Journal Home > Volume 15 , Issue 10

As Interface mediated self-assembly of nanocrystals provide excellent strategy for sensing, catalysis or photonics, the construction of innovative interfaces and development of versatile strategies for nanocrystal synthesis are urgently needed. Herein, latent fingerprints (LFPs), the most common markers for human identity, are used as naturally accessible interface for organization of graphene isolated nanocrystals (GINs). Excitingly, the selective adsorption of GINs on lipidic ridge provides a universal approach for the in-situ construction of the plasmonic arrays. Such system with intrinsic chrominance and Raman signal enables the high resolution colorimetric and surfaced-enhanced Raman spectroscopy (SERS) dual-mode imaging, which can detail the structures of the LFPs from 1st to 3rd level even the LFPs are shielded. Furthermore, the interface can be constructed on diverse materials by a simple finger-pressing process and the densely packed arrays can serve as superior SERS substrate for label-free, non-invasive acquisition of molecule information especially residues in LFPs. The combination of chemical composition with detailed structures efficiently recognizes the human identity and could help link it to a crime scene. Overall, the LFPs can act as natural platform for interface mediated localized assembly and personalized information acquisition for forensic science or precise medicine.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Natural interface-mediated self-assembly of graphene-isolated-nanocrystals for plasmonic arrays construction and personalized information acquisition

Show Author's information Shen Wang1,§Tianhuan Peng1,§Shengkai Li1Linlin Wang1Liang Zhang1Zhiwei Yin1Xin Xia1Xinqi Cai1Xiaoxu Cao1Long Chen2Zhuo Chen1( )Weihong Tan1,3,4
Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China
Faculty of Science and Technology, University of Macau, Avenida da Universidade, Taipa 999078, Macau, China
The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou 310022, China
Institute of Molecular Medicine (IMM), Renji Hospital, Shanghai Jiao Tong University School of Medicine, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

§ Shen Wang and Tianhuan Peng contributed equally to this work.

Abstract

As Interface mediated self-assembly of nanocrystals provide excellent strategy for sensing, catalysis or photonics, the construction of innovative interfaces and development of versatile strategies for nanocrystal synthesis are urgently needed. Herein, latent fingerprints (LFPs), the most common markers for human identity, are used as naturally accessible interface for organization of graphene isolated nanocrystals (GINs). Excitingly, the selective adsorption of GINs on lipidic ridge provides a universal approach for the in-situ construction of the plasmonic arrays. Such system with intrinsic chrominance and Raman signal enables the high resolution colorimetric and surfaced-enhanced Raman spectroscopy (SERS) dual-mode imaging, which can detail the structures of the LFPs from 1st to 3rd level even the LFPs are shielded. Furthermore, the interface can be constructed on diverse materials by a simple finger-pressing process and the densely packed arrays can serve as superior SERS substrate for label-free, non-invasive acquisition of molecule information especially residues in LFPs. The combination of chemical composition with detailed structures efficiently recognizes the human identity and could help link it to a crime scene. Overall, the LFPs can act as natural platform for interface mediated localized assembly and personalized information acquisition for forensic science or precise medicine.

Keywords: self-assembly, interface, latent fingerprint, personalized information acquisition

References(41)

1

Reincke, F.; Hickey, S. G.; Kegel, W. K.; Vanmaekelbergh, D. Spontaneous assembly of a monolayer of charged gold nanocrystals at the water/oil interface. Angew. Chem. , Int. Ed. 2004, 43, 458–462.

2

Tian, L.; Su, M. K.; Yu, F. F.; Xu, Y.; Li, X. Y.; Li, L.; Liu, H. L.; Tan, W. H. Liquid-state quantitative SERS analyzer on self-ordered metal liquid-like plasmonic arrays. Nat. Commun. 2018, 9, 3642.

3

Zhang, S. D.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem. Rev. 2017, 117, 12942–13038.

4

Aćimović, S. S.; Kreuzer, M. P.; González, M. U.; Quidant, R. Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 2009, 3, 1231–1237.

5

Hägglund, C.; Kasemo B. Nanoparticle plasmonics for 2D-photovoltaics: Mechanisms, optimization, and limits. Opt. Express 2009, 17, 11944–11957.

6

Chen, R.; Shen, L. N.; Zheng, L. Y.; Zhu, T.; Liu, Y. H.; Liu, L.; Zheng, J.; Gong, X. Two-/three-dimensional perovskite bilayer thin films post-treated with solvent vapor for high-performance perovskite photovoltaics. ACS Appl. Mater. Interfaces 2021, 13, 49104–49113.

7

Wu, D. Y.; Zhao, L. B.; Liu, X. M.; Huang, R.; Huang, Y. F.; Ren, B.; Tian, Z. Q. Photon-driven charge transfer and photocatalysis of p-aminothiophenol in metal nanogaps: A DFT study of SERS. Chem. Commun. 2011, 47, 2520–2522.

