Journal Home > Volume 15 , Issue 12

Crystal phase is an intrinsic structural parameter to determine the physicochemical properties and functionalities of materials. The unconventional phases of materials with distinct atomic arrangements from their thermodynamically stable phases have attracted enormous attention. Phase engineering has recently made fruitful achievements in electrocatalysis field to optimize the performance of various electrochemical reactions. In this review, theoretical and experimental advances made in phase engineering of electrocatalysts are summarized. First, we introduce basic understanding on crystal phases of catalysts to show the dialectical relationship between bulk phase and surface catalytic layer, and highlight the multiple functions of phase engineering in catalysis studies. We then describe phase-controlled synthesis of materials through various experimental methods such as wet-chemical method, phase transition, and template growth. As a focus, we discuss the wide usage of phase engineering strategy in different kinds of electrocatalytic materials, and particular emphasis is given to establishment of reasonable crystal phase-activity relationship. Finally, we propose several future directions for developing more desirable electrocatalysts by rational crystal phase design.


menu
Abstract
Full text
Outline
About this article

Crystal phase engineering of electrocatalysts for energy conversions

Show Author's information Hui Chen1Mingcheng Zhang1Yanfei Wang2Ke Sun1Lina Wang1Zhoubing Xie1Yucheng Shen1Xindi Han1Lan Yang1( )Xiaoxin Zou1( )
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
Petrochina Petrochemical Research Institute, Beijing 102206, China

Abstract

Crystal phase is an intrinsic structural parameter to determine the physicochemical properties and functionalities of materials. The unconventional phases of materials with distinct atomic arrangements from their thermodynamically stable phases have attracted enormous attention. Phase engineering has recently made fruitful achievements in electrocatalysis field to optimize the performance of various electrochemical reactions. In this review, theoretical and experimental advances made in phase engineering of electrocatalysts are summarized. First, we introduce basic understanding on crystal phases of catalysts to show the dialectical relationship between bulk phase and surface catalytic layer, and highlight the multiple functions of phase engineering in catalysis studies. We then describe phase-controlled synthesis of materials through various experimental methods such as wet-chemical method, phase transition, and template growth. As a focus, we discuss the wide usage of phase engineering strategy in different kinds of electrocatalytic materials, and particular emphasis is given to establishment of reasonable crystal phase-activity relationship. Finally, we propose several future directions for developing more desirable electrocatalysts by rational crystal phase design.

Keywords: electrocatalysis, transition metal, crystal phase, energy conversion, atomic arrangement

References(203)

[1]

Medford, A. J.; Vojvodic, A.; Hummelshøj, J. S.; Voss, J.; Abild-Pedersen, F.; Studt, F.; Bligaard, T.; Nilsson, A.; Nørskov, J. K. From the sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J. Catal. 2015, 328, 36–42.

[2]

Liang, J. S.; Ma, F.; Hwang, S.; Wang, X. X.; Sokolowski, J.; Li, Q.; Wu, G.; Su, D. Atomic arrangement engineering of metallic nanocrystals for energy-conversion electrocatalysis. Joule 2019, 3, 956–991.

[3]

You, H.; Zhuo, Z. W.; Lu, X. F.; Liu, Y. W.; Guo, Y. B.; Wang, W. B.; Yang, H.; Wu, X. J.; Li, H. Q.; Zhai, T. Y. 1T'-MoTe2-based on-chip electrocatalytic microdevice: A platform to unravel oxidation-dependent electrocatalysis. CCS Chem. 2019, 1, 396–406.

[4]

Bai, S.; Gao, C.; Low, J.; Xiong, Y. J. Crystal phase engineering on photocatalytic materials for energy and environmental applications. Nano Res. 2019, 12, 2031–2054.

[5]

Sheng, B. B.; Cao, D. F.; Shou, H. W.; Moses, O. A.; Xu, W. J.; Xia, Y. J.; Zhou, Y. Z.; Wang, H. J.; Wan, P.; Zhu, S. et al. Support induced phase engineering toward superior electrocatalyst. Nano Res. 2022, 15, 1831–1837.

[6]

Escudero-Escribano, M.; Malacrida, P.; Hansen, M. H.; Vej-Hansen, U. G.; Velázquez-Palenzuela, A.; Tripkovic, V.; Schiøtz, J.; Rossmeisl, J.; Stephens, I. E. L.; Chorkendorff, I. Tuning the activity of Pt alloy electrocatalysts by means of the lanthanide contraction. Science 2016, 352, 73–76.

[7]

Wu, Z. P.; Caracciolo, D. T.; Maswadeh, Y.; Wen, J. G.; Kong, Z. J.; Shan, S. Y.; Vargas, J. A.; Yan, S.; Hopkins, E.; Park, K. et al. Alloying-realloying enabled high durability for Pt-Pd-3d-transition metal nanoparticle fuel cell catalysts. Nat. Commun. 2021, 12, 859.

[8]

Chen, X.; Yu, M.; Yan, Z. H.; Guo, W. Y.; Fan, G. L.; Ni, Y. X.; Liu, J. D.; Zhang, W.; Xie, W.; Cheng, F. Y. et al. Boosting electrocatalytic oxygen evolution by cation defect modulation via electrochemical etching. CCS Chem. 2021, 3, 675–685.

[9]

Arandiyan, H.; Mofarah, S. S.; Sorrell, C. C.; Doustkhah, E.; Sajjadi, B.; Hao, D.; Wang, Y.; Sun, H. Y.; Ni, B. J.; Rezaei, M. et al. Defect engineering of oxide perovskites for catalysis and energy storage: Synthesis of chemistry and materials science. Chem. Soc. Rev. 2021, 50, 10116–10211.

[10]

Liang, X.; Shi, L.; Liu, Y. P.; Chen, H.; Si, R.; Yan, W. S.; Zhang, Q.; Li, G. D.; Yang, L.; Zou, X. X. Activating inert, nonprecious perovskites with iridium dopants for efficient oxygen evolution reaction under acidic conditions. Angew. Chem., Int. Ed. 2019, 58, 7631–7635.

[11]
Chen, X. ; Wang, Q. C. ; Cheng, Y. W. ; Xing, H. L. ; Li, J. Z. ; Zhu, X. J. ; Ma, L. B. ; Li, Y. T. ; Liu, D. M. S-doping triggers redox reactivities of both iron and lattice oxygen in FeOOH for low-cost and high-performance water oxidation. Adv. Funct. Mater., in press, https://doi.org/10.1002/adfm.202112674.
[12]

Yan, B. L.; Liu, D. P.; Feng, X. L.; Shao, M. Z.; Zhang, Y. Ru nanoparticles supported on Co-embedded N-doped carbon nanotubes as efficient electrocatalysts for hydrogen evolution in basic media. Chem. Res. Chin. Univ. 2020, 36, 425–430.

[13]

Yang, L.; Zhang, K. X.; Chen, H.; Shi, L.; Liang, X.; Wang, X. Y.; Liu, Y. P.; Feng, Q.; Liu, M. J.; Zou, X. X. An ultrathin two-dimensional iridium-based perovskite oxide electrocatalyst with highly efficient {001} facets for acidic water oxidation. J. Energy Chem. 2022, 66, 619–627.

[14]

Xu, D. D.; Liu, X. L.; Lv, H.; Liu, Y.; Zhao, S. L.; Han, M.; Bao, J. C.; He, J.; Liu, B. Ultrathin palladium nanosheets with selectively controlled surface facets. Chem. Sci. 2018, 9, 4451–4455.

[15]

Venkatesh, R.; Chakrabarty, P. K.; Siladitya, B.; Chatterjee, M.; Ganguli, D. Preparation of alumina fibre mats by a sol-gel spinning technique. Ceram. Int. 1999, 25, 539–543.

[16]

Neuhaus, J.; Leitner, M.; Nicolaus, K.; Petry, W.; Hennion, B.; Hiess, A. Role of vibrational entropy in the stabilization of the high-temperature phases of iron. Phys. Rev. B 2014, 89, 184302.

