AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance

Junxiong Xiao1Xiaosi Qi1,2( )Xiu Gong1Qiong Peng1Yanli Chen1Ren Xie1Wei Zhong2( )
College of Physics, Guizhou Province Key Laboratory for Photoelectrics Technology and Application, Guizhou University, Guiyang 550025, China
National Laboratory of Solid State Microstructures and Jiangsu Provincial Laboratory for NanoTechnology, Nanjing University, Nanjing 210093, China
Show Author Information

Graphical Abstract

Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites effectively improves the microwave absorption performance.

Abstract

Defect and interface engineering are efficient approaches to adjust the physical and chemical properties of nanomaterials. In order to effectively utilize these strategies for the improvement of microwave absorption properties (MAPs), in this study, we reported the synthesis of hollow carbon shells and hollow carbon@MoS2 nanocomposites by the template-etching and template-etching-hydrothermal methods, respectively. The obtained results indicated that the degree of defect for hollow carbon shells and hollow carbon@MoS2 could be modulated by the thickness of hollow carbon shell, which effectively fulfilled the optimization of electromagnetic parameters and improvement of MAPs. Furthermore, the microstructure investigations revealed that the precursor of hollow carbon shells was encapsulated by the sheet-like MoS2 in high efficiency. And the introduction of MoS2 nanosheets acting as the shell effectively improved the interfacial effects and boosted the polarization loss capabilities, which resulted in the improvement of comprehensive MAPs. The elaborately designed hollow carbon@MoS2 samples displayed very outstanding MAPs including strong absorption capabilities, broad absorption bandwidth, and thin matching thicknesses. Therefore, this work provided a viable strategy to improve the MAPs of microwave absorbers by taking full advantage of their defect and interface engineering.

Electronic Supplementary Material

Download File(s)
12274_2022_4625_MOESM1_ESM.pdf (515.6 KB)

References

1

Lv, H. L.; Yang, Z. H.; Pan, H. G.; Wu, R. B. Electromagnetic absorption materials: Current progress and new frontiers. Prog. Mater. Sci. 2022, 127, 100946.

2

Wang, L.; Ma, Z. L.; Zhang, Y. L.; Chen, L. X.; Cao, D. P.; Gu, J. W. Polymer-based EMI shielding composites with 3D conductive networks: A mini-review. SusMat 2021, 1, 413–431.

3

Watts, C. M.; Liu, X. L.; Padilla, W. J. Metamaterial electromagnetic wave absorbers. Adv. Mater. 2012, 24, OP98–OP120.

4

Liang, J.; Ye, F.; Cao, Y. C.; Mo, R.; Cheng, L. F.; Song, Q. Defect-engineered graphene/Si3N4 multilayer alternating core–shell nanowire membrane: A plainified hybrid for broadband electromagnetic wave absorption. Adv. Funct. Mater. 2022, 32, 2200141.

5

Zhao, J.; Wei, Y.; Zhang, Y.; Zhang, Q. G. 3D flower-like hollow CuS@PANI microspheres with superb X-band electromagnetic wave absorption. J. Mater. Sci. Technol. 2022, 126, 141–151.

6

Hu, F. Y.; Wang, X. H.; Bao, S.; Song, L. M.; Zhang, S.; Niu, H. H.; Fan, B. B.; Zhang, R.; Li, H. X. Tailoring electromagnetic responses of delaminated Mo2TiC2Tx MXene through the decoration of Ni particles of different morphologies. Chem. Eng. J. 2022, 440, 135855.

7

Fang, Y.; Wang, W. J.; Wang, S.; Hou, X. W.; Xue, W. D.; Zhao, R. A quantitative permittivity model for designing electromagnetic wave absorption materials with conduction loss: A case study with microwave-reduced graphene oxide. Chem. Eng. J. 2022, 439, 135672.

8

Zhang, J. J.; Li, Z. H.; Qi, X. S.; Gong, X.; Xie, R.; Deng, C. Y.; Zhong, W.; Du, Y. W. Constructing flower-like core@shell MoSe2-based nanocomposites as a novel and high-efficient microwave absorber. Compos. Part B Eng. 2021, 222, 109067.

