Journal Home > Volume 15 , Issue 12

Visible and even infrared (IR) light-initiated hot electrons of graphene (Gr) catalysts are a promising driven power for green, safe, and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst. However, the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions. Here, we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection. The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling. The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g−1·h−1 under visible light irradiation (λ ≥ 400 nm), which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst, and even achieves a H2O2 yield of 0.39 mM·g−1·h−1 on photoexcitation by near-infrared-region light (~ 800 nm).


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rapidly and mildly transferring anatase phase of graphene-activated TiO2 to rutile with elevated Schottky barrier: Facilitating interfacial hot electron injection for Vis–NIR driven photocatalysis

Show Author's information Weiyao Hu1Qiyuan Li1Dong Xu1Guangyao Zhai1Shinan Zhang1Dong Li2Xiaoxiao He2Jinping Jia1Jiesheng Chen1Xinhao Li1( )
School of Chemistry and Chemical Engineering, Environmental Science and Engineering, and Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai 200240, China
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China

Abstract

Visible and even infrared (IR) light-initiated hot electrons of graphene (Gr) catalysts are a promising driven power for green, safe, and sustainable H2O2 synthesis and organic synthesis without the limitation of bandgap-dominated narrow light absorption to visible light confronted by conventional photocatalyst. However, the life time of photogenerated hot electrons is too short to be efficiently used for various photocatalytic reactions. Here, we proposed a straightforward method to prolong the lifetime of photogenerated hot electrons from graphene by tuning the Schottky barrier at Gr/rutile interface to facilitate the hot electron injection. The rational design of Gr-coated TiO2 heterojunctions with interface synergy-induced decrease in the formation energy of the rutile phase makes the phase transfer of TiO2 support proceed smoothly and rapidly via ball milling. The optimized Gr/rutile dyad could provide a H2O2 yield of 1.05 mM·g−1·h−1 under visible light irradiation (λ ≥ 400 nm), which is 30 times of the state-of-the-art noble-metal-free titanium oxide-based photocatalyst, and even achieves a H2O2 yield of 0.39 mM·g−1·h−1 on photoexcitation by near-infrared-region light (~ 800 nm).

Keywords: hot electrons, phase transition, Schottky barrier, heterojunction catalyst, visible–near infrared ray (Vis–NIR) driven photocatalysis

References(39)

[1]

Cook, T. R.; Dogutan, D. K.; Reece, S. Y.; Surendranath, Y.; Teets, T. S.; Nocera, D. G. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 2010, 110, 6474–6502.

[2]

Schultz, D. M.; Yoon, T. P. Solar synthesis: Prospects in visible light photocatalysis. Science 2014, 343, 1239176.

[3]

Kormann, C.; Bahnemann, D. W.; Hoffmann, M. R. Photocatalytic production of hydrogen peroxides and organic peroxides in aqueous suspensions of titanium dioxide, zinc oxide, and desert sand. Environ. Sci. Technol. 1988, 22, 798–806.

[4]

Chen, L.; Wang, L.; Wan, Y. Y.; Zhang, Y.; Qi, Z. M.; Wu, X. J.; Xu, H. X. Acetylene and diacetylene functionalized covalent triazine frameworks as metal-free photocatalysts for hydrogen peroxide production: A new two-electron water oxidation pathway. Adv. Mater. 2020, 32, 1904433.

[5]

Campos-Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L. G. Hydrogen peroxide synthesis: An outlook beyond the anthraquinone process. Angew. Chem., Int. Ed. 2006, 45, 6962–6984.

[6]

Hou, H. L.; Zeng, X. K.; Zhang, X. W. Production of hydrogen peroxide by photocatalytic processes. Angew. Chem., Int. Ed. 2020, 59, 17356–17376.

[7]

Zhang, W.; He, H. L.; Li, H. Z.; Duan, L. L.; Zu, L. H.; Zhai, Y. P.; Li, W.; Wang, L. Z.; Fu, H. G.; Zhao, D. Y. Visible-light responsive TiO2-based materials for efficient solar energy utilization. Adv. Energy Mater. 2021, 11, 2003303.

[8]

Xiao, Y. T.; Guo, S. E.; Tian, G. H.; Jiang, B. J.; Ren, Z. Y.; Tian, C. G.; Li, W.; Fu, H. G. Synergetic enhancement of surface reactions and charge separation over holey C3N4/TiO2 2D heterojunctions. Sci. Bull. 2021, 66, 275–283.

[9]

Zhang, W.; He, H. L.; Tian, Y.; Li, H. Z.; Lan, K.; Zu, L. H.; Xia, Y.; Duan, L. L.; Li, W.; Zhao, D. Y. Defect-engineering of mesoporous TiO2 microspheres with phase junctions for efficient visible-light driven fuel production. Nano Energy 2019, 66, 104113.

[10]

Naldoni, A.; Riboni, F.; Guler, U.; Boltasseva, A.; Shalaev, V. M.; Kildishev, A. V. Solar-powered plasmon-enhanced heterogeneous catalysis. Nanophotonics 2016, 5, 112–133.

