Journal Home > Volume 16 , Issue 1

The metallic Na has been regarded as the most promising anode for next-generation sodium metal batteries (SMBs) owing to its high theoretical specific capacity, low redox potential, and low cost. The practical applications of Na metal, however, have still been severely hindered by the uncontrolled sodium dendrites growth during Na deposition and stripping processes, which leads to low Coulombic efficiency and poor cycling stability. In this study, sub-nano zinc oxide (ZnO) uniformly dispersed in three-dimensional (3D) porous nitrogen-doped (N-doped) carbon nanocube (ZnO@NC) was acquired as a stable host for dendrite-free Na metal anode. Benefiting from the in-situ electrochemically formed sodiophilic nucleation site (NaZn13 alloy) and the enriched pore structure, rapid and uniform sodium deposition behavior can be performed. As expected, the ZnO@NC electrode delivers impressive electrochemical performance, an ultra-high areal capacity of 20 mAh·cm−2 in the half-cell can be maintained for 2,000 h. In the symmetrical-cell, it can also exhibit up to 3,000 h at 3 mA·cm−2 and 3 mAh·cm−2 with low polarization potential. Furthermore, in the full-cell that matches with Prussian blue (PB) cathode, the Na@ZnO@NC anode performs the outstanding long-cycling and rate performance. Therefore, this work provides an effective strategy to inhibit the growth of Na dendrites for the development of high-safety and long-cycling SMBs.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

N-doped carbon nanocube with zinc oxide sodiophilic sites enables a superior sodium metal anode

Show Author's information Yijuan Li1,§( )Pan Xu2,§Hongbin Ni2,§Jirong Mou3Tangchao Xie1Hong Xiao1Hengji Zhu1Quanfeng Dong2( )Shaoming Huang1( )
Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
State Key Laboratory for Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Engineering Research Centre of Electrochemical Technologies of Ministry of Education, Xiamen University, Xiamen 361005, China
School of Environment and Energy, South China University of Technology, Guangzhou 510006, China

§ Yijuan Li, Pan Xu, and Hongbin Ni contributed equally to this work.

Abstract

The metallic Na has been regarded as the most promising anode for next-generation sodium metal batteries (SMBs) owing to its high theoretical specific capacity, low redox potential, and low cost. The practical applications of Na metal, however, have still been severely hindered by the uncontrolled sodium dendrites growth during Na deposition and stripping processes, which leads to low Coulombic efficiency and poor cycling stability. In this study, sub-nano zinc oxide (ZnO) uniformly dispersed in three-dimensional (3D) porous nitrogen-doped (N-doped) carbon nanocube (ZnO@NC) was acquired as a stable host for dendrite-free Na metal anode. Benefiting from the in-situ electrochemically formed sodiophilic nucleation site (NaZn13 alloy) and the enriched pore structure, rapid and uniform sodium deposition behavior can be performed. As expected, the ZnO@NC electrode delivers impressive electrochemical performance, an ultra-high areal capacity of 20 mAh·cm−2 in the half-cell can be maintained for 2,000 h. In the symmetrical-cell, it can also exhibit up to 3,000 h at 3 mA·cm−2 and 3 mAh·cm−2 with low polarization potential. Furthermore, in the full-cell that matches with Prussian blue (PB) cathode, the Na@ZnO@NC anode performs the outstanding long-cycling and rate performance. Therefore, this work provides an effective strategy to inhibit the growth of Na dendrites for the development of high-safety and long-cycling SMBs.

Keywords: sub-nano zinc oxide, N-doped carbon nanocube, sodiophilic site, dendrite-free Na metal anode, NaZn13 alloy

References(67)

[1]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[2]

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. G. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

[3]

Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.

[4]

Yang, X. M.; Rogach, A. L. Anodes and sodium-free cathodes in sodium ion batteries. Adv. Energy Mater. 2020, 10, 2000288.

[5]

Liu, T. F.; Zhang, Y. P.; Chen, C.; Lin, Z.; Zhang, S. Q.; Lu, J. Sustainability-inspired cell design for a fully recyclable sodium ion battery. Nat. Commun. 2019, 10, 1965.

