Journal Home > Volume 15 , Issue 10

Hydrogen evolution via photo-electro-chemical (PEC) co-catalysis is potential for solving energy crisis and environmental issues. The rapidly advances of fabrication and broad applications of polydopamine (PDA) and its derivatives have drawn intense attentions in recent years. Herein, an ultrathin PDA coating with nanometer accuracy was conformally grown on TiO2 nanotube arrays (NTAs) via electrochemical polymerization, in which the polymer provided a platform for further photoinduced assembly of CdS nanocrystals in the embedded mode. The optimized CdS@PDA/TiO2 NTAs hierarchical heterostructure as photoanode gave an excellent PEC performance and exhibited outstanding stability under light irradiation. The photocurrent density was heightened to 5.48 mA·cm–2, which was beneficial to H2 evolution with a rate of 20 μmol·h–1·cm–2. The improvement of PEC activity was ascribed to co-photosensitization, optimized carriers transfer, and transport route arised from CdS embedding, resulting to provide a persistent driving force for charge separation based on secure heterojunction of CdS/TiO2 glued by PDA. The improvement of PEC stability was due to the inhibition of CdS photocorrosion covered by PDA shelter. This advance boded well for the development of PEC field founded on multifunctional PDA.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Polydopamine nanolayer assisted internal photo-deposition of CdS nanocrystals for stable cosensitized photoanode

Show Author's information Na Li1Lu Han1( )Hainan Zhang1Juntong Huang2Xudong Luo1Xibao Li2( )Yuanhao Wang3( )Weiqi Qian4Ya Yang4( )
School of Materials and Metallurgy, University of Science and Technology Liaoning, Anshan 114051, China
School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
SUSTech Engineering Innovation Center, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, China

Abstract

Hydrogen evolution via photo-electro-chemical (PEC) co-catalysis is potential for solving energy crisis and environmental issues. The rapidly advances of fabrication and broad applications of polydopamine (PDA) and its derivatives have drawn intense attentions in recent years. Herein, an ultrathin PDA coating with nanometer accuracy was conformally grown on TiO2 nanotube arrays (NTAs) via electrochemical polymerization, in which the polymer provided a platform for further photoinduced assembly of CdS nanocrystals in the embedded mode. The optimized CdS@PDA/TiO2 NTAs hierarchical heterostructure as photoanode gave an excellent PEC performance and exhibited outstanding stability under light irradiation. The photocurrent density was heightened to 5.48 mA·cm–2, which was beneficial to H2 evolution with a rate of 20 μmol·h–1·cm–2. The improvement of PEC activity was ascribed to co-photosensitization, optimized carriers transfer, and transport route arised from CdS embedding, resulting to provide a persistent driving force for charge separation based on secure heterojunction of CdS/TiO2 glued by PDA. The improvement of PEC stability was due to the inhibition of CdS photocorrosion covered by PDA shelter. This advance boded well for the development of PEC field founded on multifunctional PDA.

Keywords: polydopamine, TiO2 nanotube arrays, photoelectrocatalysis photocorrosion

References(54)

1

Li, X. B.; Kang, B. B.; Dong, F.; Zhang, Z. Q.; Luo, X. D.; Luo, X. D.; Han, L.; Huang, J. T.; Feng, Z. J.; Chen, Z.; Xu, J. L.; Peng, B. L.; Wang, Z. L. Enhanced photocatalytic degradation and H2/H2O2 production performance of S-pCN/WO2.72 S-scheme heterojunction with appropriate surface oxygen vacancies. Nano Energy 2021, 81, 105671.

2

Li, L.; Shi, H. H.; Yu, H. H.; Tan, X. R.; Wang, Y. H.; Ge, S. G.; Wang, A. Z.; Cui, K.; Zhang, L. N.; Yu, J. H. Ultrathin MoSe2 nanosheet anchored CdS-ZnO functional paper chip as a highly efficient tandem Z-scheme heterojunction photoanode for scalable photoelectrochemical water splitting. Appl. Catal. B 2021, 292, 120184.

