Journal Home > Volume 15 , Issue 10

Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Electrically controlled mRNA delivery using a polypyrrole-graphene oxide hybrid film to promote osteogenic differentiation of human mesenchymal stem cells

Show Author's information Huijung Kim1,§Kübra Solak2,§Yoojoong Han1Yeon-Woo Cho1Kyeong-Mo Koo1Chang-Dae Kim1Zhengtang Luo3Hyungbin Son1Hyung-Ryong Kim4( )Ahmet Mavi5,6( )Tae-Hyung Kim1( )
School of Integrative Engineering, Chung-Ang University, 84 Heukseuk-ro, Dongjak-gu, Seoul 06974, Republic of Korea
Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, Erzurum 25240, Turkey
Department of Chemical and Biological Engineering, Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
Department of Pharmacology, College of Dentistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
Department of Nanoscience and Nanoengineering, Institute of Science, Atatürk University, Erzurum 25240, Turkey
Department of Mathematics and Science Education, Education Faculty of Kazım Karabekir, Atatürk University, Erzurum 25240, Turkey

§ Huijung Kim and Kübra Solak contributed equally to this work.

Abstract

Direct messenger ribonucleic acid (mRNA) delivery to target cells or tissues has revolutionized the field of biotechnology. However, the applicability of regenerative medicine is limited by the technical difficulties of various mRNA-loaded nanocarriers. Herein, we report a new conductive hybrid film that could guide osteogenic differentiation of human adipose-derived mesenchymal stem cells (hADMSCs) via electrically controlled mRNA delivery. To find optimal electrical conductivity and mRNA-loading capacity, the polypyrrole-graphene oxide (PPy-GO) hybrid film was electropolymerized on indium tin oxide substrates. We found that the fluorescein sodium salt, a molecule partially mimicking the physical and chemical properties of mRNAs, can be effectively absorbed and released by electrical stimulation (ES). The hADMSCs cultivated on the PPy-GO hybrid film loaded with pre-osteogenic mRNAs showed the highest osteogenic differentiation under electrical stimulation. This platform can load various types of RNAs thus highly promising as a new nucleic acid delivery tool for the development of stem cell-based therapeutics.

Keywords: graphene oxide, mesenchymal stem cells, polypyrrole, messenger ribonucleic acid (mRNA) delivery, electrical release

References(66)

1

Schlake, T.; Thess, A.; Fotin-Mleczek, M.; Kallen, K. J. Developing mRNA-vaccine technologies. RNA Biol. 2012, 9, 1319–1330.

2

Sorrentino, S. Human extracellular ribonucleases: Multiplicity, molecular diversity and catalytic properties of the major RNase types. Cell. Mol. Life Sci. CMLS 1998, 54, 785–794.

3

Liu, M. A. A comparison of plasmid DNA and mRNA as vaccine technologies. Vaccines 2019, 7, 37.

4

Ahammad, I.; Lira, S. S. Designing a novel mRNA vaccine against SARS-CoV-2: An immunoinformatics approach. Int. J. Biol. Macromol. 2020, 162, 820–837.

5

Pardi, N.; Hogan, M. J.; Weissman, D. Recent advances in mRNA vaccine technology. Curr. Opin. Immunol. 2020, 65, 14–20.

6

van Tendeloo, V. F. I.; Ponsaerts, P.; Berneman, Z. N. mRNA-based gene transfer as a tool for gene and cell therapy. Curr. Opin. Mol. Ther. 2007, 9, 423–431.

7
Chanda, P. K. ; Sukhovershin, R. ; Cooke, J. P. mRNA-enhanced cell therapy and cardiovascular regeneration. Cells 2021, 10, 187.
DOI
8

Wang, P. P.; Logeart-Avramoglou, D.; Petite, H.; Goncalves, C.; Midoux, P.; Perche, F.; Pichon, C. Co-delivery of NS1 and BMP2 mRNAs to murine pluripotent stem cells leads to enhanced BMP-2 expression and osteogenic differentiation. Acta Biomater. 2020, 108, 337–346.

9

Strauer, B. E.; Kornowski, R. Stem cell therapy in perspective. Circulation 2003, 107, 929–934.