[6]

Deng, Y. R.; Gong, L. L.; Ahmed, H.; Pan, Y. L.; Cheng, X. D.; Zhu, S. Y.; Zhang, H. P. N-doped interconnected carbon aerogels as an efficient SeS2 host for long life Na-SeS2 batteries. Nano Res. 2020, 13, 967–974.

[7]

Ma, J. L.; Meng, F. L.; Yu, Y.; Liu, D. P.; Yan, J. M.; Zhang, Y.; Zhang, X. B.; Jiang, Q. Prevention of dendrite growth and volume expansion to give high-performance aprotic bimetallic Li-Na alloy-O2 batteries. Nat. Chem. 2019, 11, 64–70.

[8]

Zheng, X. Y.; Huang, L. Q.; Ye, X. L.; Zhang, J. X.; Min, F. Y.; Luo, W.; Huang, Y. H. Critical effects of electrolyte recipes for Li and Na metal batteries. Chem 2021, 7, 2312–2346.

[9]

Hueso, K. B.; Palomares, V.; Armand, M.; Rojo, T. Challenges and perspectives on high and intermediate-temperature sodium batteries. Nano Res. 2017, 10, 4082–4114.

[10]

Wang, Y. X.; Wang, Y. X.; Wang, Y. X.; Feng, X. M.; Chen, W. H.; Ai, X. P.; Yang, H. X.; Cao, Y. L. Developments and perspectives on emerging high-energy-density sodium-metal batteries. Chem 2019, 5, 2547–2570.

[11]

Yang, W.; Yang, W.; Dong, L. B.; Shao, G. J.; Wang, G. X.; Peng, X. W. Hierarchical ZnO nanorod arrays grown on copper foam as an advanced three-dimensional skeleton for dendrite-free sodium metal anodes. Nano Energy 2021, 80, 105563.

[12]

Xu, P.; Lin, X. D.; Hu, X. Y.; Cui, X. Y.; Fan, X. X.; Sun, C.; Xu, X. M.; Chang, J. K.; Fan, J. M.; Yuan, R. M. et al. High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array. Energy Storage Mater. 2020, 28, 188–195.

[13]

Wang, C. H.; Bai, G. L.; Yang, Y. F.; Liu, X. J.; Shao, H. X. Dendrite-free all-solid-state lithium batteries with lithium phosphorous oxynitride-modified lithium metal anode and composite solid electrolytes. Nano Res. 2019, 12, 217–223.

[14]

Xu, P.; Hu, X. Y.; Liu, X. Y.; Lin, X. D.; Fan, X. X.; Cui, X. Y.; Sun, C.; Wu, Q. H.; Lian, X. B.; Yuan, R. M. et al. A lithium-metal anode with ultra-high areal capacity (50 mAh·cm−2) by gridding lithium plating/stripping. Energy Storage Mater. 2021, 38, 190–199.

[15]

Bao, C. Y.; Wang, B.; Liu, P.; Wu, H.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Solid electrolyte interphases on sodium metal anodes. Adv. Funct. Mater. 2020, 30, 2004891.

[16]
Zhou, Z. H.; Sun, T.; Cui, J.; Shen, X.; Shi, C.; Cao, S.; Zhao, J. B. A homogenous solid polymer electrolyte prepared by facile spray drying method is used for room-temperature solid lithium metal batteries. Nano Res., in press, https://doi.org/10.1007/s12274-021-3683-6.
[17]

Zheng, X. Y.; Gu, Z. Y.; Fu, J.; Wang, H. T.; Ye, X. L.; Huang, L. Q.; Liu, X. Y.; Wu, X. L.; Luo, W.; Huang, Y. H. Knocking down the kinetic barriers towards fast-charging and low-temperature sodium metal batteries. Energy Environ. Sci. 2021, 14, 4936–4947.

[18]

Chen, X.; Shen, X.; Hou, T. Z.; Zhang, R.; Peng, H. J.; Zhang, Q. Ion-solvent chemistry-inspired cation-additive strategy to stabilize electrolytes for sodium-metal batteries. Chem 2020, 6, 2242–2256.

