Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Originated from nature and used for nature is a way of sustainable development. In this work, montmorillonite (MMT), a natural two-dimensional (2D) layered mineral, the surface and interlayer of which were nano-decorated by chemical synthesis technique was applied in biological detection field. Magnetic ferrite (Co0.5Ni0.5Fe2O4) was anchored on the surface and intercalated in the interlayer of montmorillonite, which served as a competitive candidate of enzyme mimics. Cytotoxicity test toward HUVEC and Hela cells verified the good biocompatibility of Co0.5Ni0.5Fe2O4-MMT, guaranteeing its safety in biological applications. Based on the peroxidase-like activity of Co0.5Ni0.5Fe2O4-MMT, a colorimetric sensing platform for H2O2 was established by a facile mix-and-detect approach with the detection limit of 0.565 μM (3σ/slope). It was implied that the peroxidase-like activity of Co0.5Ni0.5Fe2O4-MMT was originated from generation of ·OH and ·O2– produced from catalytic decomposition process of H2O2. Coupled with cascaded catalytic reactions of ACh, a facile and efficient sensing platform for ACh with satisfactory anti-interference ability was established. Thus, all these remarkable features highlighted the superiority of Co0.5Ni0.5Fe2O4-MMT, and endowed it with a powerful competitiveness in the fields of environmental assessing, biosensing, and disease monitoring.
Furchgott, R. F.; Zawadzki, J. V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 1980, 288, 373–376.
Blokland, A. Acetylcholine: A neurotransmitter for learning and memory. Brain Res. Rev. 1995, 21, 285–300.
Hasselmo, M. E. The role of acetylcholine in learning and memory. Curr. Opin. Neurobiol. 2006, 16, 710–715.
Kong, D. S.; Jin, R.; Zhao, X.; Li, H. X.; Yan, X.; Liu, F. M.; Sun, P.; Gao, Y.; Liang, X. S.; Lin, Y. H. et al. Protein-inorganic hybrid nanoflower-rooted agarose hydrogel platform for point-of-care detection of acetylcholine. ACS Appl. Mater. Interfaces 2019, 11, 11857–11864.
Song, P.; Hershey, N. D.; Mabrouk, O. S.; Slaney, T. R.; Kennedy, R. T. Mass spectrometry "sensor" for in vivo acetylcholine monitoring. Anal. Chem. 2012, 84, 4659–4664.
Selkoe, D. J. Alzheimer's disease is a synaptic failure. Science 2002, 298, 789–791.
Fenoy, G. E.; Marmisollé, W. A.; Azzaroni, O.; Knol, W. Acetylcholine biosensor based on the electrochemical functionalization of graphene field-effect transistors. Biosens. Bioelectron. 2020, 148, 111796.
Li, L.; Zhang, Y. H.; Du, P. C.; Qian, Y.; Zhang, P. D.; Guo, Q. J. Polymeric membrane electrodes using calix[4]pyrrole bis/tetra-phosphonate cavitands as ionophores for potentiometric acetylcholine sensing with high selectivity. Anal. Chem. 2020, 92, 14740–14746.
Qian, J.; Yang, X. W.; Jiang, L.; Zhu, C. D.; Mao, H. P.; Wang, K. Facile preparation of Fe3O4 nanospheres/reduced graphene oxide nanocomposites with high peroxidase-like activity for sensitive and selective colorimetric detection of acetylcholine. Sens. Actuators B:Chem. 2014, 201, 160–166.
Burmeister, J. J.; Pomerleau, F.; Huettl, P.; Gash, C. R.; Werner, C. E.; Bruno, J. P.; Gerhardt, G. A. Ceramic-based multisite microelectrode arrays for simultaneous measures of choline and acetylcholine in CNS. Biosens. Bioelectron. 2008, 23, 1382–1389.
Zayats, M.; Kharitonov, A. B.; Pogorelova, S. P.; Lioubashevski, O.; Katz, E.; Willner, I. Probing photoelectrochemical processes in Au-CdS nanoparticle arrays by surface plasmon resonance: Application for the detection of acetylcholine esterase inhibitors. J. Am. Chem. Soc. 2003, 125, 16006–16014.
Gao, L. Z.; Zhuang, J.; Nie, L.; Zhang, J. B.; Zhang, Y.; Gu, N.; Wang, T. H.; Feng, J.; Yang, D. L.; Perrett, S. et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583.
Wu, J. J. X.; Wang, X. Y.; Wang, Q.; Lou, Z. P.; Li, S. R.; Zhu, Y. Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristics (nanozymes): Next-generation artificial enzymes (II). Chem. Soc. Rev. 2019, 48, 1004–1076.