[17]

Liu, J. W.; Huang, J. T.; Niu, W. X.; Tan, C. L.; Zhang, H. Unconventional-phase crystalline materials constructed from multiscale building blocks. Chem. Rev. 2021, 121, 5830–5888.

[18]

Li, W. B.; Qian, X. F.; Li, J. Phase transitions in 2D materials. Nat. Rev. Mater. 2021, 6, 829–846.

[19]

Park, S.; Lee, Y. H.; Choi, S.; Seo, H.; Lee, M. Y.; Balamurugan, M.; Nam, K. T. Manganese oxide-based heterogeneous electrocatalysts for water oxidation. Energy Environ. Sci. 2020, 13, 2310–2340.

[20]

Chen, H.; Zou, X. X. Intermetallic borides: Structures, synthesis and applications in electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248–2264.

[21]

Onishi, Y. The catalytic oxidation of hydrogen on titanium dioxide; anatase and rutile. Bull. Chem. Soc. Jan. 1971, 44, 912–915.

[22]

Onishi, Y.; Hamamura, T. The catalytic oxidation of carbon monoxide on titanium dioxide; anatase and rutile. Bull. Chem. Soc. Jan. 1970, 43, 996–1000.

[23]

Feng, Q. C.; Zhao, S.; Wang, Y.; Dong, J. C.; Chen, W. X.; He, D. S.; Wang, D. S.; Yang, J.; Zhu, Y. M.; Zhu, H. L. et al. Isolated single-atom pd sites in intermetallic nanostructures: High catalytic selectivity for semihydrogenation of alkynes. J. Am. Chem. Soc. 2017, 139, 7294–7301.

[24]

Lv, H.; Xu, D. D.; Kong, C. C.; Liang, Z. Z.; Zheng, H. Q.; Huang, Z. H.; Liu, B. Synthesis and crystal-phase engineering of mesoporous palladium-boron alloy nanoparticles. ACS Cent. Sci. 2020, 6, 2347–2353.

[25]

Wang, X.; Xu, Q.; Li, M. R.; Shen, S.; Wang, X. L.; Wang, Y. C.; Feng, Z. C.; Shi, J. Y.; Han, H. X.; Li, C. Photocatalytic overall water splitting promoted by an α-β phase junction on Ga2O3. Angew. Chem., Int. Ed. 2012, 51, 13089–13092.

[26]

Liu, L. C.; Corma, A. Structural transformations of solid electrocatalysts and photocatalysts. Nat. Rev. Chem. 2021, 5, 256–276.

[27]

Jia, L.; Sun, M. Z.; Xu, J.; Zhao, X.; Zhou, R.; Pan, B. B.; Wang, L.; Han, N.; Huang, B. L.; Li, Y. G. Phase-dependent electrocatalytic CO2 reduction on Pd3Bi nanocrystals. Angew. Chem., Int. Ed. 2021, 60, 21741–21745.

[28]

Wang, Z. K.; Wang, S. Y.; Ma, L. X.; Guo, Y. J.; Sun, J.; Zhang, N.; Jiang, R. B. Water-induced formation of Ni2P-Ni12P5 interfaces with superior electrocatalytic activity toward hydrogen evolution reaction. Small 2021, 17, 2006770.

[29]

Chen, H.; Liang, X.; Liu, Y. P.; Ai, X.; Asefa, T.; Zou, X. X. Active site engineering in porous electrocatalysts. Adv. Mater. 2020, 32, 2002435.

[30]

Si, J. J.; Yu, J. Q.; Shen, Y.; Zeng, M. Q.; Fu, L. Elemental 2D materials: Progress and perspectives toward unconventional structures. Small Struct. 2021, 2, 2000101.

[31]

Yang, N. L.; Cheng, H. F.; Liu, X. Z.; Yun, Q. B.; Chen, Y.; Li, B.; Chen, B.; Zhang, Z. C.; Chen, X. P.; Lu, Q. P. et al. Amorphous/crystalline hetero-phase Pd nanosheets: One-pot synthesis and highly selective hydrogenation reaction. Adv. Mater. 2018, 30, 1803234.

[32]

Chen, Y.; Lai, Z. C.; Zhang, X.; Fan, Z. X.; He, Q. Y.; Tan, C. L.; Zhang, H. Phase engineering of nanomaterials. Nat. Rev. Chem. 2020, 4, 243–256.

[33]

Ge, Y. Y.; Shi, Z. Y.; Tan, C. L.; Chen, Y.; Cheng, H. F.; He, Q. Y.; Zhang, H. Two-dimensional nanomaterials with unconventional phases. Chem 2020, 6, 1237–1253.

[34]

Janssen, A.; Nguyen, Q. N.; Xia, Y. N. Colloidal metal nanocrystals with metastable crystal structures. Angew. Chem., Int. Ed. 2021, 60, 12192–12203.

[35]

Zhao, Z. J.; Liu, S. H.; Zha, S.; Cheng, D. F.; Studt, F.; Henkelman, G.; Gong, J. L. Theory-guided design of catalytic materials using scaling relationships and reactivity descriptors. Nat. Rev. Mater. 2019, 4, 792–804.

[36]

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

[37]

Song, C. W.; Lim, J.; Bae, H. B.; Chung, S. Y. Discovery of crystal structure-stability correlation in iridates for oxygen evolution electrocatalysis in acid. Energy Environ. Sci. 2020, 13, 4178–4188.

[38]

Geng, X. M.; Sun, W. W.; Wu, W.; Chen, B.; Al-Hilo, A.; Benamara, M.; Zhu, H. L.; Watanabe, F.; Cui, J. B.; Chen, T. P. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 2016, 7, 10672.

[39]

Yao, Y. C.; He, D. S.; Lin, Y.; Feng, X. Q.; Wang, X.; Yin, P. Q.; Hong, X.; Zhou, G.; Wu, Y. E.; Li, Y. D. Modulating fcc and hcp ruthenium on the surface of palladium-copper alloy through tunable lattice mismatch. Angew. Chem., Int. Ed. 2016, 55, 5501–5505.

[40]

Fan, Z. L.; Ji, Y. J.; Shao, Q.; Geng, S. Z.; Zhu, W. X.; Liu, Y.; Liao, F.; Hu, Z. W.; Chang, Y. C.; Pao, C. W. et al. Extraordinary acidic oxygen evolution on new phase 3R-iridium oxide. Joule 2021, 5, 3221–3234.

[41]

Feng, Y.; Gong, S. J.; Du, E. W.; Chen, X. F.; Qi, R. J.; Yu, K.; Zhu, Z. Q. 3R TaS2 surpasses the corresponding 1T and 2H phases for the hydrogen evolution reaction. J. Phys. Chem. C 2018, 122, 2382–2390.

[42]

Chen, H.; Zhang, B.; Liang, X.; Zou, X. X. Light alloying element-regulated noble metal catalysts for energy-related applications. Chin. J. Catal. 2022, 43, 611–635.

[43]

Yan, G. B.; Lian, Y. B.; Gu, Y. D.; Yang, C.; Sun, H.; Mu, Q. Q.; Li, Q.; Zhu, W.; Zheng, X. S.; Chen, M. Z. et al. Phase and morphology transformation of MnO2 induced by ionic liquids toward efficient water oxidation. ACS Catal. 2018, 8, 10137–10147.

[44]

Strickler, A. L.; Higgins, D.; Jaramillo, T. F. Crystalline strontium iridate particle catalysts for enhanced oxygen evolution in acid. ACS Appl. Energy Mater. 2019, 2, 5490–5498.

[45]

Li, Q.; Wu, J. B.; Wu, T.; Jin, H. R.; Zhang, N.; Li, J.; Liang, W. X.; Liu, M. L.; Huang, L.; Zhou, J. Phase engineering of atomically thin perovskite oxide for highly active oxygen evolution. Adv. Funct. Mater. 2021, 31, 2102002.

[46]

Li, Z. Y.; Xie, Z. B.; Chen, H.; Liang, X.; Ai, X.; Yuan, L.; Li, X. T.; Zou, X. X. Realization of interstitial boron ordering and optimal near-surface electronic structure in Pd-B alloy electrocatalysts. Chem. Eng. J. 2021, 419, 129568.