[19]

Zheng, X. Y.; Weng, S. T.; Luo, W.; Chen, B.; Zhang, X.; Gu, Z. Y.; Wang, H. T.; Ye, X. L.; Liu, X. Y.; Huang, L. Q. et al. Deciphering the role of fluoroethylene carbonate towards highly reversible sodium metal anodes. Research 2022, 2022, 9754612.

[20]

Xie, Z. K.; Yang, Z. Y.; An, X. W.; Yue, X. Y.; Wang, J. J.; Zhang, S. S.; Chen, W. H.; Abudula, A.; Guan, G. Q. An organosulfide-based energetic liquid as the catholyte in high-energy density lithium metal batteries for large-scale grid energy storage. Nano Res. 2022, 15, 6138–6147.

[21]
Xu, P.; Lin, X. D.; Sun, Z. Q.; Li, K. X.; Dou, W. J.; Hou, Q.; Zhou, Z. Y.; Yan, J. W.; Zheng, M. S.; Yuan, R. M. et al. A robust interphase via in-situ pre-reconsiguring lithium anode surface for long-term lithium-oxygen batteries. J. Energy Chem., in press, https://doi.org/10.1016/j.jechem.2022.04.025.
[22]

Wen, Z. P.; Peng, Y. Y.; Cong, J. L.; Hua, H. M.; Lin, Y. X.; Xiong, J.; Zeng, J.; Zhao, J. B. A stable artificial protective layer for high capacity dendrite-free lithium metal anode. Nano Res. 2019, 12, 2535–2542.

[23]

Xu, Z. X.; Yang, J.; Zhang, T.; Sun, L. M.; Nuli, Y.; Wang, J. L.; Hirano, S. I. Stable Na metal anode enabled by a reinforced multistructural SEI layer. Adv. Funct. Mater. 2019, 29, 1901924.

[24]

Zhao, C. L.; Liu, L. L.; Lu, Y. X.; Wagemaker, M.; Chen, L. Q.; Hu, Y. S. Revealing an interconnected interfacial layer in solid-state polymer sodium batteries. Angew. Chem., Int. Ed. 2019, 58, 17026–17032.

[25]

Zhu, M. Q.; Li, S. M.; Li, B.; Gong, Y. J.; Du, Z. G.; Yang, S. B. Homogeneous guiding deposition of sodium through main group II metals toward dendrite-free sodium anodes. Sci. Adv. 2019, 5, eaau6264.

[26]

Zhao, Q.; Stalin, S.; Zhao, C. Z.; Archer, L. A. Designing solid-state electrolytes for safe, energy-dense batteries. Nat. Rev. Mater. 2020, 5, 229–252.

[27]

Lei, D. N.; He, Y. B.; Huang, H. J.; Yuan, Y. F.; Zhong, G. M.; Zhao, Q.; Hao, X. G.; Zhang, D. F.; Lai, C.; Zhang, S. W. et al. Cross-linked beta alumina nanowires with compact gel polymer electrolyte coating for ultra-stable sodium metal battery. Nat. Commun. 2019, 10, 4244.

[28]

Yang, J. F.; Zhang, M.; Chen, Z.; Du, X. F.; Huang, S. Q.; Tang, B.; Dong, T. T.; Wu, H.; Yu, Z.; Zhang, J. J. et al. Flame-retardant quasi-solid polymer electrolyte enabling sodium metal batteries with highly safe characteristic and superior cycling stability. Nano Res. 2019, 12, 2230–2237.

[29]

Chu, C. X.; Wang, N. N.; Li, L. L.; Lin, L. D.; Tian, F.; Li, Y. L.; Yang, J.; Dou, S. X.; Qian, Y. T. Uniform nucleation of sodium in 3D carbon nanotube framework via oxygen doping for long-life and efficient Na metal anodes. Energy Storage Mater. 2019, 23, 137–143.

