properties

References(75)

1

Cheng, Y.; Li, X. Y.; Qin, Y. X.; Fang, Y. T.; Liu, G. L.; Wang, Z. Y.; Matz, J.; Dong, P.; Shen, J. F.; Ye, M. X. Hierarchically porous polyimide/Ti3C2Tx film with stable electromagnetic interference shielding after resisting harsh conditions. Sci. Adv. 2021, 7, eabj1663.

2

Zhang, Y. L.; Ruan, K. P.; Gu, J. W. Flexible sandwich-structured electromagnetic interference shielding nanocomposite films with excellent thermal conductivities. Small 2021, 17, 2101951.

3

Liang, L. Y.; Yao, C.; Yan, X.; Feng, Y. Z.; Hao, X.; Zhou, B.; Wang, Y. M.; Ma, J. M.; Liu, C. T.; Shen, C. Y. High-efficiency electromagnetic interference shielding capability of magnetic Ti3C2Tx MXene/CNT composite film. J. Mater. Chem. A 2021, 9, 24560–24570.

4

Song, P.; Liu, B.; Liang, C. B.; Ruan, K. P.; Qiu, H.; Ma, Z. L.; Guo, Y. Q.; Gu, J. W. Lightweight, flexible cellulose-derived carbon aerogel@reduced graphene oxide/PDMS composites with outstanding EMI shielding performances and excellent thermal conductivities. Nano-Micro Lett. 2021, 13, 91.

5

Pavlou, C.; Pastore Carbone, M. G.; Manikas, A. C.; Trakakis, G.; Koral, C.; Papari, G.; Andreone, A.; Galiotis, C. Effective EMI shielding behaviour of thin graphene/PMMA nanolaminates in the THz range. Nat. Commun. 2021, 12, 4655.

6

Zeng, Z. H.; Wang, C. X.; Siqueira, G.; Han, D. X.; Huch, A.; Abdolhosseinzadeh, S.; Heier, J.; Nüesch, F.; Zhang, C. F.; Nyström, G. Nanocellulose-MXene biomimetic aerogels with orientation-tunable electromagnetic interference shielding performance. Adv. Sci. 2020, 7, 2000979.

7

Liu, Q. Z.; He, X. W.; Yi, C.; Sun, D. M.; Chen, J. H.; Wang, D.; Liu, K.; Li, M. F. Fabrication of ultra-light nickel/graphene composite foam with 3D interpenetrating network for high-performance electromagnetic interference shielding. Compos. Part B:Eng. 2020, 182, 107614.

8

Yang, X. T.; Fan, S. G.; Li, Y.; Guo, Y. Q.; Li, Y. G.; Ruan, K. P.; Zhang, S. M.; Zhang, J. L.; Kong, J.; Gu, J. W. Synchronously improved electromagnetic interference shielding and thermal conductivity for epoxy nanocomposites by constructing 3D copper nanowires/thermally annealed graphene aerogel framework. Compos. Part A:Appl. Sci. Manuf. 2020, 128, 105670.

9

Sun, F. Y.; Xu, J. H.; Liu, T.; Li, F. F.; Poo, Y.; Zhang, Y. N.; Xiong, R. H.; Huang, C. B.; Fu, J. J. An autonomously ultrafast self-healing, highly colourless, tear-resistant and compliant elastomer tailored for transparent electromagnetic interference shielding films integrated in flexible and optical electronics. Mater. Horiz. 2021, 8, 3356–3367.

10

Song, P.; Ma, Z. L.; Qiu, H.; Ru, Y. F.; Gu, J. W. High-efficiency electromagnetic interference shielding of rGO@FeNi/epoxy composites with regular honeycomb structures. Nano-Micro Lett. 2022, 14, 51.

11

Guo, H. T.; Li, Y.; Ji, Y.; Chen, Y. M.; Liu, K. M.; Shen, B.; He, S. J.; Duan, G. G.; Han, J. Q.; Jiang, S. H. Highly flexible carbon nanotubes/aramid nanofibers composite papers with ordered and layered structures for efficient electromagnetic interference shielding. Compos. Commun. 2021, 27, 100879.