[47]

Zhao, T. H.; Xiao, D. D.; Chen, Y.; Tang, X.; Gong, M. X.; Deng, S. F.; Liu, X. P.; Ma, J. M.; Zhao, X.; Wang, D. L. Boosting alkaline hydrogen electrooxidation on an unconventional fcc-Ru polycrystal. J. Energy Chem. 2021, 61, 15–22.

[48]

Li, Z. Y.; Ai, X.; Chen, H.; Liang, X.; Li, X. T.; Wang, D.; Zou, X. X. Asymmetrically strained hcp rhodium sublattice stabilized by 1D covalent boron chains as an efficient electrocatalyst. Chem. Commun. 2021, 57, 5075–5078.

[49]

Zhao, M.; Chen, Z. T.; Lyu, Z.; Hood, Z. D.; Xie, M. H.; Vara, M.; Chi, M. F.; Xia, Y. N. Ru octahedral nanocrystals with a face-centered cubic structure, {111} facets, thermal stability up to 400 °C, and enhanced catalytic activity. J. Am. Chem. Soc. 2019, 141, 7028–7036.

[50]

Zou, X.; Wang, L. N.; Ai, X.; Chen, H.; Zou, X. X. Crystal phase-dependent electrocatalytic hydrogen evolution performance of ruthenium-boron intermetallics. Chem. Commun. 2020, 56, 3061–3064.

[51]

Ai, X.; Zou, X.; Chen, H.; Su, Y. T.; Feng, X. L.; Li, Q. J.; Liu, Y. P.; Zhang, Y.; Zou, X. X. Transition-metal-boron intermetallics with strong interatomic d-sp orbital hybridization for high-performance electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 3961–3965.

[52]

Wang, Y. X.; Li, C. Y.; Fan, Z. X.; Chen, Y.; Li, X.; Cao, L.; Wang, C. H.; Wang, L.; Su, D.; Zhang, H. et al. Undercoordinated active sites on 4H gold nanostructures for CO2 reduction. Nano Lett. 2020, 20, 8074–8080.

[53]

Guo, F. F.; Wu, Y. Y.; Ai, X.; Chen, H.; Li, G. D.; Chen, W.; Zou, X. X. A class of metal diboride electrocatalysts synthesized by a molten salt-assisted reaction for the hydrogen evolution reaction. Chem. Commun. 2019, 55, 8627–8630.

[54]

Lu, S. Y.; Liang, J. Z.; Long, H. W.; Li, H. X.; Zhou, X. C.; He, Z.; Chen, Y.; Sun, H. Y.; Fan, Z. X.; Zhang, H. Crystal phase control of gold nanomaterials by wet-chemical synthesis. Acc. Chem. Res. 2020, 53, 2106–2118.

[55]

Kusada, K.; Kobayashi, H.; Yamamoto, T.; Matsumura, S.; Sumi, N.; Sato, K.; Nagaoka, K.; Kubota, Y.; Kitagawa, H. Discovery of face-centered-cubic ruthenium nanoparticles: Facile size-controlled synthesis using the chemical reduction method. J. Am. Chem. Soc. 2013, 135, 5493–5496.

[56]

Wu, M. H.; Zhan, J.; Wu, K.; Li, Z.; Wang, L.; Geng, B. J.; Wang, L. J.; Pan, D. Y. Metallic 1T MoS2 nanosheet arrays vertically grown on activated carbon fiber cloth for enhanced Li-ion storage performance. J. Mater. Chem. A 2017, 5, 14061–14069.

[57]

Chen, Y.; Fan, Z. X.; Luo, Z. M.; Liu, X. Z.; Lai, Z. C.; Li, B.; Zong, Y.; Gu, L.; Zhang, H. High-yield synthesis of crystal-phase-heterostructured 4H/fcc Au@Pd core–shell nanorods for electrocatalytic ethanol oxidation. Adv. Mater. 2017, 29, 1701331.

[58]

Liu, Q.; Shang, Q. C.; Khalil, A.; Fang, Q.; Chen, S. M.; He, Q.; Xiang, T.; Liu, D. B .; Zhang, Q.; Luo, Y. et al. In situ integration of a metallic 1T-MoS2/CdS heterostructure as a means to promote visible-light-driven photocatalytic hydrogen evolution. ChemCatChem 2016, 8, 2614–2619.

[59]

Wu, C. Q.; Fang, Q.; Liu, Q.; Liu, D. B.; Wang, C. D.; Xiang, T.; Khalil, A.; Chen, S. M.; Song, L. Engineering interfacial charge-transfer by phase transition realizing enhanced photocatalytic hydrogen evolution activity. Inorg. Chem. Front. 2017, 4, 663–667.

[60]

He, D. P.; Ooka, H.; Kim, Y.; Li, Y. M.; Jin, F. M.; Kim, S. H.; Nakamura, R. Atomic-scale evidence for highly selective electrocatalytic N–N coupling on metallic MoS2. Proc. Natl. Acad. Sci. USA 2020, 117, 31631–31638.

[61]

Chen, P.; Pai, W. W.; Chan, Y. H.; Sun, W. L.; Xu, C. Z.; Lin, D. S.; Chou, M. Y.; Fedorov, A. V.; Chiang, T. C. Large quantum-spin-Hall gap in single-layer 1T′ WSe2. Nat. Commun. 2018, 9, 2003.

[62]

Yang, D.; Hu, X. Z.; Zhuang, M. H.; Ding, Y.; Zhou, S. S.; Li, A. J.; Yu, Y. W.; Li, H. Q.; Luo, Z. T.; Gan, L. et al. Inversion symmetry broken 2D 3R-MoTe2. Adv. Funct. Mater. 2018, 28, 1800785.

[63]

Yoo, Y.; DeGregorio, Z. P.; Su, Y.; Koester, S. J.; Johns, J. E. In-plane 2H-1T′ MoTe2 homojunctions synthesized by flux-controlled phase engineering. Adv. Mater. 2017, 29, 1605461.

[64]

Liu, L. N.; Wu, J. X.; Wu, L. Y.; Ye, M.; Liu, X. Z.; Wang, Q.; Hou, S. Y.; Lu, P. F.; Sun, L. F.; Zheng, J. Y. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 2018, 17, 1108–1114.

[65]

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

[66]

Keum, D. H.; Cho, S.; Kim, J. H.; Choe, D. H.; Sung, H. J.; Kan, M.; Kang, H.; Hwang, J. Y.; Kim, S. W.; Yang, H. et al. Bandgap opening in few-layered monoclinic MoTe2. Nat. Phys. 2015, 11, 482–486.

[67]

Guo, Q. X.; Zhao, Y. S.; Mao, W. L.; Wang, Z. W.; Xiong, Y. J.; Xia, Y. N. Cubic to tetragonal phase transformation in cold-compressed Pd nanocubes. Nano Lett. 2008, 8, 972–975.

[68]

Sun, Y. G.; Yang, W. G.; Ren, Y.; Wang, L.; Lei, C. H. Multiple-step phase transformation in silver nanoplates under high pressure. Small 2011, 7, 606–611.

[69]
Yan, M. L.; Mao, K.; Cui, P. X.; Chen, C.; Zhao, J.; Wang, X. Z.; Yang, L. J.; Yang, H.; Wu, Q.; Hu, Z. In situ construction of porous hierarchical (Ni3−xFex)FeN/Ni heterojunctions toward efficient electrocatalytic oxygen evolution. Nano Res. 2020, 13, 328–334.
[70]

Fan, Z. X.; Zhang, H. Template synthesis of noble metal nanocrystals with unusual crystal structures and their catalytic applications. Acc. Chem. Res. 2016, 49, 2841–2850.

[71]

Fan, Z. X.; Huang, X.; Han, Y.; Bosman, M.; Wang, Q. X.; Zhu, Y. H.; Liu, Q.; Li, B.; Zeng, Z. Y.; Wu, J. et al. Surface modification-induced phase transformation of hexagonal close-packed gold square sheets. Nat. Commun. 2015, 6, 6571.