[30]

Zheng, X. Y.; Yang, W. J.; Wang, Z. Q.; Huang, L. Q.; Geng, S.; Wen, J. Y.; Luo, W.; Huang, Y. H. Embedding a percolated dual-conductive skeleton with high sodiophilicity toward stable sodium metal anodes. Nano Energy 2020, 69, 104387.

[31]

Zheng, X. Y.; Li, P.; Cao, Z.; Luo, W.; Sun, F. Z.; Wang, Z. Q.; Ding, B.; Wang, G. X.; Huang, Y. H. Boosting the reversibility of sodium metal anode via heteroatom-doped hollow carbon fibers. Small 2019, 15, e1902688.

[32]

Ma, C. Y.; Xu, T. T.; Wang, Y. Advanced carbon nanostructures for future high performance sodium metal anodes. Energy Storage Mater. 2020, 25, 811–826.

[33]

Wang, H.; Wu, Y.; Liu, S. H.; Jiang, Y.; Shen, D.; Kang, T. X.; Tong, Z. Q.; Wu, D.; Li, X. J.; Lee, C. S. 3D Ag@C cloth for stable anode free sodium metal batteries. Small Methods 2021, 5, 2001050.

[34]

Fan, L.; Hu, Y. Y.; Rao, A. M.; Zhou, J.; Hou, Z. H.; Wang, C. X.; Lu, B. G. Prospects of electrode materials and electrolytes for practical potassium-based batteries. Small Methods 2021, 5, 2101131.

[35]

Tang, S.; Qiu, Z.; Wang, X. Y.; Gu, Y.; Zhang, X. G.; Wang, W. W.; Yan, J. W.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. A room-temperature sodium metal anode enabled by a sodiophilic layer. Nano Energy 2018, 48, 101–106.

[36]

Xu, M. Y.; Li, Y.; Ihsan-Ul-Haq, M.; Mubarak, N.; Liu, Z. J.; Wu, J. X.; Luo, Z. T.; Kim, J. K. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 2022, 44, 477–486.

[37]

Shen, D. Y.; Rao, A. M.; Zhou, J.; Lu, B. G. High-potential cathodes with nitrogen active centres for quasi-solid proton-ion batteries. Angew. Chem., Int. Ed. 2022, 61, e202201972.

[38]

Yang, J.; Liu, G. Z.; Avdeev, M.; Wan, H. l.; Han, F. D.; Shen, L.; Zou, Z. Y.; Shi, S. Q.; Hu, Y. S.; Wang, C. S. et al. Ultrastable all-solid-state sodium rechargeable batteries. ACS Energy Lett. 2020, 5, 2835–2841.

[39]

Lin, D. C.; Liu, Y. Y.; Cui, Y. Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol. 2017, 12, 194–206.

[40]

Wang, C. L.; Wang, H.; Matios, E.; Hu, X. F.; Li, W. Y. A chemically engineered porous copper matrix with cylindrical core–shell skeleton as a stable host for metallic sodium anodes. Adv. Funct. Mater. 2018, 28, 1802282.

[41]

Lu, Y. Y.; Zhang, Q.; Han, M.; Chen, J. Stable Na plating/stripping electrochemistry realized by a 3D Cu current collector with thin nanowires. Chem. Commun. (Camb. ) 2017, 53, 12910–12913.

[42]

Xu, Y. L.; Menon, A. S.; Harks, P. P. R. M. L.; Hermes, D. C.; Haverkate, L. A.; Unnikrishnan, S.; Mulder, F. M. Honeycomb-like porous 3D nickel electrodeposition for stable Li and Na metal anodes. Energy Storage Mater. 2018, 12, 69–78.

[43]

Liu, S.; Tang, S.; Zhang, X. Y.; Wang, A. X.; Yang, Q. H.; Luo, J. Y. Porous Al current collector for dendrite-free Na metal anodes. Nano Lett. 2017, 17, 5862–5868.