8

Watanabe-Tamaki, R.; Ishikawa, A.; Tanaka, T.; Zako, T.; Maeda, M. DNA-templating mass production of gold trimer rings for optical metamaterials. J. Phys. Chem. C 2012, 116, 15028–15033.

9

Lim, D. K.; Jeon, K. S.; Kim, H. M.; Nam, J. M.; Suh, Y. D. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat. Mater. 2010, 9, 60–67.

10

Zhang, L.; Liu, F.; Zou, Y. X.; Hu, X. X.; Huang, S. Q.; Xu, Y. T.; Zhang, L. F.; Dong, Q.; Liu, Z. K.; Chen, L. et al. Surfactant-free interface suspended gold graphitic surface-enhanced raman spectroscopy substrate for simultaneous multiphase analysis. Anal. Chem. 2018, 90, 11183–11187.

11

Wu, S. R.; Tian, X. D.; Liu, S. Y.; Zhang, Y.; Li, J. F. Surface-enhanced Raman spectroscopy solution and solid substrates with built-in calibration for quantitative applications. J. Raman Spectrosc. 2018, 49, 659–667.

12

Liu, Y. S.; Luo, F. Spatial Raman mapping investigation of SERS performance related to localized surface plasmons. Nano Res. 2020, 13, 138–144.

13

Chen, J. M.; Guo, L. H.; Qiu, B.; Lin, Z. Y.; Wang, T. Application of ordered nanoparticle self-assemblies in surface-enhanced spectroscopy. Mater. Chem. Front. 2018, 2, 835–860.

14

Boles, M. A.; Engel, M.; Talapin, D. V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289.

15

Ye, Z. W.; Li, C. C.; Chen, Q. L.; Xu, Y. K.; Bell, S. E. J. Self-assembly of colloidal nanoparticles into 2D arrays at water-oil interfaces: Rational construction of stable SERS substrates with accessible enhancing surfaces and tailored plasmonic response. Nanoscale 2021, 13, 5937–5953.

16

Klinkova, A.; Choueiri, R. M.; Kumacheva, E. Self-assembled plasmonic nanostructures. Chem. Soc. Rev. 2014, 43, 3976–3991.

17

Liu, B. W.; Yao, X.; Chen, S.; Lin, H. X.; Yang, Z. L.; Liu, S.; Ren, B. Large-area hybrid plasmonic optical cavity (HPOC) substrates for surface-enhanced raman spectroscopy. Adv. Funct. Mater. 2018, 28, 1802263.

18

Sun, Z. Z.; Kohama, S. I.; Zhang, Z. X.; Lomeda, J. R.; Tour, J. M. Soluble graphene through edge-selective functionalization. Nano Res. 2010, 3, 117–125.

19

Banas, A.; Banas, K.; Lo, M. K. F.; Kansiz, M.; Kalaiselvi, S. M. P.; Lim, S. K.; Loke, J.; Breese, M. B. H. Detection of high-explosive materials within fingerprints by means of optical-photothermal infrared spectromicroscopy. Anal. Chem. 2020, 92, 9649–9657.

20

Su, B. Recent progress on fingerprint visualization and analysis by imaging ridge residue components. Anal. Bioanal. Chem. 2016, 408, 2781–2791.

21

Song, Z. L.; Chen, Z.; Bian, X.; Zhou, L. Y.; Ding, D.; Liang, H.; Zou, Y. X.; Wang, S. S.; Chen, L.; Yang, C. et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging. J. Am. Chem. Soc. 2014, 136, 13558–13561.

22

Bian, X.; Song, Z. L.; Qian, Y.; Gao, W.; Cheng, Z. Q.; Chen, L.; Liang, H.; Ding, D.; Nie, X. K.; Chen, Z. et al. Fabrication of graphene-isolated-Au-nanocrystal nanostructures for multimodal cell imaging and photothermal-enhanced chemotherapy. Sci. Rep. 2014, 4, 6093.

23

Chen, Z.; Hong, G. S.; Wang, H. L.; Welsher, K.; Tabakman, S. M.; Sherlock, S. P.; Robinson, J. T.; Liang, Y. Y.; Dai, H. J. Graphite-coated magnetic nanoparticle microarray for few-cells enrichment and detection. ACS Nano 2012, 6, 1094–1101.

24
Cai, X. Q. ; Xu, Y. T. ; Zhao, L. N. ; Xu, J. M. ; Li, S. K. ; Wen, C. Q. ; Xia, X. ; Dong, Q. ; Hu, X. X. ; Wang, X. F. et al. In situ pepsin-assisted needle assembly of magnetic-graphitic-nanocapsules for enhanced gastric retention and mucus penetration. Nano Today 2021, 36, 101032.
25
Li, Y. J. ; Hu, X. X. ; Ding, D. ; Zou, Y. X. ; Xu, Y. T. ; Wang, X. W. ; Zhang, Y. ; Chen, L. ; Chen, Z. ; Tan, W. H. In situ targeted MRI detection of Helicobacter pylori with stable magnetic graphitic nanocapsules. Nat. Commun. 2017, 8, 15653.
26

Chen, H.; Ma, R. L.; Chen, Y.; Fan, L. J. Fluorescence development of latent fingerprint with conjugated polymer nanoparticles in aqueous colloidal solution. ACS Appl. Mater. Interfaces 2017, 9, 4908–4915.