[72]

Fan, Z. X.; Bosman, M.; Huang, X.; Huang, D.; Yu, Y.; Ong, K. P.; Akimov, Y. A.; Wu, L.; Li, B.; Wu, J. et al. Stabilization of 4H hexagonal phase in gold nanoribbons. Nat. Commun. 2015, 6, 7684.

[73]

Fan, Z. X.; Zhu, Y. H.; Huang, X.; Han, Y.; Wang, Q. X.; Liu, Q.; Huang, Y.; Gan, C. L.; Zhang, H. Synthesis of ultrathin face-centered-cubic Au@Pt and Au@Pd core–shell nanoplates from hexagonal-close-packed au square sheets. Angew. Chem., Int. Ed. 2015, 54, 5672–5676.

[74]

Kappera, R.; Voiry, D.; Yalcin, S. E.; Branch, B.; Gupta, G.; Mohite, A. D.; Chhowalla, M. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 2014, 13, 1128–1134.

[75]

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem., Int. Ed. 2011, 50, 11093–11097.

[76]

Kim, S.; Song, S.; Park, J.; Yu, H. S.; Cho, S.; Kim, D.; Baik, J.; Choe, D. H.; Chang, K. J.; Lee, Y. H. et al. Long-range lattice engineering of MoTe2 by a 2D electride. Nano Lett. 2017, 17, 3363–3368.

[77]

Fan, Z. X.; Chen, Y.; Zhu, Y. H.; Wang, J.; Li, B.; Zong, Y.; Han, Y.; Zhang, H. Epitaxial growth of unusual 4H hexagonal Ir, Rh, Os, Ru and Cu nanostructures on 4H Au nanoribbons. Chem. Sci. 2017, 8, 795–799.

[78]

Xia, X. H.; Wang, Y.; Ruditskiy, A.; Xia, Y. N. 25th Anniversary article: Galvanic replacement: A simple and versatile route to hollow nanostructures with tunable and well-controlled properties. Adv. Mater. 2013, 25, 6313–6333.

[79]

Chakraborty, I.; Shirodkar, S. N.; Gohil, S.; Waghmare, U. V.; Ayyub, P. A stable, quasi-2D modification of silver: Optical, electronic, vibrational and mechanical properties, and first principles calculations. J. Phys. Condens. Matter 2013, 26, 025402.

[80]

Fan, Z. X.; Zhang, H. Crystal phase-controlled synthesis, properties and applications of noble metal nanomaterials. Chem. Soc. Rev. 2016, 45, 63–82.

[81]

Joo, S. H.; Park, J. Y.; Renzas, J. R.; Butcher, D. R.; Huang, W. Y.; Somorjai, G. A. Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation. Nano Lett. 2010, 10, 2709–2713.

[82]

Zhao, M.; Xia, Y. N. Crystal-phase and surface-structure engineering of ruthenium nanocrystals. Nat. Rev. Mater. 2020, 5, 440–459.

[83]

Zhao, M.; Xu, L.; Vara, M.; Elnabawy, A. O.; Gilroy, K. D.; Hood, Z. D.; Zhou, S.; Figueroa-Cosme, L.; Chi, M. F.; Mavrikakis, M. et al. Synthesis of Ru icosahedral nanocages with a face-centered-cubic structure and evaluation of their catalytic properties. ACS Catal. 2018, 8, 6948–6960.

[84]

Zheng, Y.; Jiao, Y.; Zhu, Y. H.; Li, L. H.; Han, Y.; Chen, Y.; Jaroniec, M.; Qiao, S. Z. High electrocatalytic hydrogen evolution activity of an anomalous ruthenium catalyst. J. Am. Chem. Soc. 2016, 138, 16174–16181.

[85]

Lu, Q. P.; Wang, A. L.; Cheng, H. F.; Gong, Y.; Yun, Q. B.; Yang, N. L.; Li, B.; Chen, B.; Zhang, Q. H.; Zong, Y. et al. Synthesis of hierarchical 4H/fcc Ru nanotubes for highly efficient hydrogen evolution in alkaline media. Small 2018, 14, 1801090.

[86]

Yang, Y. J.; Yu, Y. H.; Li, J.; Chen, Q. R.; Du, Y. L.; Rao, P.; Li, R. S.; Jia, C. M.; Kang, Z. Y.; Deng, P. L. et al. Engineering ruthenium-based electrocatalysts for effective hydrogen evolution reaction. Nano-Micro Lett. 2021, 13, 160.

[87]

Huang, X.; Li, S. Z.; Huang, Y. Z.; Wu, S. X.; Zhou, X. Z.; Li, S. Z.; Gan, C. L.; Boey, F.; Mirkin, C. A.; Zhang, H. Synthesis of hexagonal close-packed gold nanostructures. Nat. Commun. 2011, 2, 292.

[88]

Fan, Z. X.; Huang, X.; Chen, Y.; Huang, W.; Zhang, H. Facile synthesis of gold nanomaterials with unusual crystal structures. Nat. Protoc. 2017, 12, 2367–2376.

[89]

Fan, Z. X.; Bosman, M.; Huang, Z. Q.; Chen, Y.; Ling, C. Y.; Wu, L.; Akimov, Y. A.; Laskowski, R.; Chen, B.; Ercius, P. et al. Heterophase fcc-2H-fcc gold nanorods. Nat. Commun. 2020, 11, 3293.

[90]

Yu, D.; Gao, L.; Sun, T. L.; Guo, J. C.; Yuan, Y. L.; Zhang, J. W.; Li, M. F.; Li, X. X.; Liu, M. C.; Ma, C. et al. Strain-stabilized metastable face-centered tetragonal gold overlayer for efficient CO2 electroreduction. Nano Lett. 2021, 21, 1003–1010.

[91]

Lu, Q. P.; Wang, A. L.; Gong, Y.; Hao, W.; Cheng, H. F.; Chen, J. Z.; Li, B.; Yang, N. L.; Niu, W. X.; Wang, J. et al. Crystal phase-based epitaxial growth of hybrid noble metal nanostructures on 4H/fcc Au nanowires. Nat. Chem. 2018, 10, 456–461.

[92]

Chen, Y.; Fan, Z. X.; Wang, J.; Ling, C. Y.; Niu, W. X.; Huang, Z. Q.; Liu, G. G.; Chen, B.; Lai, Z. C.; Liu, X. Z. et al. Ethylene selectivity in electrocatalytic CO2 reduction on Cu nanomaterials: A crystal phase-dependent study. J. Am. Chem. Soc. 2020, 142, 12760–12766.

[93]

Zhang, Q.; Kusada, K.; Wu, D. S.; Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kawaguchi, S.; Kubota, Y.; Kitagawa, H. Selective control of fcc and hcp crystal structures in Au-Ru solid-solution alloy nanoparticles. Nat. Commun. 2018, 9, 510.

[94]

Cao, Z. M.; Chen, Q. L.; Zhang, J. W.; Li, H. Q.; Jiang, Y. Q.; Shen, S. Y.; Fu, G.; Lu, B. A.; Xie, Z. X.; Zheng, L. S. Platinum-nickel alloy excavated nano-multipods with hexagonal close-packed structure and superior activity towards hydrogen evolution reaction. Nat. Commun. 2017, 8, 15131.

[95]

Fan, Z. X.; Luo, Z. M.; Huang, X.; Li, B.; Chen, Y.; Wang, J.; Hu, Y. L.; Zhang, H. Synthesis of 4H/fcc noble multimetallic nanoribbons for electrocatalytic hydrogen evolution reaction. J. Am. Chem. Soc. 2016, 138, 1414–1419.

[96]

Qiu, Y.; Xin, L.; Li, Y. W.; McCrum, I. T.; Guo, F. M.; Ma, T.; Ren, Y.; Liu, Q.; Zhou, L.; Gu, S. et al. Bcc-phased PdCu alloy as a highly active electrocatalyst for hydrogen oxidation in alkaline electrolytes. J. Am. Chem. Soc. 2018, 140, 16580–16588.

[97]

Wang, C. H.; Yang, H. C.; Zhang, Y. J.; Wang, Q. B. NiFe alloy nanoparticles with hcp crystal structure stimulate superior oxygen evolution reaction electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 6099–6103.

