Journal Home > Volume 15 , Issue 10

All inorganic CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals have made unprecedented radical progresses for opto-electronic applications, but their instability and toxicity of lead impede their wide applications. Herein, we report the first precipitation of lead-free Mn:Cs2ZnX4 nanocrystals in glasses. Efficient green and red photoluminescence are realized from these Mn:Cs2ZnX4 nanocrystals in glasses. By adjusting the size and halide component in these nanocrystals, coordination environment of Mn2+ ions can be tuned, leading to tunable photoluminescence with improved quantum efficiency. It is illustrated that in-situ precipitation of these Mn:Cs2ZnX4 nanocrystals in glasses significantly improves their thermal-, chemical-, and photo-stabilities, making them promising for light-emitting diodes with stable chromaticity coordinates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-stable and color-tunable manganese ions doped lead-free cesium zinc halides nanocrystals in glasses for light-emitting applications

Show Author's information Kai Li1Ying Ye1Wenchao Zhang1Yao Zhou1Yudong Zhang1Shisheng Lin2,3Hang Lin2,3Jian Ruan1Chao Liu1( )
State Key Laboratory of Silicate Materials for Architectures (SMART), Wuhan University of Technology, 122 Luoshi Road, Hongshan, Wuhan 430070, China
CAS Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China

Abstract

All inorganic CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals have made unprecedented radical progresses for opto-electronic applications, but their instability and toxicity of lead impede their wide applications. Herein, we report the first precipitation of lead-free Mn:Cs2ZnX4 nanocrystals in glasses. Efficient green and red photoluminescence are realized from these Mn:Cs2ZnX4 nanocrystals in glasses. By adjusting the size and halide component in these nanocrystals, coordination environment of Mn2+ ions can be tuned, leading to tunable photoluminescence with improved quantum efficiency. It is illustrated that in-situ precipitation of these Mn:Cs2ZnX4 nanocrystals in glasses significantly improves their thermal-, chemical-, and photo-stabilities, making them promising for light-emitting diodes with stable chromaticity coordinates.

Keywords: lead-free, light-emitting diode (LED), cesium zinc halides nanocrystals, long-term-stability

References(51)

1

Yin, W. J.; Shi, T. T.; Yan, Y. F. Unique properties of halide perovskites as possible origins of the superior solar cell performance. Adv. Mater. 2014, 26, 4653–4658.

2

Green, M. A.; Ho-Baillie, A.; Snaith, H. J. The emergence of perovskite solar cells. Nat. Photonics 2014, 8, 506–514.

3

Shi, D.; Adinolfi, V.; Comin, R.; Yuan, M. J.; Alarousu, E.; Buin, A.; Chen, Y.; Hoogland, S.; Rothenberger, A.; Katsiev, K. et al. Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals. Science 2015, 347, 519–522.

4

Fan, Q. Q.; Biesold-McGee, G. V.; Ma, J. Z.; Xu, Q. N.; Pan, S.; Peng, J.; Lin, Z. Q. Lead-free halide perovskite nanocrystals: Crystal structures, synthesis, stabilities, and optical properties. Angew. Chem., Int. Ed. 2020, 59, 1030–1046.

5

Sun, S. Q.; Lu, M.; Gao, X. P.; Shi, Z. F.; Bai, X.; Yu, W. W.; Zhang, Y. 0D perovskites: Unique properties, synthesis, and their applications. Adv. Sci. (Weinh. ) 2021, 8, 2102689.

6

Li, H. M.; Lin, H.; Ouyang, D.; Yao, C. L.; Li, C.; Sun, J. Y.; Song, Y. L.; Wang, Y. F.; Yan, Y. F.; Wang, Y. et al. Efficient and stable red perovskite light-emitting diodes with operational stability > 300 h. Adv. Mater. 2021, 33, 2008820.

7

Liu, Z.; Qiu, W. D.; Peng, X. M.; Sun, G. W.; Liu, X. Y.; Liu, D. H.; Li, Z. C.; He, F. R.; Shen, C. Y.; Gu, Q. et al. Perovskite light-emitting diodes with EQE exceeding 28% through a synergetic dual-additive strategy for defect passivation and nanostructure regulation. Adv. Mater. 2021, 33, 2103268.

8

Shen, Y.; Wu, H. Y.; Li, Y. Q.; Shen, K. C.; Gao, X. Y.; Song, F.; Tang, J. X. Interfacial nucleation seeding for electroluminescent manipulation in blue perovskite light-emitting diodes. Adv. Funct. Mater. 2021, 31, 2170331.

9

Lou, S. Q.; Xuan, T. T.; Wang, J. (INVITED) stability:A desiderated problem for the lead halide perovskites. Opt. Mater. X 2019, 1, 100023.