Wang, S.; Hu, Z. F.; Wei, Q. L.; Zhang, H. M.; Tang, W. N.; Sun, Y. Q.; Duan, H. Q.; Dai, Z. C.; Liu, Q. Y.; Zheng, X. W. Diatomic active sites nanozymes: Enhanced peroxidase-like activity for dopamine and intracellular H2O2 detection. Nano Res. 2022, 15, 4266–4273.
Zhu, X. X.; Xue, Y.; Li, H. Y.; Song, P.; Wu, T.; Zhao, H.; Gao, Y.; Zheng, J. L.; Li, B.; Liu, Q. Y. Porphyrin-modified NiS2 nanoparticles anchored on graphene for the specific determination of cholesterol. ACS Appl. Nano Mater. 2021, 4, 11960–11968.
Liu, Q. Y.; Yang, Y. T.; Li, H.; Zhu, R. R.; Shao, Q.; Yang, S. G.; Xu, J. J. NiO nanoparticles modified with 5, 10, 15, 20-tetrakis(4-carboxyl pheyl)-porphyrin: Promising peroxidase mimetics for H2O2 and glucose detection. Biosens. Bioelectron. 2015, 64, 147–153.
Zhu, X. X.; Li, H. Y.; Zhang, D. Q.; Chen, W.; Fu, M.; Nie, S. M.; Gao, Y.; Liu, Q. Y. Novel “on-off” colorimetric sensor for glutathione based on peroxidase activity of montmorillonite-loaded TiO2 functionalized by porphyrin precisely controlled by visible light. ACS Sustainable Chem. Eng. 2019, 7, 18105–18113.
Li, J.; Zhao, J.; Li, S. Q.; Chen, Y.; Lv, W. Q.; Zhang, J. H.; Zhang, L. B.; Zhang, Z.; Lu, X. Q. Synergistic effect enhances the peroxidase-like activity in platinum nanoparticle-supported metal-organic framework hybrid nanozymes for ultrasensitive detection of glucose. Nano Res. 2021, 14, 4689–4695.
Badoei-dalfard, A.; Sohrabi, N.; Karami, Z.; Sargazi, G. Fabrication of an efficient and sensitive colorimetric biosensor based on Uricase/Th-MOF for uric acid sensing in biological samples. Biosens. Bioelectron. 2019, 141, 111420.
Ding, H.; Hu, B.; Zhang, B.; Zhang, H.; Yan, X. Y.; Nie, G. H.; Liang, M. M. Carbon-based nanozymes for biomedical applications. Nano Res. 2021, 14, 570–583.
Cai, N.; Tan, L.; Li, Y.; Xia, T. T.; Hu, T. Y.; Su, X. G. Biosensing platform for the detection of uric acid based on graphene quantum dots and G-quadruplex/hemin DNAzyme. Anal. Chim. Acta 2017, 965, 96–102.
Nersisyan, H. H.; Lee, J. H.; Ding, J. R.; Kim, K. S.; Manukyan, K. V.; Mukasyan, A. S. Combustion synthesis of zero-, one-, two- and three-dimensional nanostructures: Current trends and future perspectives. Prog. Energy Combust. Sci. 2017, 63, 79–118.
Lou, C. Q.; Jing, T.; Tian, J. Z.; Zheng, Y. J.; Zhang, J. X.; Dong, M. Y.; Wang, C.; Hou, C. X.; Fan, J. C.; Guo, Z. H. 3-dimensional graphene/Cu/Fe3O4 composites:Immobilized laccase electrodes for detecting bisphenol A. J. Mater. Res. 2019, 34, 2964–2975.
Liu, W.; Wang, M. L.; Xu, C. X.; Chen, S. F. Facile synthesis of g-C3N4/ZnO composite with enhanced visible light photooxidation and photoreduction properties. Chem. Eng. J. 2012, 209, 386–393.
Luo, Z. R.; Xie, Y. F.; Li, Z. W.; Wang, Y. J.; Li, L. H.; Luo, Z. Y.; Zhu, C. G.; Yang, X.; Huang, M.; Huang, J. H. et al. Plasmonically engineered light-matter interactions in Au-nanoparticle/MoS2 heterostructures for artificial optoelectronic synapse. Nano Res. 2022, 15, 3539–3547.
Zhao, X.; Wu, K. L.; Lyu, H. Y.; Zhang, X. X.; Liu, Z. X.; Fan, G. C.; Zhang, X.; Zhu, X. X.; Liu, Q. Y. Porphyrin functionalized Co(OH)2/GO nanocomposites as an excellent peroxidase mimic for colorimetric biosensing. Analyst 2019, 144, 5284–5291.