[98]

Kim, J.; Lee, Y.; Sun, S. H. Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J. Am. Chem. Soc. 2010, 132, 4996–4997.

[99]

Cui, Z. M.; Li, L. J.; Manthiram, A.; Goodenough, J. B. Enhanced cycling stability of hybrid Li-air batteries enabled by ordered Pd3Fe intermetallic electrocatalyst. J. Am. Chem. Soc. 2015, 137, 7278–7281.

[100]

Jiang, K. Z.; Wang, P. T.; Guo, S. J.; Zhang, X.; Shen, X.; Lu, G.; Su, D.; Huang, X. Q. Ordered PdCu-based nanoparticles as bifunctional oxygen-reduction and ethanol-oxidation electrocatalysts. Angew. Chem., Int. Ed. 2016, 55, 9030–9035.

[101]

Zhou, M.; Guo, J. N.; Zhao, B.; Li, C.; Zhang, L. H.; Fang, J. Y. Improvement of oxygen reduction performance in alkaline media by tuning phase structure of Pd-Bi nanocatalysts. J. Am. Chem. Soc. 2021, 143, 15891–15897.

[102]

Lv, H.; Qin, H. Y.; Ariga, K.; Yamauchi, Y.; Liu, B. A general concurrent template strategy for ordered mesoporous intermetallic nanoparticles with controllable catalytic performance. Angew. Chem., Int. Ed. 2022, 61, e202116179.

[103]

Yin, X. M.; Tang, C. S.; Zheng, Y.; Gao, J.; Wu, J.; Zhang, H.; Chhowalla, M.; Chen, W.; Wee, A. T. S. Recent developments in 2D transition metal dichalcogenides: Phase transition and applications of the (quasi-)metallic phases. Chem. Soc. Rev. 2021, 50, 10087–10115.

[104]

Zhang, X.; Jia, F. F.; Song, S. X. Recent advances in structural engineering of molybdenum disulfide for electrocatalytic hydrogen evolution reaction. Chem. Eng. J. 2021, 405, 127013.

[105]

Wang, H. T.; Lu, Z. Y.; Kong, D. S.; Sun, J.; Hymel, T. M.; Cui, Y. Electrochemical tuning of MoS2 nanoparticles on three-dimensional substrate for efficient hydrogen evolution. ACS Nano 2014, 8, 4940–4947.

[106]

Chung, D. Y.; Park, S. K.; Chung, Y. H.; Yu, S. H.; Lim, D. H.; Jung, N.; Ham, H. C.; Park, H. Y.; Piao, Y.; Yoo, S. J. et al. Edge-exposed MoS2 nano-assembled structures as efficient electrocatalysts for hydrogen evolution reaction. Nanoscale 2014, 6, 2131–2136.

[107]

Wang, D. Z.; Zhang, X. Y.; Bao, S. Y.; Zhang, Z. T.; Fei, H.; Wu, Z. Z. Phase engineering of a multiphasic 1T/2H MoS2 catalyst for highly efficient hydrogen evolution. J. Mater. Chem. A 2017, 5, 2681–2688.

[108]

Voiry, D.; Salehi, M.; Silva, R.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G.; Chhowalla, M. Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett. 2013, 13, 6222–6227.

[109]

Wang, H. M.; Li, C. H.; Fang, P. F.; Zhang, Z. L.; Zhang, J. Z. Synthesis, properties, and optoelectronic applications of two-dimensional MoS2 and MoS2-based heterostructures. Chem. Soc. Rev. 2018, 47, 6101–6127.

[110]

Wang, X. S.; Feng, H. B.; Wu, Y. M.; Jiao, L. Y. Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J. Am. Chem. Soc. 2013, 135, 5304–5307.

[111]

Chang, K.; Hai, X.; Pang, H.; Zhang, H. B.; Shi, L.; Liu, G. G.; Liu, H. M.; Zhao, G. X.; Li, M.; Ye, J. H. Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 2016, 28, 10033–10041.

[112]

Sokolikova, M. S.; Mattevi, C. Direct synthesis of metastable phases of 2D transition metal dichalcogenides. Chem. Soc. Rev. 2020, 49, 3952–3980.

[113]

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

[114]

Lin, L. X.; Sherrell, P.; Liu, Y. Q.; Lei, W.; Zhang, S. W.; Zhang, H. J.; Wallace, G. G.; Chen, J. Engineered 2D transition metal dichalcogenides-a vision of viable hydrogen evolution reaction catalysis. Adv. Energy Mater. 2020, 10, 1903870.

[115]

Tang, Q.; Jiang, D. E. Mechanism of hydrogen evolution reaction on 1T-MoS2 from first principles. ACS Catal. 2016, 6, 4953–4961.

[116]

Yu, Y. F.; Nam, G. H.; He, Q. Y.; Wu, X. J.; Zhang, K.; Yang, Z. Z.; Chen, J. Z.; Ma, Q. L.; Zhao, M. T.; Liu, Z. Q. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643.

[117]

Suryanto, B. H. R.; Wang, D. B.; Azofra, L. M.; Harb, M.; Cavallo, L.; Jalili, R.; Mitchell, D. R. G.; Chatti, M.; MacFarlane, D. R. MoS2 polymorphic engineering enhances selectivity in the electrochemical reduction of nitrogen to ammonia. ACS Energy Lett. 2019, 4, 430–435.

[118]

Zhang, L.; Ji, X. Q.; Ren, X.; Ma, Y. J.; Shi, X. F.; Tian, Z. Q.; Asiri, A. M.; Chen, L.; Tang, B.; Sun, X. P. Electrochemical ammonia synthesis via nitrogen reduction reaction on a MoS2 catalyst: Theoretical and experimental studies. Adv. Mater. 2018, 30, 1800191.

[119]

Lin, G. X.; Ju, Q. J.; Guo, X. W.; Zhao, W.; Adimi, S.; Ye, J. Y.; Bi, Q. Y.; Wang, J. C.; Yang, M. H.; Huang, F. Q. Intrinsic electron localization of metastable MoS2 boosts electrocatalytic nitrogen reduction to ammonia. Adv. Mater. 2021, 33, 2007509.

[120]

Voiry, D.; Yamaguchi, H.; Li, J. W.; Silva, R.; Alves, D. C. B.; Fujita, T.; Chen, M. W.; Asefa, T.; Shenoy, V. B.; Eda, G. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 2013, 12, 850–855.

[121]

Sokolikova, M. S.; Sherrell, P. C.; Palczynski, P.; Bemmer, V. L.; Mattevi, C. Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun. 2019, 10, 712.

[122]

Liu, Z. Q.; Nie, K. K.; Qu, X. Y.; Li, X. H.; Li, B. J.; Yuan, Y. L.; Chong, S. K.; Liu, P.; Li, Y. G.; Yin, Z. Y. et al. General bottom-up colloidal synthesis of nano-monolayer transition-metal dichalcogenides with high 1T′-phase purity. J. Am. Chem. Soc. 2022, 144, 4863–4873.

[123]

Lai, Z. C.; Yao, Y.; Li, S. Y.; Ma, L.; Zhang, Q. H.; Ge, Y. Y.; Zhai, W.; Chi, B. L.; Chen, B.; Li, L. J. et al. Salt-assisted 2H-to-1T′ phase transformation of transition metal dichalcogenides. Adv. Mater. 2022, 34, 2201194.

[124]

Zheng, Y. R.; Wu, P.; Gao, M. R.; Zhang, X. L.; Gao, F. Y.; Ju, H. X.; Wu, R.; Gao, Q.; You, R.; Huang, W. X. et al. Doping-induced structural phase transition in cobalt diselenide enables enhanced hydrogen evolution catalysis. Nat. Commun. 2018, 9, 2533.

[125]

Zhao, Y. M.; Cong, H. J.; Li, P.; Wu, D. A.; Chen, S. L.; Luo, W. Hexagonal RuSe2 nanosheets for highly efficient hydrogen evolution electrocatalysis. Angew. Chem., Int. Ed. 2021, 60, 7013–7017.