12

Ruan, K. P.; Guo, Y. Q.; Lu, C. Y.; Shi, X. T.; Ma, T. B.; Zhang, Y. L.; Kong, J.; Gu, J. W. Significant reduction of interfacial thermal resistance and phonon scattering in graphene/polyimide thermally conductive composite films for thermal management. Research 2021, 2021, 8438614.

13

Shi, Y. Y.; Xiang, Z.; Cai, L.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Cheng, J.; Jiang, H. J.; Lu, W. Multi-interface assembled N-doped MXene/HCFG/AgNW films for wearable electromagnetic shielding devices with multimodal energy conversion and healthcare monitoring performances. ACS Nano 2022, 16, 7816–7833.

14

Li, Y. L.; Zhang, D.; Zhou, B.; He, C. E.; Wang, B.; Feng, Y. Z.; Liu, C. T. Synergistically enhancing electromagnetic interference shielding performance and thermal conductivity of polyvinylidene fluoride-based lamellar film with MXene and graphene. Compos. Part A:Appl. Sci. Manuf. 2022, 157, 106945.

15
Gong, S.; Sheng, X. X.; Li, X. L.; Sheng, M. J.; Wu, H.; Lu, X.; Qu, J. P. A multifunctional flexible composite film with excellent multi-source driven thermal management, electromagnetic interference shielding, and fire safety performance, inspired by a “brick-mortar” sandwich structure. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202200570.
DOI
16

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Qiu, H.; Ruan, K. P.; Gu, J. W. Mechanically strong and folding-endurance Ti3C2Tx MXene/PBO nanofiber films for efficient electromagnetic interference shielding and thermal management. Carbon Energy 2022, 4, 200–210.

17

Vu, M. C.; Park, P. J.; Bae, S. R.; Kim, S. Y.; Kang, Y. M.; Choi, W. K.; Islam, M. A.; Won, J. C.; Park, M.; Kim, S. R. Scalable ultrarobust thermoconductive nonflammable bioinspired papers of graphene nanoplatelet crosslinked aramid nanofibers for thermal management and electromagnetic shielding. J. Mater. Chem. A 2021, 9, 8527–8540.

18

Wang, Y. T.; Peng, H. K.; Li, T. T.; Shiu, B. C.; Zhang, X. F.; Lou, C. W.; Lin, J. H. Lightweight, flexible and superhydrophobic conductive composite films based on layer-by-layer self-assembly for high-performance electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2021, 141, 106199.

19

Gu, J. H.; Hu, S. W.; Ji, H. J.; Feng, H. H.; Zhao, W. W.; Wei, J.; Li, M. Y. Multi-layer silver nanowire/polyethylene terephthalate mesh structure for highly efficient transparent electromagnetic interference shielding. Nanotechnology 2020, 31, 185303.

20

Du, Y. Q.; Xu, J.; Fang, J. Y.; Zhang, Y. T.; Liu, X. Y.; Zuo, P. Y.; Zhuang, Q. X. Ultralight, highly compressible, thermally stable MXene/aramid nanofiber anisotropic aerogels for electromagnetic interference shielding. J. Mater. Chem. A 2022, 10, 6690–6700.

21

Xie, Z. X.; Cai, Y. F.; Zhan, Y. H.; Meng, Y. Y.; Li, Y. C.; Xie, Q.; Xia, H. S. Thermal insulating rubber foams embedded with segregated carbon nanotube networks for electromagnetic shielding applications. Chem. Eng. J. 2022, 435, 135118.

22

Wang, J.; Li, Q.; Li, K. C.; Sun, X.; Wang, Y. Z.; Zhuang, T. T.; Yan, J. J.; Wang, H. Ultra-high electrical conductivity in filler-free polymeric hydrogels toward thermoelectrics and electromagnetic interference shielding. Adv. Mater. 2022, 34, 2109904.

23

Ma, T. B.; Ma, H.; Ruan, K. P.; Shi, X. T.; Qiu, H.; Gao, S. Y.; Gu, J. W. Thermally conductive poly(lactic acid) composites with superior electromagnetic shielding performances via 3D printing technology. Chin. J. Polym. Sci. 2022, 40, 248–255.