Li, J. H.; Wang, L. L.; He, H. J.; Chen, Y. Q.; Gao, Z. R.; Ma, N.; Wang, B.; Zheng, L. L.; Li, R. L.; Wei, Y. J. et al. Interface construction of NiCo LDH/NiCoS based on the 2D ultrathin nanosheet towards oxygen evolution reaction.
Ijagbemi, C. O.; Baek, M. H.; Kim, D. S. Montmorillonite surface properties and sorption characteristics for heavy metal removal from aqueous solutions. J. Hazard. Mater. 2009, 166, 538–546.
Bhowmick, S.; Chakraborty, S.; Mondal, P.; Van Renterghem, W.; Van den Berghe, S.; Roman-Ross, G.; Chatterjee, D.; Iglesias, M. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem. Eng. J. 2014, 243, 14–23.
Arancibia-Miranda, N.; Baltazar, S. E.; García, A.; Muñoz-Lira, D.; Sepúlveda, P.; Rubio, M. A.; Altbir, D. Nanoscale zero valent supported by Zeolite and Montmorillonite: Template effect of the removal of lead ion from an aqueous solution. J. Hazard. Mater. 2016, 301, 371–380.
Qiu, G.; Huang, C. P.; Sun, X. L.; Chen, B. H. Highly active niobium-loaded montmorillonite catalysts for the production of 5-hydroxymethylfurfural from glucose. Green Chem. 2019, 21, 3930–3939.
Mulewa, W.; Tahir, M.; Amin, N. A. S. MMT-supported Ni/TiO2 nanocomposite for low temperature ethanol steam reforming toward hydrogen production. Chem. Eng. J. 2017, 326, 956–969.
Bian, L.; Nie, J. N.; Jiang, X. Q, ; Song, M. X.; Dong, F. Q.; Li, W. M.; Shang, L. P.; Deng, H.; He, H. C.; Xu, B. et al. Selective removal of uranyl from aqueous solutions containing a mix of toxic metal ions using core-shell MFe2O4-TiO2 nanoparticles of montmorillonite edge sites. ACS Sustainable Chem. Eng. 2018, 6, 16267–16278.
Fajrina, N.; Tahir, M. 2D-montmorillonite-dispersed g-C3N4/TiO2 2D/0Dnanocomposite for enhanced photo-induced H2 evolution from glycerol-water mixture. Appl. Surf. Sci. 2019, 471, 1053–1064.
Masteri-Farahani, M., Mosleh, N. CdS quantum dots encapsulated within the mesopores of MCM-41 and interlayers of montmorillonite as photocatalysts for rhodamine-B degradation in aqueous solution. Environ. Sci. Pollut. Res. 2021, 28, 4615–4622.
Zhang, L. Y.; Chen, M. X.; Jiang, Y. L.; Chen, M. M.; Ding, Y. N.; Liu, Q. Y. A facile preparation of montmorillonite-supported copper sulfide nanocomposites and their application in the detection of H2O2. Sens. Actuators B:Chem. 2017, 239, 28–35.
Intachai, S.; Suppaso, C.; Klinsrisuk, S.; Khaorapapong, N.; Ogawa, M. The possible doping of Al3+ and F- modification onto CdS in montmorillonite. Colloids Surf. A:Physicochem. Eng. Aspects 2017, 522, 133–139.
Gao, Y.; Wu, K. L.; Li, H. Y.; Chen, W.; Fu, M.; Yue, K.; Zhu, X. X.; Liu, Q. Y. Glutathione detection based on peroxidase-like activity of Co3O4-Montmorillonite nanocomposites. Sens. Actuators B:Chem. 2018, 273, 1635–1639.
Liu, H. X.; Lu, X. Y.; Hu, Y.; Chen, R. P.; Zhao, P. Y.; Wang, L.; Zhu, G. Y.; Ma, L. B.; Jin, Z. CoxFeyN nanoparticles decorated on graphene sheets as high-performance electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 12489–12497.
Liu, Y. J.; Xie, X. L.; Zhu, G. X.; Mao, Y.; Yu, Y. N.; Ju, S. X.; Shen, X. P.; Pang, H. Small sized Fe-Co sulfide nanoclusters anchored on carbon for oxygen evolution. J. Mater. Chem. A 2019, 7, 15851–15861.
Zhou, K. L.; Zhang, Q. Q.; Liu, J. B.; Wang, H.; Zhang, Y. Z. Crystal phase tuning and valence engineering in non-noble catalysts for outstanding overall water splitting. J. Mater. Chem. A 2020, 8, 4524–4532.