9

Huang, M. Q.; Wang, L.; Liu, Q.; You, W. B.; Che, R. C. Interface compatibility engineering of multi-shell Fe@C@TiO2@MoS2 heterojunction expanded microwave absorption bandwidth. Chem. Eng. J. 2022, 429, 132191.

10

Liang, L. Y.; Li, Q. M.; Yan, X.; Feng, Y. Z.; Wang, Y. M.; Zhang, H. B.; Zhou, X. P.; Liu, C. T.; Shen, C. Y.; Xie, X. L. Multifunctional magnetic Ti3C2Tx MXene/graphene aerogel with superior electromagnetic wave absorption performance. ACS Nano 2021, 15, 6622–6632.

11

Liu, J. L.; Zhang, L. M.; Zang, D. Y.; Wu, H. J. A competitive reaction strategy toward binary metal sulfides for tailoring electromagnetic wave absorption. Adv. Funct. Mater. 2021, 31, 2105018.

12

Liu, J.; Tao, J. Q.; Gao, L. L.; He, X. X.; Wei, B.; Gu, Y. S.; Yao, Z. J.; Zhou, J. T. Morphology-size synergy strategy of SiC@C nanoparticles towards lightweight and efficient microwave absorption. Chem. Eng. J. 2022, 433, 134484.

13

Chai, L.; Wang, Y. Q.; Jia, Z. R.; Liu, Z. X.; Zhou, S. Y.; He, Q. C.; Du, H. Y.; Wu, G. L. Tunable defects and interfaces of hierarchical dandelion-like NiCo2O4 via ostwald ripening process for high-efficiency electromagnetic wave absorption. Chem. Eng. J. 2022, 429, 132547.

14

Chen, X. T.; Wu, Y.; Gu, W. H.; Zhou, M.; Tang, S. L.; Cao, J. M.; Zou, Z. Q.; Ji, G. B. Research progress on nanostructure design and composition regulation of carbon spheres for the microwave absorption. Carbon 2022, 189, 617–633.

15

Zhang, N.; Chen, P. Z.; Wang, Y.; Zong, M.; Chen, W. X. Supramolecular self-assembly derived Mo2C/FeCo/NC hierarchical nanostructures with excellent wideband microwave absorption properties. Compos. Sci. Technol. 2022, 221, 109325.

16

Fan, B. X.; Xing, L.; He, Q. M.; Zhou, F. J.; Yang, X. F.; Wu, T.; Tong, G. X.; Wang, D. M.; Wu, W. H. Selective synthesis and defects steering superior microwave absorption capabilities of hollow graphitic carbon nitride micro-polyhedrons. Chem. Eng. J. 2022, 435, 135086.

17

Hu, Z. H.; Wu, Z. T.; Han, C.; He, J.; Ni, Z. H.; Chen, W. Two-dimensional transition metal dichalcogenides: Interface and defect engineering. Chem. Soc. Rev. 2018, 47, 3100–3128.

18

Zhang, Y. G.; Zhang, Y. H.; Zhang, H. F.; Bai, L. Q.; Hao, L.; Ma, T. Y.; Huang, H. W. Defect engineering in metal sulfides for energy conversion and storage. Coord. Chem. Rev. 2021, 448, 214147.

19
MoS2 wrapped mof-derived N-doped carbon nanocomposite with wideband  electromagnetic  wave  absorption Nano Res. 2022 15 5781 5789 10.1007/s12274-022-4411-6

Luo, J. H.; Feng, M. N.; Dai, Z. Y.; Jiang, C. Y.; Yao, W.; Zhai, N. X. MoS2 wrapped mof-derived N-doped carbon nanocomposite with wideband electromagnetic wave absorption. Nano Res. 2022, 15, 5781–5789.

20
Katsuyama, Y.; Haba, N.; Kobayashi, H.; Iwase, K.; Kudo, A.; Honma, I.; Kaner, R. B. Macro- and nano-porous 3D-hierarchical carbon lattices for extraordinarily high capacitance supercapacitors. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202201544.
21

Huang, L. X.; Duan, Y. P.; Dai, X. H.; Zeng, Y. S.; Ma, G. J.; Liu, Y.; Gao, S. H.; Zhang, W. P. Bioinspired metamaterials: Multibands electromagnetic wave adaptability and hydrophobic characteristics. Small 2019, 15, 1902730.