[11]

Massicotte, M.; Schmidt, P.; Vialla, F.; Watanabe, K.; Taniguchi, T.; Tielrooij, K. J.; Koppens, F. H. L. Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun. 2016, 7, 12174.

[12]

Wu, S. F.; Wang, L.; Lai, Y.; Shan, W. Y.; Aivazian, G.; Zhang, X.; Taniguchi, T.; Watanabe, K.; Xiao, D.; Dean, C. et al. Multiple hot-carrier collection in photo-excited graphene moiré superlattices. Sci. Adv. 2016, 2, e1600002.

[13]

Urcuyo, R.; Duong, D. L.; Sailer, P.; Burghard, M.; Kern, K. Hot carrier extraction from multilayer graphene. Nano Lett. 2016, 16, 6761–6766.

[14]

Li, T.; Luo, L.; Hupalo, M.; Zhang, J.; Tringides, M. C.; Schmalian, J.; Wang, J. Femtosecond population inversion and stimulated emission of dense Dirac fermions in graphene. Phys. Rev. Lett. 2012, 108, 167401.

[15]

Gierz, I.; Petersen, J. C.; Mitrano, M.; Cacho, C.; Turcu, I. C. E.; Springate, E.; Stöhr, A.; Köhler, A.; Starke, U.; Cavalleri, A. Snapshots of non-equilibrium Dirac carrier distributions in graphene. Nat. Mater. 2013, 12, 1119–1124.

[16]

Dawlaty, J. M.; Shivaraman, S.; Chandrashekhar, M.; Rana, F.; Spencer, M. G. Measurement of ultrafast carrier dynamics in epitaxial graphene. Appl. Phys. Lett. 2008, 92, 042116.

[17]

Zhang, W.; Tian, Y.; He, H. L.; Xu, L.; Li, W.; Zhao, D. Y. Recent advances in the synthesis of hierarchically mesoporous TiO2 materials for energy and environmental applications. Natl. Sci. Rev. 2020, 7, 1702–1725.

[18]

Hu, W.-Y.; Li, Q.-Y.; Zhai, G.-Y.; Lin, Y.-X.; Li, D.; He, X.-X.; Lin, X.; Xu, D.; Sun, L.-H.; Zhang, S.-N. et al. Facilitating hot electron injection from graphene to semiconductor by rectifying contact for vis-NIR-driven H2O2 production. Small 2022, 18, 2200885.

[19]

Naldoni, A.; Montini, T.; Malara, F.; Mróz, M. M.; Beltram, A.; Virgili, T.; Boldrini, C. L.; Marelli, M.; Romero-Ocaña, I.; Delgado, J. J. et al. Hot electron collection on brookite nanorods lateral facets for plasmon-enhanced water oxidation. ACS Catal. 2017, 7, 1270–1278.

[20]

Lee, Y. K.; Choi, H.; Lee, H.; Lee, C.; Choi, J. S.; Choi, C. G.; Hwang, E.; Park, J. Y. Hot carrier multiplication on graphene/TiO2 Schottky nanodiodes. Sci. Rep. 2016, 6, 27549.

[21]

Bourikas, K.; Kordulis, C.; Lycourghiotis, A. Titanium dioxide (anatase and rutile): Surface chemistry, liquid–solid interface chemistry, and scientific synthesis of supported catalysts. Chem. Rev. 2014, 114, 9754–9823.

[22]

Li, R. G.; Weng, Y. X.; Zhou, X.; Wang, X. L.; Mi, Y.; Chong, R. F.; Han, H. X.; Li, C. Achieving overall water splitting using titanium dioxide-based photocatalysts of different phases. Energy Environ. Sci. 2015, 8, 2377–2382.

[23]

Hu, W. Y.; Zhou, W.; Zhang, K. F.; Zhang, X. C.; Wang, L.; Jiang, B. J.; Tian, G. H.; Zhao, D. Y.; Fu, H. G. Facile strategy for controllable synthesis of stable mesoporous black TiO2 hollow spheres with efficient solar-driven photocatalytic hydrogen evolution. J. Mater. Chem. A 2016, 4, 7495–7502.

[24]

Wang, F. X.; Wang, C.; Zhao, Y. J.; Liu, Z. C.; Chang, Z.; Fu, L. J.; Zhu, Y. S.; Wu, Y. P.; Zhao, D. Y. A quasi-solid-state Li-ion capacitor based on porous TiO2 hollow microspheres wrapped with graphene nanosheets. Small 2016, 12, 6207–6213.