[126]

Kwak, I. H.; Kwon, I. S.; Debela, T. T.; Abbas, H. G.; Park, Y. C.; Seo, J.; Ahn, J. P.; Lee, J. H.; Park, J.; Kang, H. S. Phase evolution of Re1−xMoxSe2 alloy nanosheets and their enhanced catalytic activity toward hydrogen evolution reaction. ACS Nano 2020, 14, 11995–12005.

[127]

Han, A. L.; Zhou, X. F.; Wang, X. J.; Liu, S.; Xiong, Q. H.; Zhang, Q. H.; Gu, L.; Zhuang, Z. C.; Zhang, W. J.; Li, F. X. et al. One-step synthesis of single-site vanadium substitution in 1T-WS2 monolayers for enhanced hydrogen evolution catalysis. Nat. Commun. 2021, 12, 709.

[128]

Sun, L.; Gao, M. Y.; Jing, Z. X.; Cheng, Z. Y.; Zheng, D. H.; Xu, H. Z.; Zhou, Q. N.; Lin, J. J. 1T-phase enriched P doped WS2 nanosphere for highly efficient electrochemical hydrogen evolution reaction. Chem. Eng. J. 2022, 429, 132187.

[129]

Zhang, Y.; Zhou, Q.; Zhu, J. X.; Yan, Q. Y.; Dou, S. X.; Sun, W. P. Nanostructured metal chalcogenides for energy storage and electrocatalysis. Adv. Funct. Mater. 2017, 27, 1702317.

[130]

Maurya, O.; Khaladkar, S.; Horn, M. R.; Sinha, B.; Deshmukh, R.; Wang, H. X.; Kim, T.; Dubal, D. P.; Kalekar, A. Emergence of Ni-based chalcogenides (S and Se) for clean energy conversion and storage. Small 2021, 17, 2100361.

[131]

Chen, X. Q.; Yang, J. P.; Wu, T.; Li, L.; Luo, W.; Jiang, W.; Wang, L. J. Nanostructured binary copper chalcogenides: Synthesis strategies and common applications. Nanoscale 2018, 10, 15130–15163.

[132]

Siegmund, D.; Blanc, N.; Smialkowski, M.; Tschulik, K.; Apfel, U. P. Metal-rich chalcogenides for electrocatalytic hydrogen evolution: Activity of electrodes and bulk materials. ChemElectroChem 2020, 7, 1514–1527.

[133]

Jiang, N.; Tang, Q.; Sheng, M. L.; You, B.; Jiang, D. E.; Sun, Y. J. Nickel sulfides for electrocatalytic hydrogen evolution under alkaline conditions: A case study of crystalline NiS, NiS2, and Ni3S2 nanoparticles. Catal. Sci. Technol. 2016, 6, 1077–1084.

[134]

Wu, Y. Y.; Li, G. D.; Liu, Y. P.; Yang, L.; Lian, X. R.; Asefa, T.; Zou, X. X. Overall water splitting catalyzed efficiently by an ultrathin nanosheet-built, hollow Ni3S2-based electrocatalyst. Adv. Funct. Mater. 2016, 26, 4839–4847.

[135]

Wu, Y. Y.; Liu, Y. P.; Li, G. D.; Zou, X.; Lian, X. R.; Wang, D. J.; Sun, L.; Asefa, T.; Zou, X. X. Efficient electrocatalysis of overall water splitting by ultrasmall NixCo3−xS4 coupled Ni3S2 nanosheet arrays. Nano Energy 2017, 35, 161–170.

[136]

Zou, X.; Liu, Y. P.; Li, G. D.; Wu, Y. Y.; Liu, D. P.; Li, W.; Li, H. W.; Wang, D. J.; Zhang, Y.; Zou, X. X. Ultrafast formation of amorphous bimetallic hydroxide films on 3D conductive sulfide nanoarrays for large-current-density oxygen evolution electrocatalysis. Adv. Mater. 2017, 29, 1700404.

[137]

Liu, S. L.; Zhang, Z. S.; Bao, J. C.; Lan, Y. Q.; Tu, W. W.; Han, M.; Dai, Z. H. Controllable synthesis of tetragonal and cubic phase Cu2Se nanowires assembled by small nanocubes and their electrocatalytic performance for oxygen reduction reaction. J. Phys. Chem. C 2013, 117, 15164–15173.

[138]

Fan, M. H.; Gao, R. Q.; Zou, Y. C.; Wang, D. J.; Bai, N.; Li, G. D.; Zou, X. X. An efficient nanostructured copper(I) sulfide-based hydrogen evolution electrocatalyst at neutral pH. Electrochim. Acta 2016, 215, 366–373.

[139]

Polavarapu, L.; Mourdikoudis, S.; Pastoriza-Santos, I.; Pérez-Juste, J. Nanocrystal engineering of noble metals and metal chalcogenides: Controlling the morphology, composition and crystallinity. CrystEngComm 2015, 17, 3727–3762.

[140]

Kempt, R.; Kuc, A.; Heine, T. Two-dimensional noble-metal chalcogenides and phosphochalcogenides. Angew. Chem. , Int. Ed. 2020, 59, 9242–9254.

[141]

Yu, Z. Y.; Xu, S. L.; Feng, Y. G.; Yang, C. Y.; Yao, Q.; Shao, Q.; Li, Y. F.; Huang, X. Q. Phase-controlled synthesis of Pd-Se nanocrystals for phase-dependent oxygen reduction catalysis. Nano Lett. 2021, 21, 3805–3812.

[142]

Albani, D.; Shahrokhi, M.; Chen, Z. P.; Mitchell, S.; Hauert, R.; López, N.; Pérez-Ramírez, J. Selective ensembles in supported palladium sulfide nanoparticles for alkyne semi-hydrogenation. Nat. Commun. 2018, 9, 2634.

[143]

Panaritis, C.; Zgheib, J.; Ebrahim, S. A. H.; Couillard, M.; Baranova, E. A. Electrochemical in-situ activation of Fe-oxide nanowires for the reverse water gas shift reaction. Appl. Catal. B Environ. 2020, 269, 118826.

[144]

Quast, T.; Aiyappa, H. B.; Saddeler, S.; Wilde, P.; Chen, Y. T.; Schulz, S.; Schuhmann, W. Single-entity electrocatalysis of individual “picked-and-dropped” Co3O4 nanoparticles on the tip of a carbon nanoelectrode. Angew. Chem., Int. Ed. 2021, 60, 3576–3580.

[145]

Ye, Z. G.; Li, T.; Ma, G.; Dong, Y. H.; Zhou, X. L. Metal-ion (Fe, V, Co, and Ni)-doped MnO2 ultrathin nanosheets supported on carbon fiber paper for the oxygen evolution reaction. Adv. Funct. Mater. 2017, 27, 1704083.

[146]

Umena, Y.; Kawakami, K.; Shen, J. R.; Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55–60.

[147]

Post, J. E. Manganese oxide minerals: Crystal structures and economic and environmental significance. Proc. Natl. Acad. Sci. USA 1999, 96, 3447–3454.

[148]

Yang, R. J.; Fan, Y. Y.; Ye, R. Q.; Tang, Y. X.; Cao, X. H.; Yin, Z. Y.; Zeng, Z. Y. MnO2-based materials for environmental applications. Adv. Mater. 2021, 33, 2004862.

[149]

Meng, Y. T.; Song, W. Q.; Huang, H.; Ren, Z.; Chen, S. Y.; Suib, S. L. Structure-property relationship of bifunctional MnO2 nanostructures: Highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464.

[150]

Liu, J. Y.; Wang, H. Y.; Wang, L. X.; Jian, P. M.; Yan, X. D. Phase-dependent catalytic performance of MnO2 for solvent-free oxidation of ethybenzene with molecular oxygen. Appl. Catal. B Environ. 2022, 305, 121050.

[151]

Kim, J.; Yin, X.; Tsao, K. C.; Fang, S. H.; Yang, H. Ca2Mn2O5 as oxygen-deficient perovskite electrocatalyst for oxygen evolution reaction. J. Am. Chem. Soc. 2014, 136, 14646–14649.

[152]

Anantharaj, S.; Kundu, S.; Noda, S. “The Fe effect”: A review unveiling the critical roles of Fe in enhancing OER activity of Ni and Co based catalysts. Nano Energy 2021, 80, 105514.