22

Zhao, H. Q.; Cheng, Y.; Zhang, Z.; Zhang, B. S.; Pei, C. C.; Fan, F. Y.; Ji, G. B. Biomass-derived graphene-like porous carbon nanosheets towards ultralight microwave absorption and excellent thermal infrared properties. Carbon 2021, 173, 501–511.

23

Xiang, Z.; Shi, Y. Y.; Zhu, X. J.; Cai, L.; Lu, W. Flexible and waterproof 2D/1D/0D construction of MXene-based nanocomposites for electromagnetic wave absorption, emi shielding, and photothermal conversion. Nano-Micro Lett. 2021, 13, 150.

24

Huang, Z. Y.; Chen, H. H.; Huang, Y.; Ge, Z.; Zhou, Y.; Yang, Y.; Xiao, P. S.; Liang, J. J.; Zhang, T. F.; Shi, Q. et al. Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam. Adv. Funct. Mater. 2018, 28, 1704363.

25

Zhang, X. C.; Liu, M. J.; Xu, J.; Ouyang, Q. Y.; Zhu, C. L.; Zhang, X. L.; Zhang, X. T.; Chen, Y. J. Flexible and waterproof nitrogen-doped carbon nanotube arrays on cotton-derived carbon fiber for electromagnetic wave absorption and electric-thermal conversion. Chem. Eng. J. 2022, 433, 133794.

26

Pan, F.; Liu, Z. C.; Deng, B. W.; Dong, Y. Y.; Zhu, X. J.; Huang, C.; Lu, W. Lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites with wideband and tunable electromagnetic absorption performance. Nano-Micro Lett. 2021, 13, 43.

27

Li, B.; Xu, J.; Xu, H. Y.; Yan, F.; Zhang, X.; Zhu, C. L.; Zhang, X. T.; Chen, Y. J. Grafting thin N-doped carbon nanotubes on hollow N-doped carbon nanoplates encapsulated with ultrasmall cobalt particles for microwave absorption. Chem. Eng. J. 2022, 435, 134846.

28

Cheng, J.; Cai, L.; Shi, Y. Y.; Pan, F.; Dong, Y. Y.; Zhu, X. J.; Jiang, H. J.; Zhang, X.; Xiang, Z.; Lu, W. Polarization loss-enhanced honeycomb-like MoS2 nanoflowers/undaria pinnatifida-derived porous carbon composites with high-efficient electromagnetic wave absorption. Chem. Eng. J. 2022, 431, 134284.

29

Geng, H. R.; Zhang, X.; Xie, W. H.; Zhao, P. F.; Wang, G. Z.; Liao, J. H.; Dong, L. J. Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J. Colloid Interface Sci. 2022, 609, 33–42.

30

Bi, Y. X.; Ma, M. L.; Liu, Y. Y.; Tong, Z. Y.; Wang, R. Z.; Chung, K. L.; Ma, A. J.; Wu, G. L.; Ma, Y.; He, C. et al. Microwave absorption enhancement of 2-dimensional CoZn/C@MoS2@PPY composites derived from metal-organic framework. J. Colloid Interface Sci. 2021, 600, 209–218.

31

Lyu, L. F.; Wang, F. L.; Li, B.; Zhang, X.; Qiao, J.; Yang, Y. F.; Liu, J. R. Constructing 1T/2H MoS2 nanosheets/3D carbon foam for high-performance electromagnetic wave absorption. J. Colloid Interface Sci. 2021, 586, 613–620.

32

Liu, P. B.; Gao, S.; Zhang, G. Z.; Huang, Y.; You, W. B.; Che, R. C. Hollow engineering to Co@N-doped carbon nanocages via synergistic protecting-etching strategy for ultrahigh microwave absorption. Adv. Funct. Mater. 2021, 31, 2102812.