3

Yan, Z. P.; Wang, W. C.; Du, L. L.; Zhu, J. X.; Phillips, D. L.; Xu, J. S. Interpreting the enhanced photoactivities of 0D/1D heterojunctions of CdS quantum dots/TiO2 nanotube arrays using femtosecond transient absorption spectroscopy. Appl. Catal. , B 2020, 275, 119151.

4

Fu, Y. M.; Dong, C. L.; Zhou, W.; Lu, Y. R.; Huang, Y. C.; Liu, Y.; Guo, P. H.; Zhao, L.; Chou, W. C.; Shen, S. H. A ternary nanostructured α-Fe2O3/Au/TiO2 photoanode with reconstructed interfaces for efficient photoelectrocatalytic water splitting. Appl. Catal. B 2020, 260, 118206.

5

Faraji, M.; Yousefi, M.; Yousefzadeh, S.; Zirak, M.; Naseri, N.; Jeon, T. H.; Choi, W.; Moshfegh, A. Z. Two-dimensional materials in semiconductor photoelectrocatalytic systems for water splitting. Energy Environ. Sci. 2019, 12, 59–95.

6

Pan, H. H.; Sun, M. H.; Wang, X. G.; Zhang, M.; Murugananthan, M.; Zhang, Y. R. A novel electric-assisted photocatalytic technique using self-doped TiO2 nanotube films. Appl. Catal. B 2022, 307, 121174.

7

Pan, L.; Zou, J. J.; Zhang, X. W.; Wang, L. Water-mediated promotion of dye sensitization of TiO2 under visible light. J. Am. Chem. Soc. 2011, 133, 10000–10002.

8

Li, Z. Z.; Li, H. Z.; Wang, S. J.; Yang, F.; Zhou, W. Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production. Chem. Eng. J. 2022, 427, 131830.

9

Wei, T. T.; Jin, Z. B.; Wang, Y. M.; Li, F. Y.; Xu, L. Constructing direct Z-scheme photocatalysts with black N-TiO2−x/C and Cd0.5Zn0.5S for efficient H2 production. Int. J. Hydrogen Energy 2021, 46, 14236–14246.

10

Yu, C. X.; Li, M. X.; Yang, D. C.; Pan, K.; Yang, F.; Xu, Y. C.; Yuan, L.; Qu, Y.; Zhou, W. NiO nanoparticles dotted TiO2 nanosheets assembled nanotubes P-N heterojunctions for efficient interface charge separation and photocatalytic hydrogen evolution. Appl. Surf. Sci. 2021, 568, 150981.

11

Qi, M. Y.; Lin, Q.; Tang, Z. R.; Xu, Y. J. Photoredox coupling of benzyl alcohol oxidation with CO2 reduction over CdS/TiO2 heterostructure under visible light irradiation. Appl. Catal. B 2022, 307, 121158.

12

Cao, L.; Xu, K. L.; Fan, M. M. Zn0.5Cd0.5S nanoparticles modified TiO2 nanotube arrays with efficient charge separation and enhanced light harvesting for boosting visible-light-driven photoelectrochemical performance. J. Power Sources 2021, 482, 228956.

13

Liu, Y.; Lin, Y. T.; Tang, J. H.; Liu, X. K.; Chen, L.; Tian, Y.; Fang, D. W.; Wang, J. Preparation of a coated ZH-scheme (SnS2@CdS)/TiO2 (001) photocatalyst for phenol degradation with simultaneous Cr(VI) conversion. Appl. Surf. Sci. 2022, 574, 151595.

14

Zhao, Y. L.; Liu, T. F.; Hu, C. Y.; Song, C. S.; Liu, X. L.; Li, R. C.; Lu, Q.; Gao, Q. Q.; Sun, M. L.; Yin, G. C. Facile interface treatment for simultaneous enhancing the quantum dots anchoring and charge transport performances of CdS/TiO2 photoelectrodes. J. Alloys Compd. 2022, 892, 162085.

