Journal Home > Volume 15 , Issue 10

As phages are extensively investigated as novel therapy tools but also as transfer agents for antibiotic resistance genes, thorough understanding of phage–host interactions becomes crucial. Prerequisite for phage infection is its adhesion to the host surface. Herein, we used atomic force microscopy-based single-particle force spectroscopy with phage-decorated tips to decipher the adhesion of phage 187 on living Staphylococcus aureus cells. We found that addition of free N-acetyl-D-glucosamine was able to decrease phage adhesion, suggesting that this monosaccharide plays major role in phage 187 infection of S. aureus. Moreover, phage 187 adhesion on monosaccharide-coated model surfaces combined with plaque forming unit counts suggested that a direct link can be established between the propensity to bind to a saccharide and the capability of the latter to inhibit phage infection. On a nanoscale level, single-particle force spectroscopy was successfully used to identify a major receptor required for phage 187 infection of S. aureus but also evidenced that this receptor was responsible for phage adhesion on host-cells. Our work demonstrates that single-particle force spectroscopy is a powerful platform to screen and predict the molecular target of phages on their host surfaces.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Deciphering the role of monosaccharides during phage infection of Staphylococcus aureus

Show Author's information Baptiste ArbezMarion GardetteChristophe GantzerNeus VilàIsabelle BertrandSofiane El-Kirat-Chatel( )
Laboratoire de Chimie Physique et Microbiologie pour les Matériaux et l'Environnement (LCPME), CNRS, Université de Lorraine, 405 rue de Vandoeuvre, 54602 Villers-lès-Nancy, France

Abstract

As phages are extensively investigated as novel therapy tools but also as transfer agents for antibiotic resistance genes, thorough understanding of phage–host interactions becomes crucial. Prerequisite for phage infection is its adhesion to the host surface. Herein, we used atomic force microscopy-based single-particle force spectroscopy with phage-decorated tips to decipher the adhesion of phage 187 on living Staphylococcus aureus cells. We found that addition of free N-acetyl-D-glucosamine was able to decrease phage adhesion, suggesting that this monosaccharide plays major role in phage 187 infection of S. aureus. Moreover, phage 187 adhesion on monosaccharide-coated model surfaces combined with plaque forming unit counts suggested that a direct link can be established between the propensity to bind to a saccharide and the capability of the latter to inhibit phage infection. On a nanoscale level, single-particle force spectroscopy was successfully used to identify a major receptor required for phage 187 infection of S. aureus but also evidenced that this receptor was responsible for phage adhesion on host-cells. Our work demonstrates that single-particle force spectroscopy is a powerful platform to screen and predict the molecular target of phages on their host surfaces.

Keywords: atomic force microscopy, Staphylococcus aureus, single-particle force spectroscopy, phage 187, phage–bacteria interactions

References(50)

1

Clokie, M. R. J.; Millard, A. D.; Letarov, A. V.; Heaphy, S. Phages in nature. Bacteriophage 2011, 1, 31–45.

2

Doss, J.; Culbertson, K.; Hahn, D.; Camacho, J.; Barekzi, N. A review of phage therapy against bacterial pathogens of aquatic and terrestrial organisms. Viruses 2017, 9, 50.

3

Dowah, A. S. A.; Clokie, M. R. J. Review of the nature, diversity and structure of bacteriophage receptor binding proteins that target Gram-positive bacteria. Biophys. Rev. 2018, 10, 535–542.

4

Winstel, V.; Liang, C. G.; Sanchez-Carballo, P.; Steglich, M.; Munar, M.; Bröker, B. M.; Penadés, J. R.; Nübel, U.; Holst, O.; Dandekar, T. et al. Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens. Nat. Commun. 2013, 4, 2345.

5

Chan, B. K.; Abedon, S. T.; Loc-Carrillo, C. Phage cocktails and the future of phage therapy. Future Microbiol. 2013, 8, 769–783.

6

Moelling, K.; Broecker, F.; Willy, C. A wake-up call: We need phage therapy now. Viruses 2018, 10, 688.

7

Azam, A. H.; Tanji, Y. Peculiarities of Staphylococcus aureus phages and their possible application in phage therapy. Appl. Microbiol. Biotechnol. 2019, 103, 4279–4289.

8

Sulakvelidze, A.; Alavidze, Z.; Morris, J. G. Jr. Bacteriophage therapy. Antimicrob. Agents Chemother. 2001, 45, 649–659.

9

Jamal, M.; Bukhari, S. M. A. U. S.; Andleeb, S.; Ali, M.; Raza, S.; Nawaz, M. A.; Hussain, T.; Rahman, S. U.; Shah, S. S. A. Bacteriophages: An overview of the control strategies against multiple bacterial infections in different fields. J. Basic Microbiol. 2019, 59, 123–133.

10

Sarhan, W. A.; Azzazy, H. M. Phage approved in food, why not as a therapeutic. Expert Rev. Anti-Infect. Ther. 2015, 13, 91–101.