10

Frith, J. E.; Kusuma, G. D.; Carthew, J.; Li, F. Y.; Cloonan, N.; Gomez, G. A.; Cooper-White, J. J. Mechanically-sensitive miRNAs bias human mesenchymal stem cell fate via mTOR signalling. Nat. Commun. 2018, 9, 257.

11

Cheon, E. J.; Kim, S. H.; Lee, D. K.; Jo, Y. K.; Ki, M. R.; Park, C. J.; Jang, H. S.; Ahn, J. S.; Pack, S. P.; Jun, S. H. Osteostimulating ability of β-tricalcium phosphate/collagen composite as a practical bone-grafting substitute: In vitro and in vivo comparison study with commercial one. Biotechnol. Bioprocess Eng. 2021, 26, 923–932.

12

Herberts, C. A.; Kwa, M. S.; Hermsen, H. P. Risk factors in the development of stem cell therapy. J. Transl. Med. 2011, 9, 29.

13

Kang, E. S.; Kim, H.; Han, Y.; Cho, Y. W.; Son, H.; Luo, Z. T.; Kim, T. H. Enhancing osteogenesis of adipose-derived mesenchymal stem cells using gold nanostructure/peptide-nanopatterned graphene oxide. Colloids Surf. B Biointerf. 2021, 204, 111807.

14

Dai, Y. F.; Ma, W.; Zhang, T.; Yang, J. W.; Zang, C. H.; Liu, K. P.; Wang, X. B.; Wang, J. W.; Wu, Z.; Zhang, X. K. et al. Long noncoding RNA expression profiling during the neuronal differentiation of glial precursor cells from rat dorsal root ganglia. Biotechnol. Bioprocess Eng. 2020, 25, 356–373.

15

Sharma, A. Role of stem cell derived exosomes in tumor biology. Int. J. Cancer 2018, 142, 1086–1092.

16

Hao, Z. C.; Lu, J.; Wang, S. Z.; Wu, H.; Zhang, Y. T.; Xu, S. G. Stem cell-derived exosomes: a promising strategy for fracture healing. Cell Prolif. 2017, 50, e12359.

17

Sun, Y.; Ye, X. Z.; Cai, M. X.; Liu, X. N.; Xiao, J.; Zhang, C. Y.; Wang, Y. Y.; Yang, L.; Liu, J. F.; Li, S. N. et al. Osteoblast-targeting-peptide modified nanoparticle for siRNA/microRNA delivery. ACS Nano 2016, 10, 5759–5768.

18

Khorsand, B.; Elangovan, S.; Hong, L.; Dewerth, A.; Kormann, M. S. D.; Salem, A. K. A comparative study of the bone regenerative effect of chemically modified RNA encoding BMP-2 or BMP-9. AAPS J. 2017, 19, 438–446.

19

Evans, C. H.; Huard, J. Gene therapy approaches to regenerating the musculoskeletal system. Nat. Rev. Rheumatol. 2015, 11, 234–242.

20
Wang, P. P. ; Perche, F. ; Logeart-Avramoglou, D. ; Pichon, C. RNA-based therapy for osteogenesis. Int. J. Pharm. 2019, 569, 118594.
DOI
21

Leng, Q. P.; Liang, Z.; Lv, Y. G. Demineralized bone matrix scaffold modified with mRNA derived from osteogenically pre-differentiated MSCs improves bone repair. Mater. Sci. Eng. C 2021, 119, 111601.

22

Kang, J.; Kim, M. G. Advancements in DNA-assisted immunosensors. BioChip J. 2020, 14, 18–31.

23

Wang, W.; Kong, T.; Zhang, D.; Zhang, J.; Cheng, G. Labelfree microRNA detection based on fluorescence quenching of gold nanoparticles with a competitive hybridization. Anal. Chem. 2015, 87, 10822–10829.

24

Giacca, M.; Zacchigna, S. Virus-mediated gene delivery for human gene therapy. J. Control. Release 2012, 161, 377–388.

25

Baglio, S. R.; Rooijers, K.; Koppers-Lalic, D.; Verweij, F. J.; Pérez Lanzón, M.; Zini, N.; Naaijkens, B.; Perut, F.; Niessen, H. W. M.; Baldini, N. et al. Human bone marrow- and adipose-mesenchymal stem cells secrete exosomes enriched in distinctive miRNA and tRNA species. Stem Cell Res. Ther. 2015, 6, 127.