24
Zeng, Z. H.; Qiao, J.; Zhang, R. N.; Liu, J. R.; Nyström, G. Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, in press, https://doi.org/10.1002/smm2.1118.
DOI
25

Xu, L. Z.; Zhao, X. L.; Xu, C. L.; Kotov, N. A. Water-rich biomimetic composites with abiotic self-organizing nanofiber network. Adv. Mater. 2018, 30, 1703343.

26

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Ding, X. Y. Timesaving, High-efficiency approaches to fabricate aramid nanofibers. ACS Nano 2019, 13, 7886–7897.

27

Yang, B.; Wang, L.; Zhang, M. Y.; Luo, J. J.; Lu, Z. Q.; Ding, X. Y. Fabrication, applications, and prospects of aramid nanofiber. Adv. Funct. Mater. 2020, 30, 2000186.

28

Hu, P. Y.; Lyu, J.; Fu, C.; Gong, W. B.; Liao, J. H.; Lu, W. B.; Chen, Y. P.; Zhang, X. T. Multifunctional aramid nanofiber/carbon nanotube hybrid aerogel films. ACS Nano 2020, 14, 688–697.

29

Wu, K.; Wang, J. M.; Liu, D. Y.; Lei, C. X.; Liu, D.; Lei, W. W.; Fu, Q. Highly thermoconductive, thermostable, and super-flexible film by engineering 1D rigid rod-like aramid nanofiber/2D boron nitride nanosheets. Adv. Mater. 2020, 32, 1906939.

30

Weng, C. X.; Xing, T. L.; Jin, H.; Wang, G. R.; Dai, Z. H.; Pei, Y. M.; Liu, L. Q.; Zhang, Z. Mechanically robust ANF/MXene composite films with tunable electromagnetic interference shielding performance. Compos. Part A:Appl. Sci. Manuf. 2020, 135, 105927.

31

Hosseini, E.; Arjmand, M.; Sundararaj, U.; Karan, K. Filler-free conducting polymers as a new class of transparent electromagnetic interference shields. ACS Appl. Mater. Interfaces 2020, 12, 28596–28606.

32

Huang, F. W.; Yang, Q. C.; Jia, L. C.; Yan, D. X.; Li, Z. M. Aramid nanofiber assisted preparation of self-standing liquid metal-based films for ultrahigh electromagnetic interference shielding. Chem. Eng. J. 2021, 426, 131288.

33

Zhou, B.; Han, G. J.; Zhang, Z.; Li, Z. Y.; Feng, Y. Z.; Ma, J. M.; Liu, C. T.; Shen, C. Y. Aramid nanofiber-derived carbon aerogel film with skin-core structure for high electromagnetic interference shielding and solar-thermal conversion. Carbon 2021, 184, 562–570.

34

Liu, R.; He, X.; Miao, M.; Cao, S. M.; Feng, X. In-situ growth of porous Cu3(BTC)2 on cellulose nanofibrils for ultra-low dielectric films with high flexibility. J. Mater. Sci. Technol. 2022, 112, 202–211.

35

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. E. Flexible Ti3C2Tx/(aramid nanofiber/PVA) composite films for superior electromagnetic interference shielding. Research 2022, 2022, 9780290.

36

Han, Y. X.; Ruan, K. P.; Gu, J. W. Janus (BNNS/ANF)-(AgNWs/ANF) thermal conductivity composite films with superior electromagnetic interference shielding and Joule heating performances. Nano Res. 2022, 15, 4747–4755.

37

Zhao, H.; Hou, L.; Lu, Y. X. Electromagnetic shielding effectiveness and serviceability of the multilayer structured cuprammonium fabric/polypyrrole/copper (CF/PPy/Cu) composite. Chem. Eng. J. 2016, 297, 170–179.

38

Yin, J.; Zhang, J. X.; Zhang, S. D.; Liu, C.; Yu, X. L.; Chen, L. Q.; Song, Y. P.; Han, S.; Xi, M.; Zhang, C. L. et al. Flexible 3D porous graphene film decorated with nickel nanoparticles for absorption-dominated electromagnetic interference shielding. Chem. Eng. J. 2021, 421, 129763.