[153]

Kim, B. J.; Fabbri, E.; Abbott, D. F.; Cheng, X.; Clark, A. H.; Nachtegaal, M.; Borlaf, M.; Castelli, I. E.; Graule, T.; Schmidt, T. J. Functional role of Fe-doping in co-based perovskite oxide catalysts for oxygen evolution reaction. J. Am. Chem. Soc. 2019, 141, 5231–5240.

[154]

Zhao, Q.; Yan, Z. H.; Chen, C. C.; Chen, J. Spinels: Controlled preparation, oxygen reduction/evolution reaction application, and beyond. Chem. Rev. 2017, 117, 10121–10211.

[155]

Wu, G. P.; Wang, J.; Ding, W.; Nie, Y.; Li, L.; Qi, X. Q.; Chen, S. G.; Wei, Z. D. A strategy to promote the electrocatalytic activity of spinels for oxygen reduction by structure reversal. Angew. Chem., Int. Ed. 2016, 55, 1340–1344.

[156]

Lee, J. G.; Hwang, J.; Hwang, H. J.; Jeon, O. S.; Jang, J.; Kwon, O.; Lee, Y.; Han, B.; Shul, Y. G. A new family of perovskite catalysts for oxygen-evolution reaction in alkaline media: BaNiO3 and BaNi0.83O2.5. J. Am. Chem. Soc. 2016, 138, 3541–3547.

[157]

Xiang, W. K.; Yang, N. T.; Li, X. P.; Linnemann, J.; Hagemann, U.; Ruediger, O.; Heidelmann, M.; Falk, T.; Aramini, M.; DeBeer, S. et al. 3D atomic-scale imaging of mixed Co-Fe spinel oxide nanoparticles during oxygen evolution reaction. Nat. Commun. 2022, 13, 179.

[158]

Luan, X. Q.; Du, H. T.; Kong, Y.; Qu, F. L.; Lu, L. M. A novel FeS-NiS hybrid nanoarray: An efficient and durable electrocatalyst for alkaline water oxidation. Chem. Commun. 2019, 55, 7335–7338.

[159]

Hu, J.; Li, S. W.; Chu, J. Y.; Niu, S. Q.; Wang, J.; Du, Y. C.; Li, Z. H.; Han, X. J.; Xu, P. Understanding the phase-induced electrocatalytic oxygen evolution reaction activity on FeOOH nanostructures. ACS Catal. 2019, 9, 10705–10711.

[160]

Man, I. C.; Su, H. Y.; Calle-Vallejo, F.; Hansen, H. A.; Martínez, J. I.; Inoglu, N. G.; Kitchin, J.; Jaramillo, T. F.; Nørskov, J. K.; Rossmeisl, J. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 2011, 3, 1159–1165.

[161]

Gao, J. J.; Xu, C. Q.; Hung, S. F.; Liu, W.; Cai, W. Z.; Zeng, Z. P.; Jia, C. M.; Chen, H. M.; Xiao, H.; Li, J. et al. Breaking long-range order in iridium oxide by alkali ion for efficient water oxidation. J. Am. Chem. Soc. 2019, 141, 3014–3023.

[162]

Willinger, E.; Massué, C.; Schlögl, R.; Willinger, M. G. Identifying key structural features of IrOx water splitting catalysts. J. Am. Chem. Soc. 2017, 139, 12093–12101.

[163]

Chen, H.; Shi, L.; Liang, X.; Wang, L. N.; Asefa, T.; Zou, X. X. Optimization of active sites via crystal phase, composition, and morphology for efficient low-iridium oxygen evolution catalysts. Angew. Chem., Int. Ed. 2020, 59, 19654–19658.

[164]

Liang, X.; Shi, L.; Cao, R.; Wan, G.; Yan, W. S.; Chen, H.; Liu, Y. P.; Zou, X. X. Perovskite-type solid solution nano-electrocatalysts enable simultaneously enhanced activity and stability for oxygen evolution. Adv. Mater. 2020, 32, 2001430.

[165]

Liu, Y. P.; Liang, X.; Chen, H.; Gao, R. Q.; Shi, L.; Yang, L.; Zou, X. X. Iridium-containing water-oxidation catalysts in acidic electrolyte. Chin. J. Catal. 2021, 42, 1054–1077.

[166]

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

[167]

Yang, L.; Yu, G. T.; Ai, X.; Yan, W. S.; Duan, H. L.; Chen, W.; Li, X. T.; Wang, T.; Zhang, C. H.; Huang, X. R. et al. Efficient oxygen evolution electrocatalysis in acid by a perovskite with face-sharing IrO6 octahedral dimers. Nat. Commun. 2018, 9, 5236.

[168]

Zhang, Q.; Liang, X.; Chen, H.; Yan, W. S.; Shi, L.; Liu, Y. P.; Li, J. Y.; Zou, X. X. Identifying key structural subunits and their synergism in low-iridium triple perovskites for oxygen evolution in acidic media. Chem. Mater. 2020, 32, 3904–3910.

[169]

Gao, R. Q.; Zhang, Q.; Chen, H.; Chu, X. F.; Li, G. D.; Zou, X. X. Efficient acidic oxygen evolution reaction electrocatalyzed by iridium-based 12L-perovskites comprising trinuclear face-shared IrO6 octahedral strings. J. Energy Chem. 2020, 47, 291–298.

[170]

Feng, W. Q.; Chen, H.; Zhang, Q.; Gao, R. Q.; Zou, X. X. Lanthanide-regulated oxygen evolution activity of face-sharing IrO6 dimers in 6H-perovskite electrocatalysts. Chin. J. Catal. 2020, 41, 1692–1697.

[171]

Zhu, C. H.; Tian, H.; Huang, B.; Cai, G. H.; Yuan, C. Y.; Zhang, Y. T.; Li, Y. L.; Li, G. Q.; Xu, H.; Li, M. R. Boosting oxygen evolution reaction by enhanced intrinsic activity in Ruddlesden–Popper iridate oxides. Chem. Eng. J. 2021, 423, 130185.

[172]

Li, Q. J.; Zou, X.; Ai, X.; Chen, H.; Sun, L.; Zou, X. X. Revealing activity trends of metal diborides toward pH-universal hydrogen evolution electrocatalysts with Pt-like activity. Adv. Energy Mater. 2019, 9, 1803369.

[173]

Vo Doan, T. T.; Wang, J. B.; Poon, K. C.; Tan, D. C. L.; Khezri, B.; Webster, R. D.; Su, H. B.; Sato, H. Theoretical modelling and facile synthesis of a highly active boron-doped palladium catalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 2016, 55, 6842–6847.

[174]

Kobayashi, K.; Kobayashi, H.; Maesato, M.; Hayashi, M.; Yamamoto, T.; Yoshioka, S.; Matsumura, S.; Sugiyama, T.; Kawaguchi, S.; Kubota, Y. et al. Discovery of hexagonal structured Pd-B nanocrystals. Angew. Chem., Int. Ed. 2017, 56, 6578–6582.

[175]

Li, J.; Chen, J. X.; Wang, Q.; Cai, W. B.; Chen, S. L. Controllable increase of boron content in B-Pd interstitial nanoalloy to boost the oxygen reduction activity of palladium. Chem. Mater. 2017, 29, 10060–10067.

[176]

Lv, H.; Sun, L. Z.; Xu, D. D.; Henzie, J.; Yamauchi, Y.; Liu, B. Mesoporous palladium-boron alloy nanospheres. J. Mater. Chem. A 2019, 7, 24877–24883.

[177]

Wei, G. F.; Zhang, L. R.; Liu, Z. P. Group-VIII transition metal boride as promising hydrogen evolution reaction catalysts. Phys. Chem. Chem. Phys. 2018, 20, 27752–27757.

[178]

Chen, L.; Zhang, L. R.; Yao, L. Y.; Fang, Y. H.; He, L.; Wei, G. F.; Liu, Z. P. Metal boride better than Pt: HCP Pd2B as a superactive hydrogen evolution reaction catalyst. Energy Environ. Sci. 2019, 12, 3099–3105.