33
Magnetic–dielectric synergy and interfacial engineering to designyolk–shell structured CoNi@Void@C and CoNi@Void@C@MoS2nanocomposites  with  tunable  and  strong  wideband  microwaveabsorption Nano Res. 2022 15 6761 6771 10.1007/s12274-022-4468-2

Li, C.; Qi, X. S.; Gong, X.; Peng, Q.; Chen, Y. L.; Xie, R.; Zhong, W. Magnetic–dielectric synergy and interfacial engineering to design yolk–shell structured CoNi@Void@C and CoNi@Void@C@MoS2 nanocomposites with tunable and strong wideband microwave absorption. Nano Res. 2022, 15, 6761–6771.

34

Li, C.; Li, Z. H.; Qi, X. S.; Gong, X.; Chen, Y. L.; Peng, Q.; Deng, C. Y.; Jing, T.; Zhong, W. A generalizable strategy for constructing ultralight three-dimensional hierarchical network heterostructure as high-efficient microwave absorber. J. Colloid Interface Sci. 2022, 605, 13–22.

35

Huang, S.; Wang, L.; Li, Y. C.; Liang, C. B.; Zhang, J. L. Novel Ti3C2Tx MXene/epoxy intumescent fire-retardant coatings for ancient wooden architectures. J. Appl. Polym. Sci. 2021, 138, 50649.

36

Li, J. J.; Abbas, S. U.; Wang, H. Q.; Zhang, Z. C.; Hu, W. P. Recent advances in interface engineering for electrocatalytic CO2 reduction reaction. Nano-Micro Lett. 2021, 13, 216.

37

Mei, S. C.; Rui, X. H.; Li, L.; Huang, G. X.; Pan, X. Q.; Ke, M. K.; Wang, Z. H.; Yu, H. Q.; Yu, Y. Quantitative coassembly for precise synthesis of mesoporous nanospheres with pore structure-dependent catalytic performance. Adv. Mater. 2021, 33, 2103130.

38

Gu, J. W.; Zhang, Q. Y.; Li, H. C.; Tang, Y. S.; Kong, J.; Dang, J. Study on preparation of SiO2/epoxy resin hybrid materials by means of sol–gel. Polym. Plast. Technol. Eng. 2007, 46, 1129–1134.

39

Lu, S. R.; Xia, L.; Xu, J. M.; Ding, C. H.; Li, T. T.; Yang, H.; Zhong, B.; Zhang, T.; Huang, L. N.; Xiong, L. et al. Permittivity-regulating strategy enabling superior electromagnetic wave absorption of lithium aluminum silicate/rGo nanocomposites. ACS Appl. Mater. Interfaces 2019, 11, 18626–18636.

40

Chen, X. Y.; Fang, Y. L.; Lu, H. Y.; Li, H.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Microstructure-dependent charge/discharge behaviors of hollow carbon spheres and its implication for sodium storage mechanism on hard carbon anodes. Small 2021, 17, 2102248.

41

Qiu, S.; Xiao, L. F.; Sushko, M. L.; Han, K. S.; Shao, Y. Y.; Yan, M. Y.; Liang, X. M.; Mai, L. Q.; Feng, J. W.; Cao, Y. L. et al. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage. Adv. Energy Mater. 2017, 7, 1700403.

42

Guo, R. Q.; Lv, C. X.; Xu, W. J.; Sun, J. W.; Zhu, Y. K.; Yang, X. F.; Li, J. Z.; Sun, J.; Zhang, L. X.; Yang, D. J. Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv. Energy Mater. 2020, 10, 1903652.

43

Yao, X. H.; Ke, Y. J.; Ren, W. H.; Wang, X. P.; Xiong, F. Y.; Yang, W.; Qin, M. S.; Li, Q.; Mai, L. Q. Defect-rich soft carbon porous nanosheets for fast and high-capacity sodium-ion storage. Adv. Energy Mater. 2019, 9, 1900094.

44

Zhu, J. W.; Mu, S. C. Defect engineering in carbon-based electrocatalysts: Insight into intrinsic carbon defects. Adv. Funct. Mater. 2020, 30, 2001097.