39

Ma, Z. L.; Xiang, X. L.; Shao, L.; Zhang, Y. L.; Gu, J. W. Multifunctional wearable silver nanowire decorated leather nanocomposites for joule heating, electromagnetic interference shielding and piezoresistive sensing. Angew. Chem., Int. Ed. 2022, 61, e202200705.

40

Lei, C. X.; Zhang, Y. Z.; Liu, D. Y.; Wu, K.; Fu, Q. Metal-level robust, folding endurance, and highly temperature-stable MXene-based film with engineered aramid nanofiber for extreme-condition electromagnetic interference shielding applications. ACS Appl. Mater. Interfaces 2020, 12, 26485–26495.

41

Zhou, B.; Li, Y. L.; Li, Z. Y.; Ma, J. M.; Zhou, K. Q.; Liu, C. T.; Shen, C. Y.; Feng, Y. Z. Fire/heat-resistant, anti-corrosion and folding Ti2C3Tx MXene/single-walled carbon nanotube films for extreme-environmental EMI shielding and solar-thermal conversion applications. J. Mater. Chem. C 2021, 9, 10425–10434.

42

Qian, K. P.; Li, S.; Fang, J. H.; Yang, Y. H.; Cao, S. M.; Miao, M.; Feng, X. C60 intercalating Ti3C2Tx MXenes assisted by γ-cyclodextrin for electromagnetic interference shielding films with high stability. J. Mater. Sci. Technol. 2022, 127, 71–77.

43

Qian, K. P.; Wu, H. M.; Fang, J. H.; Yang, Y. H.; Miao, M.; Cao, S. M.; Shi, L. Y.; Feng, X. Yarn-ball-shaped CNF/MWCNT microspheres intercalating Ti3C2Tx MXene for electromagnetic interference shielding films. Carbohydr. Polym. 2021, 254, 117325.

44

Zeng, Z. H.; Wu, N.; Wei, J. J.; Yang, Y. F.; Wu, T. T.; Li, B.; Hauser, S. B.; Yang, W. D.; Liu, J. R.; Zhao, S. Y. Porous and ultra-flexible crosslinked MXene/polyimide composites for multifunctional electromagnetic interference shielding. Nano-Micro Lett. 2022, 14, 59.

45
Wei, J. J.; Zhu, C. L.; Zeng, Z. H.; Pan, F.; Wan, F. Q.; Lei, L. W.; Nyström, G.; Fu, Z. Y. Bioinspired cellulose-integrated MXene-based hydrogels for multifunctional sensing and electromagnetic interference shielding. Interdiscip. Mater., in press, https://doi.org/10.1002/idm2.12026.
DOI
46

Zhang, Y. L.; Ma, Z. L.; Ruan, K. P.; Gu, J. W. Multifunctional Ti3C2Tx-(Fe3O4/polyimide) composite films with Janus structure for outstanding electromagnetic interference shielding and superior visual thermal management. Nano Res. 2022, 15, 5601–5609.

47

Liang, C. B.; Gu, Z. J.; Zhang, Y. L.; Ma, Z. L.; Qiu, H.; Gu, J. W. Structural design strategies of polymer matrix composites for electromagnetic interference shielding: A review. Nano-Micro Lett. 2021, 13, 181.

48

Liu, R. T.; Miao, M.; Li, Y. H.; Zhang, J. F.; Cao, S. M.; Feng, X. Ultrathin biomimetic polymeric Ti3C2Tx MXene composite films for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 2018, 10, 44787–44795.

49

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

50

Zou, L. H.; Lan, C. T.; Zhang, S. L.; Zheng, X. H.; Xu, Z. Z.; Li, C. L.; Yang, L.; Ruan, F. T.; Tan, S. C. Near-instantaneously self-healing coating toward stable and durable electromagnetic interference shielding. Nano-Micro Lett. 2021, 13, 190.