[44]

Ye, L.; Liao, M.; Zhao, T. C.; Sun, H.; Zhao, Y.; Sun, X. M.; Wang, B. J.; Peng, H. S. A sodiophilic interphase-mediated, dendrite-free anode with ultrahigh specific capacity for sodium-metal batteries. Angew. Chem., Int. Ed. 2019, 58, 17054–17060.

[45]

Yang, T. Z.; Qian, T.; Sun, Y. W.; Zhong, J.; Rosei, F.; Yan, C. L. Mega high utilization of sodium metal anodes enabled by single zinc atom sites. Nano Lett. 2019, 19, 7827–7835.

[46]

Cui, X. Y.; Wang, Y. J.; Wu, H. D.; Lin, X. D.; Tang, S.; Xu, P.; Liao, H. G.; Zheng, M. S.; Dong, Q. F. A carbon foam with sodiophilic surface for highly reversible, ultra-long cycle sodium metal anode. Adv. Sci. 2021, 8, 2003178.

[47]

Tang, S.; Zhang, Y. Y.; Zhang, X. G.; Li, J. T.; Wang, X. Y.; Yan, J. W.; Wu, D. Y.; Zheng, M. S.; Dong, Q. F.; Mao, B. W. Stable Na plating and stripping electrochemistry promoted by in situ construction of an alloy-based sodiophilic interphase. Adv. Mater. 2019, 31, e1807495.

[48]

Wang, Z. H.; Zhang, X. L.; Zhou, S. Y.; Edström, K.; Strømme, M.; Nyholm, L. Lightweight, thin, and flexible silver nanopaper electrodes for high-capacity dendrite-free sodium metal anodes. Adv. Funct. Mater. 2018, 28, 1804038.

[49]

Liu, B.; Lei, D. N.; Wang, J.; Zhang, Q. F.; Zhang, Y. G.; He, W.; Zheng, H. F.; Sa, B.; Xie, Q. S.; Peng, D. L. et al. 3D uniform nitrogen-doped carbon skeleton for ultra-stable sodium metal anode. Nano Res. 2020, 13, 2136–2142.

[50]

Xiong, W. S.; Jiang, Y.; Xia, Y.; Qi, Y. Y.; Sun, W. W.; He, D.; Liu, Y. M.; Zhao, X. Z. A robust 3D host for sodium metal anodes with excellent machinability and cycling stability. Chem. Commun. (Camb.) 2018, 54, 9406–9409.

[51]

Jin, X.; Zhao, Y.; Shen, Z. H.; Pu, J.; Xu, X. X.; Zhong, C. L.; Zhang, S.; Li, J. C.; Zhang, H. G. Interfacial design principle of sodiophilicity-regulated interlayer deposition in a sandwiched sodium metal anode. Energy Storage Mater. 2020, 31, 221–229.

[52]

Banerjee, R.; Phan, A.; Wang, B.; Knobler, C.; Furukawa, H.; O’Keeffe, M.; Yaghi, O. M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 2008, 319, 939–943.

[53]

Susca, A.; Liu, J. P.; Cui, J.; Mubarak, N.; Wu, J. X.; Ihsan-Ul-Haq, M.; Ciucci, F.; Kim, J. K. Affinity-engineered carbon nanofibers as a scaffold for Na metal anodes. J. Mater. Chem. A 2020, 8, 14757–14768.

[54]

Liu, S. Y.; Bai, M.; Tang, X. Y.; Wu, W. W.; Zhang, M.; Wang, H. L.; Zhao, W. Y.; Ma, Y. Enabling high-performance sodium metal anode via a presodiated alloy-induced interphase. Chem. Eng. J. 2021, 417, 128997.

[55]

Liu, J.; He, J.; Wang, L. Y.; Li, R.; Chen, P.; Rao, X.; Deng, L. H.; Rong, L.; Lei, J. D. NiO-PTA supported on ZIF-8 as a highly effective catalyst for hydrocracking of Jatropha oil. Sci. Rep. 2016, 6, 23667.

[56]

Ma, X. C.; Li, L. Q.; Wang, S. B.; Lu, M. M.; Li, H. L.; Ma, W. W.; Keener, T. C. Ammonia-treated porous carbon derived from ZIF-8 for enhanced CO2 adsorption. Appl. Surf. Sci. 2016, 369, 390–397.