45

Cheng, J.; Zhang, H. B.; Ning, M. Q.; Raza, H.; Zhang, D. Q.; Zheng, G. P.; Zheng, Q. B.; Che, R. C. Emerging materials and designs for low- and multi-band electromagnetic wave absorbers: The search for dielectric and magnetic synergy? Adv. Funct. Mater. 2022, 32, 2200123.

46

Tong, Z. Y.; Liao, Z. J.; Liu, Y. Y.; Ma, M. L.; Bi, Y. X.; Huang, W. B.; Ma, Y.; Qiao, M. T.; Wu, G. L. Hierarchical Fe3O4/Fe@C@MoS2 core–shell nanofibers for efficient microwave absorption. Carbon 2021, 179, 646–654.

47

Yuan, Z. Y.; Wang, L. L.; Li, D. D.; Cao, J. M.; Han, W. Carbon-reinforced Nb2CTx MXene/MoS2 nanosheets as a superior rate and high-capacity anode for sodium-ion batteries. ACS Nano 2021, 15, 7439–7450.

48

Wang, J. Q.; Liu, L.; Jiao, S. L.; Ma, K. J.; Lv, J.; Yang, J. J. Hierarchical carbon fiber@MXene@MoS2 core–sheath synergistic microstructure for tunable and efficient microwave absorption. Adv. Funct. Mater. 2020, 30, 2002595.

49

Qin, M.; Zhang, L. M.; Wu, H. J. Dielectric loss mechanism in electromagnetic wave absorbing materials. Adv. Sci. 2022, 9, 2105553.

50

Ning, M. Q.; Jiang, P. H.; Ding, W.; Zhu, X. B.; Tan, G. G.; Man, Q. K.; Li, J. B.; Li, R. W. Phase manipulating toward molybdenum disulfide for optimizing electromagnetic wave absorbing in gigahertz. Adv. Funct. Mater. 2021, 31, 2011229.

51

Liu, Z. H.; Cui, Y. H.; Li, Q.; Zhang, Q. Y.; Zhang, B. L. Fabrication of folded MXene/MoS2 composite microspheres with optimal composition and their microwave absorbing properties. J. Colloid Interface Sci. 2022, 607, 633–644.

52

Liu, Z. C.; Pan, F.; Deng, B. W.; Xiang, Z.; Lu, W. Self-assembled MoS2/3D worm-like expanded graphite hybrids for high-efficiency microwave absorption. Carbon 2021, 174, 59–69.

53

Yang, Z. Q.; Guo, H. Q.; You, W. B.; Wu, Z. C.; Yang, L. T.; Wang, M.; Che, R. C. Compressible and flexible PPY@MoS2/C microwave absorption foam with strong dielectric polarization from 2D semiconductor intermediate sandwich structure. Nanoscale 2021, 13, 5115–5124.

54

Ye, S.; Xie, A. M.; Wu, F.; Cai, Z. W.; Liu, X.; Tao, T.; Chang, G.; He, Y. B. Carbon encapsulation of MoS2 nanosheets to tune their interfacial polarization and dielectric properties for electromagnetic absorption applications. J. Mater. Chem. C 2021, 9, 537–546.

55

Di, J. R.; Duan, Y. P.; Pang, H. F.; Ma, X. R.; Liu, J. Sintering-regulated two-dimensional plate@shell basalt@NiO heterostructure for enhanced microwave absorption. Appl. Surf. Sci. 2022, 574, 151590.

Nano Research
Pages 7778-7787
Cite this article:
Xiao J, Qi X, Gong X, et al. Defect and interface engineering in core@shell structure hollow carbon@MoS2 nanocomposites for boosted microwave absorption performance. Nano Research, 2022, 15(9): 7778-7787. https://doi.org/10.1007/s12274-022-4625-7
Topics:
Part of a topical collection:

1129

Views

141

Crossref

135

Web of Science

138

Scopus

16

CSCD

Altmetrics

Received: 08 May 2022
Revised: 29 May 2022
Accepted: 30 May 2022
Published: 08 July 2022
© Tsinghua University Press 2022
Return