51

Xu, G. P.; Wang, B.; Song, S. S.; Ren, Z. C.; Li, J. J.; Xu, X. Q.; Zhou, W.; Li, H. B.; Yang, H.; Zhang, L. P. et al. High-performance and robust dual-function electrochromic device for dynamic thermal regulation and electromagnetic interference shielding. Chem. Eng. J. 2021, 422, 130064.

52

Ruan, K. P.; Guo, Y. Q.; Gu, J. W. Liquid crystalline polyimide films with high intrinsic thermal conductivities and robust toughness. Macromolecules 2021, 54, 4934–4944.

53

Yang, X. T.; Guo, Y. Q.; Luo, X.; Zheng, N.; Ma, T. B.; Tan, J. J.; Li, C. M.; Zhang, Q. Y.; Gu, J. W. Self-healing, recoverable epoxy elastomers and their composites with desirable thermal conductivities by incorporating BN fillers via in-situ polymerization. Compos. Sci. Technol. 2018, 164, 59–64.

54

Li, S.; Qian, K. P.; Thaiboonrod, S.; Wu, H. M.; Cao, S. M.; Miao, M.; Shi, L. Y.; Feng, X. Flexible multilayered aramid nanofiber/silver nanowire films with outstanding thermal durability for electromagnetic interference shielding. Compos. Part A:Appl. Sci. Manuf. 2021, 151, 106643.

55

Huang, Z. H.; Hu, S. C.; Zhang, N.; Chen, X. L.; Chen, D.; Jin, Q.; Jian, X. Effect of volume ratio of acetonitrile to water on the morphology and property of polypyrrole prepared by chemical oxidation method. Polym. Eng. Sci. 2012, 52, 1600–1605.

56

Seid, L.; Lakhdari, D.; Berkani, M.; Belgherbi, O.; Chouder, D.; Vasseghian, Y.; Lakhdari, N. High-efficiency electrochemical degradation of phenol in aqueous solutions using Ni-PPy and Cu-PPy composite materials. J. Hazard. Mater. 2022, 423, 126986.

57

Boutry, C. M.; Gerber-Hörler, I.; Hierold, C. Electrically conducting biodegradable polymer composites (polylactide-polypyrrole and polycaprolactone-polypyrrole) for passive resonant circuits. Polym. Eng. Sci. 2013, 53, 1196–1208.

58

Gan, W. T.; Chen, C. J.; Giroux, M.; Zhong, G.; Goyal, M. M.; Wang, Y. L.; Ping, W. W.; Song, J. W.; Xu, S. M.; He, S. M. et al. Conductive wood for high-performance structural electromagnetic interference shielding. Chem. Mater. 2020, 32, 5280–5289.

59

Wang, L.; Zhang, M. Y.; Yang, B.; Tan, J. J.; Ding, X. Y. Highly compressible, thermally stable, light-weight, and robust aramid nanofibers/Ti3AlC2 MXene composite aerogel for sensitive pressure sensor. ACS Nano 2020, 14, 10633–10647.

60

Wang, F.; Li, Q. C.; Park, J. O.; Zheng, S. H.; Choi, E. Ultralow voltage high-performance bioartificial muscles based on ionically crosslinked polypyrrole-coated functional carboxylated bacterial cellulose for soft robots. Adv. Funct. Mater. 2021, 31, 2007749.

61

Guan, Y.; Li, W.; Zhang, Y. L.; Shi, Z. Q.; Tan, J.; Wang, F.; Wang, Y. H. Aramid nanofibers and poly (vinyl alcohol) nanocomposites for ideal combination of strength and toughness via hydrogen bonding interactions. Compos. Sci. Technol. 2017, 144, 193–201.

62

Ait El Fakir, A.; Anfar, Z.; Amedlous, A.; Zbair, M.; Hafidi, Z.; El Achouri, M.; Jada, A.; El Alem, N. Engineering of new hydrogel beads based conducting polymers: Metal-free catalysis for highly organic pollutants degradation. Appl. Catal. B:Environ. 2021, 286, 119948.

63

Lizundia, E.; Nguyen, T. D.; Vilas, J. L.; Hamad, W. Y.; MacLachlan, M. J. Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J. Mater. Chem. A 2017, 5, 19184–19194.