10

Luo, B. B.; Li, F.; Xu, K.; Guo, Y.; Liu, Y.; Xia, Z. G.; Zhang, J. Z. B-site doped lead halide perovskites:Synthesis, band engineering, photophysics, and light emission applications. J. Mater. Chem. C 2019, 7, 2781–2808.

11

Wang, Z.; Zhang, Y. Q.; Liu, X. D.; Yu, Y. X.; Xu, F. C.; Ding, J.; Liang, X. J.; Yang, K. Q.; Xiang, W. D. High stability and strong luminescence CsPbBr3/Cs4PbBr6 perovskite nanocomposite: Large-scale synthesis, reversible luminescence, and anti-counterfeiting application. Adv. Mater. Technol. 2021, 6, 2100654.

12

Akkerman, Q. A.; Rainò, G.; Kovalenko, M. V.; Manna, L. Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals. Nat. Mater. 2018, 17, 394–405.

13

Chen, W. W.; Hao, J. Y.; Hu, W.; Zang, Z. G.; Tang, X. S.; Fang, L.; Niu, T. C.; Zhou, M. Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure. Small 2017, 13, 1604085.

14

Shao, G. Z.; Zhao, Y.; Yu, Y. X.; Yang, H. S.; Liu, X. D.; Zhang, Y. J.; Xiang, W. D.; Liang, X. J. Bright emission and high photoluminescence CsPb2Br5 NCs encapsulated in mesoporous silica with ultrahigh stability and excellent optical properties for white light-emitting diodes. J. Mater. Chem. C 2019, 7, 13585–13593.

15

Ercan, E.; Tsai, P. C.; Chen, J. Y.; Lam, J. Y.; Hsu, L. C.; Chueh, C. C.; Chen, W. C. Stretchable and ambient stable perovskite/polymer luminous hybrid nanofibers of multicolor fiber mats and their white LED applications. ACS Appl. Mater. Interfaces 2019, 11, 23605–23615.

16

Chen, Z.; Gu, Z. G.; Fu, W. Q.; Wang, F.; Zhang, J. A confined fabrication of perovskite quantum dots in oriented MOF thin film. ACS Appl. Mater. Interfaces 2016, 8, 28737–28742.

17

Huang, S. Q.; Li, Z. C.; Kong, L.; Zhu, N. W.; Shan, A. D.; Li, L. Enhancing the stability of CH3NH3PbBr3 quantum dots by embedding in silica spheres derived from tetramethyl orthosilicate in “Waterless” toluene. J. Am. Chem. Soc. 2016, 138, 5749–5752.

18

Ai, B.; Liu, C.; Wang, J.; Xie, J.; Han, J. J.; Zhao, X. J. Precipitation and optical properties of CsPbBr3 quantum dots in phosphate glasses. J. Am. Ceram. Soc. 2016, 99, 2875–2877.

19

Ye, Y.; Zhang, W. C.; Zhao, Z. Y.; Wang, J.; Liu, C.; Deng, Z.; Zhao, X. J.; Han, J. J. Highly luminescent cesium lead halide perovskite nanocrystals stabilized in glasses for light-emitting applications. Adv. Opt. Mater. 2019, 7, 1801663.

20

Zhang, B. W.; Zhang, K.; Li, L. F.; Xu, C. C.; Wang, R. F.; Wang, C.; Yang, J.; Yang, Y.; Wang, J.; Qiu, F. et al. Enhancing stability and luminescence quantum yield of CsPbBr3 quantum dots by embedded in borosilicate glass. J. Alloys Compd. 2021, 874, 159962.

21

Kong, Q. K.; Yang, B.; Chen, J. S.; Zhang, R. L.; Liu, S. P.; Zheng, D. Y.; Zhang, H. L.; Liu, Q. T.; Wang, Y. Y.; Han, K. L. Phase engineering of cesium manganese bromides nanocrystals with color-tunable emission. Angew. Chem., Int. Ed. 2021, 60, 19653–19659.

22

Shankar, H.; Ghosh, S.; Kar, P. Highly stable blue fluorescent lead free all-inorganic Cs2ZnX4 2D perovskite nanocrystals. J. Alloys Compd. 2020, 844, 156148.

23

Zhang, Z. X.; Zhao, R. T.; Teng, S. Y.; Huang, K. K.; Zhang, L. J.; Wang, D. Y.; Yang, W. S.; Xie, R. G.; Pradhan, N. Color tunable self-trapped emissions from lead-free all inorganic IA-IB bimetallic halides Cs-Ag-X (X = Cl, Br, I). Small 2020, 16, 2004272.