26

Tapparo, M.; Bruno, S.; Collino, F.; Togliatto, G.; Deregibus, M. C.; Provero, P.; Wen, S. C.; Quesenberry, P. J.; Camussi, G. Renal regenerative potential of extracellular vesicles derived from miRNA-engineered mesenchymal stromal cells. Int. J. Mol. Sci. 2019, 20, 2381.

27

Sharei, A.; Zoldan, J.; Adamo, A.; Sim, W. Y.; Cho, N.; Jackson, E.; Mao, S.; Schneider, S.; Han, M. J.; Lytton-Jean, A. et al. A vector-free microfluidic platform for intracellular delivery. Proc. Natl. Acad. Sci. USA 2013, 110, 2082–2087.

28

Yoon, C. S.; Park, J. H. Ultrasound-mediated gene delivery. Expert Opin. Drug Deliv. 2010, 7, 321–330.

29

Evans, C. H. The vicissitudes of gene therapy. Bone Joint Res. 2019, 8, 469–471.

30

Zolghadrnasab, M.; Mousavi, A.; Farmany, A.; Arpanaei, A. Ultrasound-mediated gene delivery into suspended plant cells using polyethyleneimine-coated mesoporous silica nanoparticles. Ultrason. Sonochem. 2021, 73, 105507.

31

Somiari, S.; Glasspool-Malone, J.; Drabick, J. J.; Gilbert, R. A.; Heller, R.; Jaroszeski, M. J.; Malone, R. W. Theory and in vivo application of electroporative gene delivery. Mol. Ther. 2000, 2, 178–187.

32

Nussbaum, J.; Minami, E.; Laflamme, M. A.; Virag, J. A. I.; Ware, C. B.; Masino, A.; Muskheli, V.; Pabon, L.; Reinecke, H.; Murry, C. E. Transplantation of undifferentiated murine embryonic stem cells in the heart: Teratoma formation and immune response. FASEB J. 2007, 21, 1345–1357.

33

Geetha, S.; Rao, C. R. K.; Vijayan, M.; Trivedi, D. C. Biosensing and drug delivery by polypyrrole. Anal. Chim. Acta 2006, 568, 119–125.

34

Suhito, I. R.; Han, Y.; Kim, D. S.; Son, H.; Kim, T. H. Effects of two-dimensional materials on human mesenchymal stem cell behaviors. Biochem. Biophys. Res. Commun. 2017, 493, 578–584.

35

Kang, E. S.; Song, I.; Kim, D. S.; Lee, U.; Kim, J. K.; Son, H.; Min, J.; Kim, T. H. Size-dependent effects of graphene oxide on the osteogenesis of human adipose-derived mesenchymal stem cells. Colloids Surf. B Biointerf. 2018, 169, 20–29.

36

Kim, C. H.; Han, Y.; Choi, Y.; Kwon, M.; Son, H.; Luo, Z. T.; Kim, T. H. Extremely uniform graphene oxide thin film as a universal platform for one-step biomaterial patterning. Small 2021, 17, 2103596.

37

Wu, B. Y.; Zhao, N.; Hou, S. H.; Zhang, C. Electrochemical synthesis of polypyrrole, reduced graphene oxide, and gold nanoparticles composite and its application to hydrogen peroxide biosensor. Nanomaterials 2016, 6, 220.

38

Fahlgren, A.; Bratengeier, C.; Gelmi, A.; Semeins, C. M.; Klein-Nulend, J.; Jager, E. W. H.; Bakker, A. D. Biocompatibility of polypyrrole with human primary osteoblasts and the effect of dopants. PLoS One 2015, 10, e0134023.

39

Xu, C. H.; Sun, J.; Gao, L. Synthesis of novel hierarchical graphene/polypyrrolenanosheet composites and their superior electrochemical performance. J. Mater. Chem. 2011, 21, 11253–11258.