27

Ifa, D. R.; Manicke, N. E.; Dill, A. L.; Cooks, R. G. Latent fingerprint chemical imaging by mass spectrometry. Science 2008, 321, 805.

28

Li, S. K.; Zhu, Z. T.; Cai, X. Q.; Song, M. H.; Wang, S.; Hao, Q.; Chen, L.; Chen, Z. Versatile graphene-isolated AuAg-nanocrystal for multiphase analysis and multimodal cellular Raman imaging. Chin. J. Chem. 2021, 39, 1491–1497.

29

Nie, X. K.; Xu, Y. T.; Song, Z. L.; Ding, D.; Gao, F.; Liang, H.; Chen, L.; Bian, X.; Chen, Z.; Tan, W. H. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting. Nanoscale 2014, 6, 13097–13103.

30

Zhang, L.; Dong, Q.; Zhang, H.; Xu, J. Q.; Wang, S.; Zhang, L. F.; Tang, W. T.; Li, Z. Q.; Xia, X.; Cai, X. Q. et al. A magnetocatalytic propelled cobalt-platinum@graphene navigator for enhanced tumor penetration and theranostics. CCS Chem. 2021, 3, 2382–2395.

31

Keoingthong, P.; Li, S. K.; Zhu, Z. T.; Zhang, L.; Xu, J. Q.; Chen, L.; Tan, W. H.; Chen, Z. Enzyme-mimic activity study of superstable and ultrasmall graphene encapsuled CoRu nanocrystal. APL Mater. 2021, 9, 051110.

32

Zou, Y. X.; Chen, L.; Song, Z. L.; Ding, D.; Chen, Y. Q.; Xu, Y. T.; Wang, S. S.; Lai, X. F.; Zhang, Y.; Sun, Y. et al. Stable and unique graphitic Raman internal standard nanocapsules for surface-enhanced Raman spectroscopy quantitative analysis. Nano Res. 2016, 9, 1418–1425.

33

Liu, G. N.; Tian, J.; Zhang, X.; Zhao, H. Y. Amphiphilic Janus gold nanoparticles prepared by interface-directed self-assembly: Synthesis and self-assembly. Chem. Asian J. 2014, 9, 2597–2603.

34

Wang, Y. L.; Li, C.; Qu, H. Q.; Fan, C.; Zhao, P. J.; Tian, R.; Zhu, M. Q. Real-time fluorescence in situ visualization of latent fingerprints exceeding level 3 details based on aggregation-induced emission. J. Am. Chem. Soc. 2020, 142, 7497–7505.

35

Xu, L. R.; Li, Y.; Wu, S. Z.; Liu, X. H.; Su, B. Imaging latent fingerprints by electrochemiluminescence. Angew. Chem. , Int. Ed. 2012, 51, 8068–8072.

36

Sodhi, G. S.; Kaur, J. Multimetal deposition method for detection of latent fingerprints: A review. Egypt. J. Forensic Sci. 2017, 7, 17.

37

Zhang, Y. Y.; Zhou, W.; Xue, Y.; Yang, J.; Liu, D. B. Multiplexed imaging of trace residues in a single latent fingerprint. Anal. Chem. 2016, 88, 12502–12507.

38

Zhang, Y.; Zou, Y. X.; Liu, F.; Xu, Y. T.; Wang, X. W.; Li, Y. J.; Liang, H.; Chen, L.; Chen, Z.; Tan, W. H. Stable graphene-isolated-Au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis. Anal. Chem. 2016, 88, 10611–10616.

39

Zhao, J. J.; Zhang, K.; Li, Y. X.; Ji, J.; Liu, B. H. High-resolution and universal visualization of latent fingerprints based on aptamer-functionalized core–shell nanoparticles with embedded SERS reporters. ACS Appl. Mater. Interfaces 2016, 8, 14389–14395.

40

Lin, J. R.; Zhang, C. J.; Xu, M. M.; Yuan, Y. X.; Yao, J. L. Surface-enhanced Raman spectroscopic identification in fingerprints based on adhesive Au nanofilm. RSC Adv. 2018, 8, 24477–24484.

41

Peng, T. H.; Qin, W. W.; Wang, K.; Shi, J. Y.; Fan, C. H.; Li, D. Nanoplasmonic imaging of latent fingerprints with explosive RDX residues. Anal. Chem. 2015, 87, 9403–94.

File
12274_2022_4602_MOESM1_ESM.pdf (2.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 April 2022
Revised: 28 May 2022
Accepted: 29 May 2022
Published: 12 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (No. 2020YFA0210800), the National Natural Science Foundation of China (No. 21522501), the Science and Technology Innovation Program of Hunan Province (No. 2020RC4017), and the Science and Technology Development Fund, Macau (No. 196/2017/A3).

Return