24

Zhao, X. H.; Wu, M.; Liu, H.; Wang, Y. X.; Wang, K.; Yang, X. Y.; Zou, B. Pressure-treated engineering to harvest enhanced green emission in Mn-based organic-inorganic metal halides at ambient conditions. Adv. Funct. Mater. 2021, 32, 2109277.

25

Jellicoe, T. C.; Richter, J. M.; Glass, H. F. J.; Tabachnyk, M.; Brady, R.; Dutton, S. E.; Rao, A.; Friend, R. H.; Credgington, D.; Greenham, N. C. et al. Synthesis and optical properties of lead-free cesium tin halide perovskite nanocrystals. J. Am. Chem. Soc. 2016, 138, 2941–2944.

26

Fu, P. F.; Huang, M. L.; Shang, Y. Q.; Yu, N.; Zhou, H. L.; Zhang, Y. B.; Chen, S. Y.; Gong, J. K.; Ning, Z. J. Organic-inorganic layered and hollow tin bromide perovskite with tunable broadband emission. ACS Appl. Mater. Interfaces 2018, 10, 34363–34369.

27

Roccanova, R.; Yangui, A.; Nhalil, H.; Shi, H. L.; Du, M. H.; Saparov, B. Near-unity photoluminescence quantum yield in blue-emitting Cs3Cu2Br5–xIx (0 ≤ x ≤ 5). ACS Appl. Electron. Mater. 2019, 1, 269–274.

28

Cheng, P. F.; Feng, L.; Liu, Y. F.; Zheng, D. Y.; Sang, Y. B.; Zhao, W. Y.; Yang, Y.; Yang, S. Q.; Wei, D. H.; Wang, G. X. et al. Doped zero-dimensional cesium zinc halides for high-efficiency blue light emission. Angew. Chem., Int. Ed. 2020, 59, 21414–21418.

29

Xu, K. M.; Wei, Q.; Wang, H.; Yao, B.; Zhou, W. J.; Gao, R.; Chen, H.; Li, H. S.; Wang, J. T.; Ning, Z. J. The 3D-structure-mediated growth of zero-dimensional Cs4SnX6 nanocrystals. Nanoscale 2022, 14, 2248–2255.

30

Su, B. B.; Li, M. Z.; Song, E. H.; Xia, Z. G. Sb3+-doping in cesium zinc halides single crystals enabling high-efficiency near-infrared emission. Adv. Funct. Mater. 2021, 31, 2105316.

31

Morad, V.; Cherniukh, I.; Pöttschacher, L.; Shynkarenko, Y.; Yakunin, S.; Kovalenko, M. V. Manganese(II) in tetrahedral halide environment: Factors governing bright green luminescence. Chem. Mater. 2019, 31, 10161–10169.

32

Li, S. R.; Luo, J. J.; Liu, J.; Tang, J. Self-trapped excitons in all-inorganic halide perovskites: Fundamentals, status, and potential applications. J. Phys. Chem. Lett. 2019, 10, 1999–2007.

33

Williams, R. T.; Song, K. S.; Faust, W. L.; Leung, C. H. Off-center self-trapped excitons and creation of lattice defects in alkali halide crystals. Phys. Rev. B 1986, 33, 7232–7240.

34

Fowler, W. B.; Marrone, M. J.; Kabler, M. N. Theory of self-trapped exciton luminescence in halide crystals. Phys. Rev. B 1973, 8, 5909–5919.

35

Zhu, D. X.; Zaffalon, M. L.; Pinchetti, V.; Brescia, R.; Moro, F.; Fasoli, M.; Fanciulli, M.; Tang, A. W.; Infante, I.; De Trizio, L. et al. Bright blue emitting Cu-doped Cs2ZnCl4 colloidal nanocrystals. Chem. Mater. 2020, 32, 5897–5903.

36

Su, B. B.; Zhou, G. J.; Huang, J. L.; Song, E. H.; Nag, A.; Xia, Z. G. Mn2+-doped metal halide perovskites: Structure, photoluminescence, and application. Laser Photonics Rev. 2021, 15, 2000334.

37

Zhou, Q.; Dolgov, L.; Srivastava, A. M.; Zhou, L.; Wang, Z. L.; Shi, J. X.; Dramicanin, M. D.; Brik, M. G.; Wu, M. M. Mn2+ and Mn4+ red phosphors: Synthesis, luminescence and applications in WLEDs. A review. J. Mater. Chem. C 2018, 6, 2652–2671.

38

Lin, S. S.; Lin, H.; Ma, C. G.; Cheng, Y.; Ye, S. Z.; Lin, F. L.; Li, R. F.; Xu, J.; Wang, Y. S. High-security-level multi-dimensional optical storage medium: Nanostructured glass embedded with LiGa5O8: Mn2+ with photostimulated luminescence. Light Sci. Appl. 2020, 9, 22.