[25]
Gao, W.; Li, Y. F.; Zhao, J. T.; Zhang, Z.; Tang, W. W.; Wang, J.; Wu, Z. Y.; Li, Z. Y. Design and preparation of graphene/Fe2O3 nanocomposite as negative material for supercapacitor. Chem. Res. Chin. Univ., in press, https://doi.org/10.1007/s40242-022-1442-1.
DOI
[26]

Lin, X.; Zhang, S. N.; Xu, D.; Zhang, J. J.; Lin, Y. X.; Zhai, G. Y.; Su, H.; Xue, Z. H.; Liu, X.; Antonietti, M. et al. Electrochemical activation of C–H by electron-deficient W2C nanocrystals for simultaneous alkoxylation and hydrogen evolution. Nat. Commun. 2021, 12, 3882.

[27]

Zhang, K. X.; Su, H.; Wang, H. H.; Zhang, J. J.; Zhao, S. Y.; Lei, W. W.; Wei, X.; Li, X. H.; Chen, J. S. Atomic-scale Mott–Schottky heterojunctions of boron nitride monolayer and graphene as metal-free photocatalysts for artificial photosynthesis. Adv. Sci. 2018, 5, 1800062.

[28]

Ruan, X. W.; Cui, X. Q.; Cui, Y.; Fan, X. F.; Li, Z. Y.; Xie, T. F.; Ba, K. K.; Jia, G. R.; Zhang, H. Y.; Zhang, L. et al. Favorable energy band alignment of TiO2 anatase/rutile heterophase homojunctions yields photocatalytic hydrogen evolution with quantum efficiency exceeding 45.6%. Adv. Energy Mater. 2022, 12, 2200298.

[29]

Hu, G. L.; He, J. Y.; Li, Y. J. Application of graphdiyne and its analogues in photocatalysis and photoelectrochemistry. Chem. Res. Chin. Univ. 2021, 37, 1195–1212.

[30]

Guo, J.; Zhang, Y.; Shi, L.; Zhu, Y. F.; Mideksa, M. F.; Hou, K.; Zhao, W. S.; Wang, D. W.; Zhao, M. T.; Zhang, X. R. et al. Boosting hot electrons in hetero-superstructures for plasmon-enhanced catalysis. J. Am. Chem. Soc. 2017, 139, 17964–17972.

[31]

Park, J. Y.; Kim, S. M.; Lee, H.; Nedrygailov, I. I. Hot-electron-mediated surface chemistry: Toward electronic control of catalytic activity. Acc. Chem. Res. 2015, 48, 2475–2483.

[32]

Chen, Y. Z.; Li, Y. J.; Zhao, Y. D.; Zhou, H. Z.; Zhu, H. M. Highly efficient hot electron harvesting from graphene before electron–hole thermalization. Sci. Adv. 2019, 5, eaax9958.

[33]

Wen, X. W.; Chen, H. L.; Wu, T. M.; Yu, Z. H.; Yang, Q. R.; Deng, J. W.; Liu, Z. T.; Guo, X.; Guan, J. X.; Zhang, X. et al. Ultrafast probes of electron–hole transitions between two atomic layers. Nat. Commun. 2018, 9, 2299.

[34]

Williams, K. J.; Nelson, C. A.; Yan, X.; Li, L. S.; Zhu, X. Y. Hot electron injection from graphene quantum dots to TiO2. ACS Nano 2013, 7, 1388–1394.

[35]

Fang, H. H.; Adjokatse, S.; Shao, S. Y.; Even, J.; Loi, M. A. Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites. Nat. Commun. 2018, 9, 243.

[36]

Shiraishi, Y.; Takii, T.; Hagi, T.; Mori, S.; Kofuji, Y.; Kitagawa, Y.; Tanaka, S.; Ichikawa, S.; Hirai, T. Resorcinol-formaldehyde resins as metal-free semiconductor photocatalysts for solar-to-hydrogen peroxide energy conversion. Nat. Mater. 2019, 18, 985–993.

[37]

Hong, Y.; Cho, Y.; Go, E. M.; Sharma, P.; Cho, H.; Lee, B.; Lee, S. M.; Park, S. O.; Ko, M.; Kwak, S. K. et al. Unassisted photocatalytic H2O2 production under visible light by fluorinated polymer–TiO2 heterojunction. Chem. Eng. J. 2021, 418, 129346.

[38]

Wang, H.; Sun, X. S.; Li, D. D.; Zhang, X. D.; Chen, S. C.; Shao, W.; Tian, Y. P.; Xie, Y. Boosting hot-electron generation: Exciton dissociation at the order–disorder interfaces in polymeric photocatalysts. J. Am. Chem. Soc. 2017, 139, 2468–2473.

[39]

Yu, Q. Y.; Lin, X.; Li, X. H.; Chen, J. S. Photocatalytic stille cross-coupling on gold/g-C3N4 nano-heterojunction. Chem. Res. Chin. Univ. 2020, 36, 1013–1016.

File
12274_2022_4624_MOESM1_ESM.pdf (1.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2022
Revised: 01 June 2022
Accepted: 01 June 2022
Published: 25 June 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21737002, 21931005, 21720102002, and 22071146), Shanghai Science and Technology Committee (Nos. 19JC1412600 and 20520711600), and the SJTU-MPI partner group.

Return