[179]

Li, Z. Y.; Zhao, L. M.; Chen, H.; Liang, X.; Ai, X.; Xie, Z. B.; Li, X. T.; Yang, F.; Liu, H. Y.; Zou, X. X. Crystal phase-selective synthesis of intermetallic palladium borides and their phase-regulated (electro)catalytic properties. Catal. Sci. Technol. 2022, 12, 1038–1042.

[180]

Li, Q. J.; Wang, L. N.; Ai, X.; Chen, H.; Zou, J. Y.; Li, G. D.; Zou, X. X. Multiple crystal phases of intermetallic tungsten borides and phase-dependent electrocatalytic property for hydrogen evolution. Chem. Commun. 2020, 56, 13983–13986.

[181]

Chen, Y. L.; Yu, G. T.; Chen, W.; Liu, Y. P.; Li, G. D.; Zhu, P. W.; Tao, Q.; Li, Q. J.; Liu, J. W.; Shen, X. P. et al. Highly active, nonprecious electrocatalyst comprising borophene subunits for the hydrogen evolution reaction. J. Am. Chem. Soc. 2017, 139, 12370–12373.

[182]

Liu, X.; Jiao, Y.; Zheng, Y.; Qiao, S. Z. Isolated boron sites for electroreduction of dinitrogen to ammonia. ACS Catal. 2020, 10, 1847–1854.

[183]

Ai, X.; Chen, H.; Liang, X.; Shi, L.; Zhang, M. C.; Zhang, K. X.; Zou, Y. C.; Zou, X. X. Metal-coordinating single-boron sites confined in antiperovskite borides for N2-to-NH3 catalytic conversion. ACS Catal. 2022, 12, 2967–2978.

[184]

Vrubel, H.; Hu, X. L. Molybdenum boride and carbide catalyze hydrogen evolution in both acidic and basic solutions. Angew. Chem., Int. Ed. 2012, 51, 12703–12706.

[185]

Wan, C.; Regmi, Y. N.; Leonard, B. M. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 2014, 53, 6407–6410.

[186]

Deng, B.; Wang, Z.; Chen, W. Y.; Li, J. T.; Luong, D. X.; Carter, R. A.; Gao, G. H.; Yakobson, B. I.; Zhao, Y. F.; Tour, J. M. Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating. Nat. Commun. 2022, 13, 262.

[187]

Xiao, P.; Sk, M. A.; Thia, L.; Ge, X. M.; Lim, R. J.; Wang, J. Y.; Lim, K. H.; Wang, X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ. Sci. 2014, 7, 2624–2629.

[188]

Schipper, D. E.; Zhao, Z. H.; Thirumalai, H.; Leitner, A. P.; Donaldson, S. L.; Kumar, A.; Qin, F.; Wang, Z. M.; Grabow, L. C.; Bao, J. M. et al. Effects of catalyst phase on the hydrogen evolution reaction of water splitting: Preparation of phase-pure films of FeP, Fe2P, and Fe3P and their relative catalytic activities. Chem. Mater. 2018, 30, 3588–3598.

[189]

Fu, Q.; Wang, X. J.; Han, J. C.; Zhong, J.; Zhang, T. R.; Yao, T.; Xu, C. Y.; Gao, T. L.; Xi, S. B.; Liang, C. et al. Phase-junction electrocatalysts towards enhanced hydrogen evolution reaction in alkaline media. Angew. Chem., Int. Ed. 2021, 60, 259–267.

[190]

Chen, H.; Ai, X.; Liu, W.; Xie, Z. B.; Feng, W. Q.; Chen, W.; Zou, X. X. Promoting subordinate, efficient ruthenium sites with interstitial silicon for Pt-like electrocatalytic activity. Angew. Chem., Int. Ed. 2019, 58, 11409–11413.

[191]

Chen, D.; Pu, Z. H.; Wang, P. Y.; Lu, R. H.; Zeng, W. H.; Wu, D. L.; Yao, Y. T.; Zhu, J. W.; Yu, J.; Ji, P. X. et al. Mapping hydrogen evolution activity trends of intermetallic Pt-group silicides. ACS Catal. 2022, 12, 2623–2631.

[192]

Liu, W.; Zhang, X. M.; Meng, W. Z.; Liu, Y.; Dai, X. F.; Liu, G. D. Theoretical realization of hybrid Weyl state and associated high catalytic performance for hydrogen evolution in NiSi. iScience 2022, 25, 103543.

[193]

He, Y.; Wang, T. L.; Zhang, M.; Wang, T. W.; Wu, L. F.; Zeng, L. Y.; Wang, X. P.; Boubeche, M.; Wang, S.; Yan, K. et al. Discovery and facile synthesis of a new silicon based family as efficient hydrogen evolution reaction catalysts: A computational and experimental investigation of metal monosilicides. Small 2021, 17, 2006153.

[194]

Pu, Z. H.; Liu, T. T.; Zhang, G. X.; Chen, Z. S.; Li, D. S.; Chen, N.; Chen, W. F.; Chen, Z. X.; Sun, S. H. General synthesis of transition-metal-based carbon-group intermetallic catalysts for efficient electrocatalytic hydrogen evolution in wide pH range. Adv. Energy Mater. 2022, 12, 2200293.

[195]

Chen, H.; Zhang, M. C.; Zhang, K. X.; Li, Z. Y.; Liang, X.; Ai, X.; Zou, X. X. Screening and understanding lattice silicon-controlled catalytically active site motifs from a library of transition metal-silicon intermetallics. Small 2022, 18, 2107371.

[196]

Zou, X. X.; Wu, Y. Y.; Liu, Y. P.; Liu, D. P.; Li, W.; Gu, L.; Liu, H.; Wang, P. W.; Sun, L.; Zhang, Y. In situ generation of bifunctional, efficient Fe-based catalysts from mackinawite iron sulfide for water splitting. Chem 2018, 4, 1139–1152.

[197]

Jin, S. Are metal chalcogenides, nitrides, and phosphides oxygen evolution catalysts or bifunctional catalysts. ACS Energy Lett. 2017, 2, 1937–1938.

[198]

Chen, H.; Liu, Y. P.; Zhang, B.; Zou, X. X. Future directions of catalytic chemistry. Pure Appl. Chem. 2021, 93, 1411–1421.

[199]

Baldi, A.; Narayan, T. C.; Koh, A. L.; Dionne, J. A. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 2014, 13, 1143–1148.

[200]

Chen, T. Y.; Ellis, I.; Hooper, T. J. N.; Liberti, E.; Ye, L.; Lo, B. T. W.; O’Leary, C.; Sheader, A. A.; Martinez, G. T.; Jones, L. et al. Interstitial boron atoms in the palladium lattice of an industrial type of nanocatalyst: Properties and structural modifications. J. Am. Chem. Soc. 2019, 141, 19616–19624.

[201]

Zhou, Y.; Fan, H. J. Progress and challenge of amorphous catalysts for electrochemical water splitting. ACS Mater. Lett. 2021, 3, 136–147.

[202]
Guo, T. Q.; Li, L. D.; Wang, Z. C. Recent development and future perspectives of amorphous transition metal-based electrocatalysts for oxygen evolution reaction. Adv. Energy Mater., in press, https://doi.org/10.1002/aenm.202200827.
[203]

Wang, C.; Zhai, P. L.; Xia, M. Y.; Wu, Y. Z.; Zhang, B.; Li, Z. W.; Ran, L.; Gao, J. F.; Zhang, X. M.; Fan, Z. Z. et al. Engineering lattice oxygen activation of iridium clusters stabilized on amorphous bimetal borides array for oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 27126–27134.

Publication history
Copyright
Acknowledgements

Publication history

Received: 14 May 2022
Revised: 29 May 2022
Accepted: 30 May 2022
Published: 11 July 2022
Issue date: December 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 21922507, 22179046, and 21621001), the Jilin Province Science and Technology Development Plan (Nos. YDZJ202101ZYTS126 and 20210101403JC), the Science and Technology Research Program of Education Department of Jilin Province (No. JJKH20220998KJ), and the 111 Project (No. B17020).

Return