40
Leng, Q. P. ; Chen, L. N. ; Lv, Y. G. RNA-based scaffolds for bone regeneration: Application and mechanisms of mRNA, miRNA and siRNA. Theranostics 2020, 10, 3190–3205.
DOI
41

Zhou, M.; Heinze, J. Electropolymerization of pyrrole and electrochemical study of polypyrrole: 1. Evidence for structural diversity of polypyrrole. Electrochim. Acta 1999, 44, 1733–1748.

42

Bozzini, B.; Bocchetta, P.; Alemán, B.; Amati, M.; Gianoncelli, A.; Gregoratti, L.; Sezen, H.; Taurino, A.; Kiskinova, M. Electrodeposition and pyrolysis of Mn/polypyrrole nanocomposites: A study based on soft X-ray absorption, fluorescence and photoelectron microspectroscopies. J. Mater. Chem. A 2015, 3, 19155–19167.

43

Porcher, M.; Esnault, C.; Tran-Van, F.; Ghamouss, F. Electrochemical deposition and characterization of polypyrrole in electrolyte based on pyrrolidinium hydrogenosulfate protic ionic liquid. J. Appl. Electrochem. 2016, 46, 1133–1145.

44

Jiang, Y.; Hu, C. G.; Cheng, H. H.; Li, C. X.; Xu, T.; Zhao, Y.; Shao, H. B.; Qu, L. T. Spontaneous, straightforward fabrication of partially reduced graphene oxide-polypyrrole composite films for versatile actuators. ACS Nano 2016, 10, 4735–4741.

45

Zhu, M.; Hao, Y.; Ma, X.; Feng, L.; Zhai, Y. X.; Ding, Y. P.; Cheng, G. S. Construction of a graphene/polypyrrole composite electrode as an electrochemically controlled release system. RSC Adv. 2019, 9, 12667–12674.

46

Li, M. X.; Ji, X. Q.; Cui, L.; Liu, J. Q. In situ preparation of graphene/polypyrrole nanocomposite via electrochemical co-deposition methodology for anti-corrosion application. J. Mater. Sci. 2017, 52, 12251–12265.

47

McFail-Isom, L.; Shui, X. Q.; Williams, L. D. Divalent cations stabilize unstacked conformations of DNA and RNA by interacting with base π systems. Biochemistry 1998, 37, 17105–17111.

48

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

49

Song, S. G.; Kim, Y. J.; Kang, H. L.; Yoon, S.; Hong, D. K.; Kim, W. H.; Shin, I. S.; Seong, W. K.; Lee, K. N. Sensitivity improvement in electrochemical immunoassays using antibody immobilized magnetic nanoparticles with a clean ITO working electrode. BioChip J. 2020, 14, 308–316.

50

Ding, F. Y.; Shi, X. W.; Jiang, Z. W.; Liu, L.; Cai, J.; Li, Z. Y.; Chen, S.; Du, Y. M. Electrochemically stimulated drug release from dual stimuli responsive chitin hydrogel. J. Mater. Chem. B 2013, 1, 1729–1737.

51

Teodorescu, F.; Rolland, L.; Ramarao, V.; Abderrahmani, A.; Mandler, D.; Boukherroub, R.; Szunerits, S. Electrochemically triggered release of human insulin from an insulin-impregnated reduced graphene oxide modified electrode. Chem. Commun. 2015, 51, 14167–14170.

52

Al-Dhahebi, A. M.; Gopinath, S. C. B.; Saheed, M. S. M. Graphene impregnated electrospun nanofiber sensing materials: A comprehensive overview on bridging laboratory set-up to industry. Nano Converg. 2020, 7, 27.

53

Zhang, Q.; Xu, J.; Song, Q.; Li, N.; Zhang, Z. L.; Li, K. Y.; Du, Y. Y.; Wu, L. Q.; Tang, M. L.; Liu, L. W. et al. Synthesis of amphiphilic reduced graphene oxide with an enhanced charge injection capacity for electrical stimulation of neural cells. J. Mater. Chem. B 2014, 2, 4331–4337.

54

Wang, W. S.; Li, B. L.; Yang, H. L.; Lin, Z. F.; Chen, L. L.; Li, Z.; Ge, J. Y.; Zhang, T.; Xia, H.; Li, L. H. et al. Efficient elimination of multidrug-resistant bacteria using copper sulfide nanozymes anchored to graphene oxide nanosheets. Nano Res. 2020, 13, 2156–2164.