39

Su, B. B.; Molokeev, M. S.; Xia, Z. G. Mn2+-based narrow-band green-emitting Cs3MnBr5 phosphor and the performance optimization by Zn2+ alloying. J. Mater. Chem. C 2019, 7, 11220–11226.

40

Rao, J. L.; Purandar, K. Electronic absorption spectrum of Mn2+ ions doped in diglycine barium chloride monohydrate. Solid State Commun. 1981, 37, 983–986.

41

Peng, H.; Huang, T.; Zou, B. S.; Tian, Y.; Wang, X. X.; Guo, Y. C.; Dong, T. T.; Yu, Z. M.; Ding, C. J.; Yang, F. et al. Organic-inorganic hybrid manganese bromine single crystal with dual-band photoluminescence from polaronic and bipolaronic excitons. Nano Energy 2021, 87, 106166.

42

Yan, S. Y.; Tian, W. L.; Chen, H.; Tang, K. X.; Lin, T. T.; Zhong, G. Y.; Qiu, L. Z.; Pan, X. Y.; Wang, W. Z. Synthesis of 0D manganese-based organic-inorganic hybrid perovskite and its application in lead-free red light-emitting diode. Adv. Funct. Mater. 2021, 31, 2100855.

43

Almutlaq, J.; Mir, W. J.; Gutiérrez-Arzaluz, L.; Yin, J.; Vasylevskyi, S.; Maity, P.; Liu, J. K.; Naphade, R.; Mohammed, O. F.; Bakr, O. M. CsMnBr3: Lead-free nanocrystals with high photoluminescence quantum yield and picosecond radiative lifetime. ACS Mater. Lett. 2021, 3, 290–297.

44

Ma, Y. Y.; Song, Y. R.; Xu, W. J.; Zhong, Q. Q.; Fu, H. Q.; Liu, X. L.; Yue, C. Y.; Lei, X. W. Solvent-free mechanochemical syntheses of microscale lead-free hybrid manganese halides as efficient green light phosphors. J. Mater. Chem. C 2021, 9, 9952–9961.

45

Xiao, H.; Dang, P. P.; Yun, X. H.; Li, G. G.; Wei, Y.; Wei, Y.; Xiao, X.; Zhao, Y. J.; Molokeev, M. S.; Cheng, Z. Y. et al. Solvatochromic photoluminescent effects in all-inorganic manganese(II)-based perovskites by highly selective solvent-induced crystal-to-crystal phase transformations. Angew. Chem., Int. Ed. 2021, 60, 3699–3707.

46

Yan, S. Y.; Tang, K. X.; Lin, Y. J.; Ren, Y. H.; Tian, W. L.; Chen, H.; Lin, T. T.; Qiu, L. Z.; Pan, X. Y.; Wang, W. Z. Light-emitting diodes with manganese halide tetrahedron embedded in anti-perovskites. ACS Energy Lett. 2021, 6, 1901–1911.

47

Li, C. Y.; Bai, X. W.; Guo, Y. C.; Zou, B. S. Tunable emission properties of manganese chloride small single crystals by pyridine incorporation. ACS Omega 2019, 4, 8039–8045.

48

Bai, X. W.; Zhong, H. Z.; Chen, B. K.; Chen, C.; Han, J. B.; Zeng, R. S.; Zou, B. S. Pyridine-modulated Mn ion emission properties of C10H12N2MnBr4 and C5H6NMnBr3 single crystals. J. Phys. Chem. C. 2018, 122, 3130–3137.

49

Peng, H.; Zou, B. S.; Guo, Y. C.; Xiao, Y. H.; Zhi, R. N.; Fan, X. Y.; Zou, M.; Wang, J. P. Evolution of the structure and properties of mechanochemically synthesized pyrrolidine incorporated manganese bromide powders. J. Mater. Chem. C 2020, 8, 6488–6495.

50

Wei, J. H.; Liao, J. F.; Wang, X. D.; Zhou, L.; Jiang, Y.; Kuang, D. B. All-inorganic lead-free heterometallic Cs4MnBi2Cl12 perovskite single crystal with highly efficient orange emission. Matter 2020, 3, 892–903.

51
Dang, Z. Y.; Shamsi, J.; Palazon, F.; Imran, M.; Akkerman, Q. A.; Park, S.; Bertoni, G.; Prato, M.; Brescia, R.; Manna, L. In situ transmission electron microscopy study of electron beam-induced transformations in colloidal cesium lead halide perovskite nanocrystals. ACS Nano 2017, 11, 2124–2132.
File
12274_2022_4607_MOESM1_ESM.pdf (2.2 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2022
Revised: 19 May 2022
Accepted: 01 June 2022
Published: 06 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the Key Research and Development Program of Hubei Province, China (No. 2021BAA206).

Return