11

Żbikowska, K.; Michalczuk, M.; Dolka, B. The use of bacteriophages in the poultry industry. Animals 2020, 10, 872.

12

Withey, S.; Cartmell, E.; Avery, L. M.; Stephenson, T. Bacteriophages—Potential for application in wastewater treatment processes. Sci. Total Environ. 2005, 339, 1–18.

13

Periasamy, D.; Sundaram, A. A novel approach for pathogen reduction in wastewater treatment. J. Environ. Health Sci. Eng. 2013, 11, 12.

14

Bertozzi Silva, J.; Storms, Z.; Sauvageau, D. Host receptors for bacteriophage adsorption. FEMS Microbiol. Lett. 2016, 363, fnw002.

15

Stone, E.; Campbell, K.; Grant, I.; McAuliffe, O. Understanding and exploiting phage–host interactions. Viruses 2019, 11, 567.

16

Rakhuba, D. V.; Kolomiets, E. I.; Dey, E. S.; Novik, G. I. Bacteriophage receptors, mechanisms of phage adsorption and penetration into host cell. Pol. J. Microbiol. 2010, 59, 145–155.

17

Bielmann, R.; Habann, M.; Eugster, M. R.; Lurz, R.; Calendar, R.; Klumpp, J.; Loessner, M. J. Receptor binding proteins of Listeria monocytogenes bacteriophages A118 and P35 recognize serovar-specific teichoic acids. Virology 2015, 477, 110–118.

18

Ackermann, H. W. Bacteriophage observations and evolution. Res. Microbiol. 2003, 154, 245–251.

19

Dubrovin, E. V.; Voloshin, A. G.; Kraevsky, S. V.; Ignatyuk, T. E.; Abramchuk, S. S.; Yaminsky, I. V.; Ignatov, S. G. Atomic force microscopy investigation of phage infection of bacteria. Langmuir 2008, 24, 13068–13074.

20

Zago, M.; Scaltriti, E.; Fornasari, M. E.; Rivetti, C.; Grolli, S.; Giraffa, G.; Ramoni, R.; Carminati, D. Epifluorescence and atomic force microscopy: Two innovative applications for studying phage–host interactions in Lactobacillus helveticus. J. Microbiol. Methods 2012, 88, 41–46.

21

Alsteens, D.; Trabelsi, H.; Soumillion, P.; Dufrêne, Y. F. Multiparametric atomic force microscopy imaging of single bacteriophages extruding from living bacteria. Nat. Commun. 2013, 4, 2926.

22

Müller, D. J.; Dufrêne, Y. F. Atomic force microscopy as a multifunctional molecular toolbox in nanobiotechnology. Nat. Nanotechnol. 2008, 3, 261–269.

23

Helenius, J.; Heisenberg, C. P.; Gaub, H. E.; Muller, D. J. Single-cell force spectroscopy. J. Cell Sci. 2008, 121, 1785–1791.

24
El-Kirat-Chatel, S. ; Beaussart, A. Probing bacterial adhesion at the single-molecule and single-cell levels by AFM-based force spectroscopy. In Nanoscale Imaging: Methods and Protocols; Lyubchenko, Y. L., Ed.; Springer: New York, 2018; pp 403–414.
25

Beaussart, A.; Feuillie, C.; El-Kirat-Chatel, S. The microbial adhesive arsenal deciphered by atomic force microscopy. Nanoscale 2020, 12, 23885–23896.

26

Beaussart, A.; El-Kirat-Chatel, S. Microbial adhesion and ultrastructure from the single-molecule to the single-cell levels by Atomic Force Microscopy. Cell Surf. 2019, 5, 100031.

27

Koehler, M.; Aravamudhan, P.; Guzman-Cardozo, C.; Dumitru, A. C.; Yang, J.; Gargiulo, S.; Soumillion, P.; Dermody, T. S.; Alsteens, D. Glycan-mediated enhancement of reovirus receptor binding. Nat. Commun. 2019, 10, 4460.

28

Liu, S. Y.; Wang, Y. F. Application of AFM in microbiology: A review. Scanning 2010, 32, 61–73.

29

Dubrovin, E. V.; Popova, A. V.; Kraevskiy, S. V.; Ignatov, S. G.; Ignatyuk, T. E.; Yaminsky, I. V.; Volozhantsev, N. V. Atomic force microscopy analysis of the Acinetobacter baumannii Bacteriophage AP22 lytic cycle. PLoS ONE 2012, 7, e47348.

30

Deghorain, M.; Van Melderen, L. The Staphylococci phages family: An overview. Viruses 2012, 4, 3316–3335.

31

Wertheim, H. F.; Melles, D. C.; Vos, M. C.; Van Leeuwen, W.; Van Belkum, A.; Verbrugh, H. A.; Nouwen, J. L. The role of nasal carriage in Staphylococcus aureus infections. Lancet Infect. Dis. 2005, 5, 751–762.