64

Peng, X. X.; Li, J. W.; Yi, L. C.; Liu, X.; Chen, J. X.; Cai, P. W.; Wen, Z. H. Ultrathin ZnIn2S4 nanosheets decorating PPy nanotubes toward simultaneous photocatalytic H2 production and 1, 4-benzenedimethanol valorization. Appl. Catal. B Environ. 2022, 300, 120737.

65

Li, Y. F.; Yu, H. S.; Zhang, Y.; Zhou, N.; Tan, Z. C. Kinetics and characterization of preparing conductive nanofibrous membrane by in-situ polymerization of polypyrrole on electrospun nanofibers. Chem. Eng. J. 2022, 433, 133531.

66

Zhang, L. K.; Chen, Y.; Liu, Q.; Deng, W. T.; Yue, Y. Q.; Meng, F. B. Ultrathin flexible electrospun carbon nanofibers reinforced graphene microgasbags films with three-dimensional conductive network toward synergetic enhanced electromagnetic interference shielding. J. Mater. Sci. Technol. 2022, 111, 57–65.

67

Chen, Y.; Li, J. Z.; Li, T.; Zhang, L. K.; Meng, F. B. Recent advances in graphene-based films for electromagnetic interference shielding: Review and future prospects. Carbon 2021, 180, 163–184.

68

Parit, M.; Du, H. S.; Zhang, X. Y.; Prather, C.; Adams, M.; Jiang, Z. H. Polypyrrole and cellulose nanofiber based composite films with improved physical and electrical properties for electromagnetic shielding applications. Carbohydr. Polym. 2020, 240, 116304.

69

Du, H. S.; Parit, M.; Liu, K.; Zhang, M. M.; Jiang, Z. H.; Huang, T. S.; Zhang, X. Y.; Si, C. L. Multifunctional cellulose nanopaper with superior water-resistant, conductive, and antibacterial properties functionalized with chitosan and polypyrrole. ACS Appl. Mater. Interfaces 2021, 13, 32115–32125.

70

Moudood, A.; Rahman, A.; Huq, N. M. L.; Öchsner, A.; Islam, M. M.; Francucci, G. Mechanical properties of flax fiber-reinforced composites at different relative humidities: Experimental, geometric, and displacement potential function approaches. Polym. Compos. 2020, 41, 4963–4973.

71

Du, L. L.; Gao, P.; Meng, Y. D.; Liu, Y. L.; Le, S. W.; Yu, C. B. Highly efficient removal of Cr(VI) from aqueous solutions by polypyrrole/monodisperse latex spheres. ACS Omega 2020, 5, 6651–6660.

72

Chen, J. H.; Xu, J. K.; Wang, K.; Qian, X. R.; Sun, R. C. Highly thermostable, flexible, and conductive films prepared from cellulose, graphite, and polypyrrole nanoparticles. ACS Appl. Mater. Interfaces 2015, 7, 15641–15648.

73

Wang, S. J.; Meng, W. Y.; Lv, H. F.; Wang, Z. X.; Pu, J. W. Thermal insulating, light-weight and conductive cellulose/aramid nanofibers composite aerogel for pressure sensing. Carbohydr. Polym. 2021, 270, 118414.

74

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

75

Pethsangave, D. A.; Khose, R. V.; Wadekar, P. H.; Some, S. Novel approach toward the synthesis of a phosphorus-functionalized polymer-based graphene composite as an efficient flame retardant. ACS Sustainable Chem. Eng. 2019, 7, 11745–11753.

Video
12274_2022_4628_MOESM3_ESM.mp4
12274_2022_4628_MOESM4_ESM.mp4
12274_2022_4628_MOESM5_ESM.mp4
12274_2022_4628_MOESM6_ESM.mp4
12274_2022_4628_MOESM2_ESM.mp4
File
12274_2022_4628_MOESM1_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2022
Revised: 30 May 2022
Accepted: 01 June 2022
Published: 01 July 2022
Issue date: September 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

This work was financially sponsored by the Science and Technology Commission of Shanghai Municipality (Nos. 20230742300 and 18595800700) and the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation. We are grateful to Instrumental Analysis & Research Center of Shanghai University.

Return