[57]

Liu, Y.; Wei, G. Y.; Pan, L. D.; Xiong, M. Y.; Yan, H. L.; Li, Y. X.; Lu, C.; Qiao, Y. Rhombic dodecahedron ZIF-8 precursor: Designing porous N-doped carbon for sodium-ion batteries. ChemElectroChem 2017, 4, 3244–3249.

[58]

Li, Y. J.; Fan, J. M.; Zheng, M. S.; Dong, Q. F. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries. Energy Environ. Sci. 2016, 9, 1998–2004.

[59]

Yan, C. L.; Gu, X.; Zhang, L.; Wang, Y.; Yan, L. T.; Liu, D. D.; Li, L. J.; Dai, P. C.; Zhao, X. B. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: Promising anode materials for sodium and potassium ion batteries. J. Mater. Chem. A 2018, 6, 17371–17377.

[60]

Tang, J.; Salunkhe, R. R.; Zhang, H. B.; Malgras, V.; Ahamad, T.; Alshehri, S. M.; Kobayashi, N.; Tominaka, S.; Ide, Y.; Kim, J. H. et al. Bimetallic metal-organic frameworks for controlled catalytic graphitization of nanoporous carbons. Sci. Rep. 2016, 6, 30295.

[61]

Chen, Y. Z.; Wang, C. M.; Wu, Z. Y.; Xiong, Y. J.; Xu, Q.; Yu, S. H.; Jiang, H. L. From bimetallic metal-organic framework to porous carbon: High surface area and multicomponent active dopants for excellent electrocatalysis. Adv. Mater. 2015, 27, 5010–5016.

[62]

Fang, Y. J.; Zeng, Y. X.; Jin, Q.; Lu, X. F.; Luan, D. Y.; Zhang, X. T.; Lou, X. W. Nitrogen-doped amorphous Zn-carbon multichannel fibers for stable lithium metal anodes. Angew. Chem., Int. Ed. 2021, 60, 8515–8520.

[63]

Xu, K. L.; Zhu, M. G.; Wu, X.; Liang, J. W.; Liu, Y.; Zhang, T. W.; Zhu, Y. C.; Qian, Y. T. Dendrite-tamed deposition kinetics using single-atom Zn sites for Li metal anode. Energy Storage Mater. 2019, 23, 587–593.

[64]

Li, J. P.; Li, Y. J.; Ma, X. D.; Zhang, K.; Hu, J. H.; Yang, C. H.; Liu, M. L. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem. Eng. J. 2020, 384, 123328.

[65]

Jing, M. J.; Li, F. Y.; Chen, M. J.; Long, F. L.; Wu, T. J. Binding ZnO nanorods in reduced graphene oxide via facile electrochemical method for Na-ion battery. Appl. Surf. Sci. 2019, 463, 986–993.

[66]

Sinha, S.; Didwal, P. N.; Nandi, D. K.; Cho, J. Y.; Kim, S. H.; Park, C. J.; Heo, J. Atomic layer deposited-ZnO@3D-Ni-foam composite for Na-ion battery anode: A novel route for easy and efficient electrode preparation. Ceram. Int. 2019, 45, 1084–1092.

[67]

Xu, P.; Li, X.; Yan, M. Y.; Ni, H. B.; Huang, H. H.; Lin, X. D.; Liu, X. Y.; Fan, J. M.; Zheng, M. S.; Yuan, R. M. et al. A highly reversible sodium metal anode by mitigating electrodeposition overpotential. J. Mater. Chem. A 2021, 9, 22892–22900.

File
12274_2022_4621_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 April 2022
Revised: 31 May 2022
Accepted: 01 June 2022
Published: 27 July 2022
Issue date: January 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the National Natural Science Foundation of China (Nos. 52102222, 51920105004, U1805254, and U1705255) and Guangzhou Key Laboratory of Low Dimensional Materials and Energy Storage Devices (No. 201905010002).

Return