32

Ford, C. A.; Hurford, I. M.; Cassat, J. E. Antivirulence strategies for the treatment of Staphylococcus aureus infections: A mini review. Front. Microbiol. 2021, 11, 3568.

33

Lindsay, J. A.; Holden, M. T. G. Understanding the rise of the superbug: Investigation of the evolution and genomic variation of Staphylococcus aureus. Funct. Integr. Genomics 2006, 6, 186–201.

34

Seo, H. S.; Cartee, R. T.; Pritchard, D. G.; Nahm, M. H. A new model of pneumococcal lipoteichoic acid structure resolves biochemical, biosynthetic, and serologic inconsistencies of the current model. J. Bacteriol. 2008, 190, 2379–2387.

35

Brown, S.; Santa Maria, J. P., Jr.; Walker, S. Wall teichoic acids of gram-positive bacteria. Annu. Rev. Microbiol. 2013, 67, 313–336.

36

Hughes, A. H.; Hancock, I. C.; Baddiley, J. The function of teichoic acids in cation control in bacterial membranes. Biochem. J. 1973, 132, 83–93.

37

Lambert, P. A.; Hancock, I. C.; Baddiley, J. Occurrence and function of membrane teichoic acids. Biochim. Biophys. Acta 1977, 472, 1–12.

38

van Wely, K. H.; Swaving, J.; Freudl, R.; Driessen, A. J. Translocation of proteins across the cell envelope of Gram-positive bacteria. FEMS Microbiol. Rev. 2001, 25, 437–454.

39

Xia, G. Q.; Maier, L.; Sanchez-Carballo, P.; Li, M.; Otto, M.; Holst, O.; Peschel, A. Glycosylation of wall teichoic acid in Staphylococcus aureus by TarM. J. Biol. Chem. 2010, 285, 13405–13415.

40

Mnich, M. E.; Van Dalen, R.; Gerlach, D.; Hendriks, A.; Xia, G. Q.; Peschel, A.; Van Strijp, J. A. G.; Van Sorge, N. M. The C-type lectin receptor MGL senses N-acetylgalactosamine on the unique Staphylococcus aureus ST395 wall teichoic acid. Cell. Microbiol. 2019, 21, e13072.

41

Winstel, V.; Sanchez-Carballo, P.; Holst, O.; Xia, G. Q.; Peschel, A. Biosynthesis of the unique wall teichoic acid of Staphylococcus aureus lineage ST395. mBio 2014, 5, e00869.

42

Bacharouche, J.; Erdemli, O.; Rivet, R.; Doucouré, B.; Caillet, C.; Mutschler, A.; Lavalle, P.; Duval, J. F. L.; Gantzer, C.; Francius, G. On the infectivity of bacteriophages in polyelectrolyte multilayer films: Inhibition or preservation of their bacteriolytic activity. ACS Appl. Mater. Interfaces 2018, 10, 33545–33555.

43

Hutter, J. L.; Bechhoefer, J. Calibration of atomic-force microscope tips. Rev. Sci. Instrum. 1993, 64, 1868–1873.

44

You, L. C.; Yin, J. Amplification and spread of viruses in a growing plaque. J. Theor. Biol. 1999, 200, 365–373.

45

Gallet, R.; Kannoly, S.; Wang, I. N. Effects of bacteriophage traits on plaque formation. BMC Microbiol. 2011, 11, 181.

46

Bradley, D. E.; Kay, D. The fine structure of bacteriophages. J. Gen. Microbiol. 1960, 23, 553–563.

47

Kuznetsov, Y. G.; Chang, S. C.; McPherson, A. Investigation of bacteriophage T4 by atomic force microscopy. Bacteriophage 2011, 1, 165–173.

48

Grandbois, M.; Beyer, M.; Rief, M.; Clausen-Schaumann, H.; Gaub, H. E. How strong is a covalent bond. Science 1999, 283, 1727–1730.

49

Herman, P.; El-Kirat-Chatel, S.; Beaussart, A.; Geoghegan, J. A.; Foster, T. J.; Dufrêne, Y. F. The binding force of the staphylococcal adhesin SdrG is remarkably strong. Mol. Microbiol. 2014, 93, 356–368.

50

Komatsuzawa, H.; Fujiwara, T.; Nishi, H.; Yamada, S.; Ohara, M.; McCallum, N.; Berger-Bächi, B.; Sugai, M. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol. Microbiol. 2004, 53, 1221–1231.

File
12274_2022_4600_MOESM1_ESM.pdf (781.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 April 2022
Revised: 24 May 2022
Accepted: 28 May 2022
Published: 16 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

We thank the Félix d’Hérelle Reference Center for Bacterial Viruses from the Université Laval (Canada) for providing the phage and the host strain. This work was supported by the Agence Nationale de la Recherche (No. ANR-20-CE06-0001), the Zone Atelier Moselle (ZAM), and the Lorraine Université d’Excellence (No. ANR-15-IDEX-04-LUE). We would also like to thank Chloé Retourney and Julie Challant for their help.

Return