55

Zeng, S. W.; Chen, L.; Wang, Y.; Chen, J. L. Exploration on the mechanism of DNA adsorption on graphene and graphene oxide via molecular simulations. J. Phys. D Appl. Phys. 2015, 48, 275402.

56

Wang, J. On-demand electrochemical release of nucleic acids. Electroanalysis 2001, 13, 635–638.

DOI
57

Lee, K.; Kang, J. H.; Kim, H. M.; Ahn, J.; Lim, H.; Lee, J.; Jeon, W. J.; Lee, J. H.; Kim, K. B. Direct electrophoretic microRNA preparation from clinical samples using nanofilter membrane. Nano Convergence 2020, 7, 1.

58

Leprince, L.; Dogimont, A.; Magnin, D.; Demoustier-Champagne, S. Dexamethasone electrically controlled release from polypyrrole-coated nanostructured electrodes. J. Mater. Sci. Mater. Med. 2010, 21, 925–930.

59

Dong, C. J.; Qiao, F. Y.; Hou, W. S.; Yang, L.; Lv, Y. G. Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation. Appl. Mater. Today 2020, 21, 100870.

60

Wang, Y.; Zhang, X. M.; Zhao, B. Y.; Xu, Z. L.; Lv, Y. G. Suspension state promotes drug resistance of breast tumor cells by inducing ABCC3 overexpression. Appl. Biochem. Biotechnol. 2020, 190, 410–422.

61

Kim, T. W.; Ahn, W. B.; Kim, J. M.; Kim, J. H.; Kim, T. H.; Perez, R. A.; Jang, H. S. Combined delivery of two different bioactive factors incorporated in hydroxyapatite microcarrier for bone regeneration. Tissue Eng. Regener. Med. 2020, 17, 607–624.

62

Xu, C.; Xiao, L.; Cao, Y. X.; He, Y.; Lei, C.; Xiao, Y.; Sun, W. J.; Ahadian, S.; Zhou, X. T.; Khademhosseini, A. et al. Mesoporous silica rods with cone shaped pores modulate inflammation and deliver BMP-2 for bone regeneration. Nano Res. 2020, 13, 2323–2331.

63

Wang, W. P.; Zhou, L.; Wang, S. M.; Luo, Z.; Hu, Z. D. Rapid and simple determination of adenine and guanine in DNA extract by micellar electrokinetic chromatography with indirect laser-induced fluorescence detection. Talanta 2008, 74, 1050–1055.

64

George, P. M.; LaVan, D. A.; Burdick, J. A.; Chen, C. Y.; Liang, E.; Langer, R. Electrically controlled drug delivery from biotin-doped conductive polypyrrole. Adv. Mater. 2006, 18, 577–581.

65

Wang, L. N.; Liu, X. Y.; Fu, J. Q.; Ning, X. Y.; Zhang, M. X.; Jiang, Z. Y.; Cheng, G. S.; Zhu, Y. M.; Zhang, Z. J. Release of methylene blue from graphene oxide-coated electrospun nanofibrous scaffolds to modulate functions of neural progenitor cells. Acta Biomater. 2019, 88, 346–356.

66

Samanta, D.; Meiser, J. L.; Zare, R. N. Polypyrrole nanoparticles for tunable, pH-sensitive and sustained drug release. Nanoscale 2015, 7, 9497–9504.

File
12274_2022_4613_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 February 2022
Revised: 31 May 2022
Accepted: 03 June 2022
Published: 23 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. NRF-2019M3A9H2031820, NRF-2021R1A2C1010747, and NRF-2022R1A2C4002217), Korean Fund for Regenerative Medicine funded by Ministry of Science and ICT, and Ministry of Health and Welfare (Grant No. RS-2022-00070316) and the Bio & Medical Technology Development Program funded by the Ministry of Science, ICT and Future Planning, Republic of Korea (NRF-2017M3A9E4047243) and K. S. also thankful for The Council of Higher Education (CoHE, 100/2000) PhD Scholarship Program, Turkey.

Return