15

Cheng, L.; Xiang, Q. J.; Liao, Y. L.; Zhang, H. W. CdS-based photocatalysts. Energy Environ. Sci. 2018, 11, 1362–1391.

16

Solakidou, M.; Giannakas, A.; Georgiou, Y.; Boukos, N.; Louloudi, M.; Deligiannakis, Y. Efficient photocatalytic water-splitting performance by ternary CdS/Pt-N-TiO2 and CdS/Pt-N, F-TiO2: Interplay between CdS photo corrosion and TiO2-dopping. Appl. Catal. B 2019, 254, 194–205.

17

Zhen, W. L.; Ning, X. F.; Yang, B. J.; Wu, Y. Q.; Li, Z.; Lu, G. X. The enhancement of CdS photocatalytic activity for water splitting via anti-photocorrosion by coating Ni2P shell and removing nascent formed oxygen with artificial gill. Appl. Catal. B 2018, 221, 243–257.

18

Ning, X. F.; Lu, G. X. Photocorrosion inhibition of CdS-based catalysts for photocatalytic overall water splitting. Nanoscale 2020, 12, 1213–1223.

19

Ho, T. A.; Bae, C.; Joe, J.; Yang, H.; Kim, S.; Park, J. H.; Shin, H. Heterojunction photoanode of atomic-layer-deposited MoS2 on single-crystalline CdS nanorod arrays. ACS Appl. Mater. Interfaces 2019, 11, 37586–37594.

20

Ning, X. F.; Zhen, W. L.; Wu, Y. Q.; Lu, G. X. Inhibition of CdS photocorrosion by Al2O3 shell for highly stable photocatalytic overall water splitting under visible light irradiation. Appl. Catal. B 2018, 226, 373–383.

21

Wang, C.; Wang, L.; Jin, J.; Liu, J.; Li, Y.; Wu, M.; Chen, L. H.; Wang, B. J.; Yang, X. Y.; Su, B. L. Probing effective photocorrosion inhibition and highly improved photocatalytic hydrogen production on monodisperse PANI@CdS core–shell nanospheres. Appl. Catal. B 2016, 188, 351–359.

22

Torquato, L. D. M.; Pastrian, F. A. C.; Perini, J. A. L.; Irikura, K.; De L Batista, A. P.; De Oliveira-Filho, A. G. S.; De Torresi, S. I. C.; Zanoni, M. V. B. Relation between the nature of the surface facets and the reactivity of Cu2O nanostructures anchored on TiO2NT@PDA electrodes in the photoelectrocatalytic conversion of CO2 to methanol. Appl. Catal. B 2020, 261, 118221.

23

Meng, A. Y.; Cheng, B.; Tan, H. Y.; Fan, J. J.; Su, C. L.; Yu, J. G. TiO2/polydopamine S-scheme heterojunction photocatalyst with enhanced CO2-reduction selectivity. Appl. Catal. B 2021, 289, 120039.

24

Xia, P. F.; Liu, M. J.; Cheng, B.; Yu, J. G.; Zhang, L. Y. Dopamine modified g-C3N4 and its enhanced visible-light photocatalytic H2-production activity. ACS Sustainable Chem. Eng. 2018, 6, 8945–8953.

25

Liu, X.; Zhang, T. T.; Li, Y. D.; Zhang, J.; Du, Y. C.; Yang, Y. L.; Jiang, Y. Q.; Lin, K. F. CdS@polydopamine@SnO2−x sandwich structure with electrostatic repulsion effect and oxygen deficiency: Enhanced photocatalytic hydrogen evolution activity and inhibited photo-corrosion. Chem. Eng. J. 2022, 434, 134602.

26

Zheng, S. Y.; Han, L.; Luo, X. D.; Sun, L. L.; Li, N.; Zhang, Z. B.; Li, X. B. Polydopamine and nafion bi‐layer passivation modified CdS photoanode for photoelectrochemical hydrogen evolution. Int. J. Energy Res. 2022, 46, 4506–4515.

27

Deng, X. X.; Yang, X. L.; Guan, X. X.; Song, J.; Wu, S. Polydopamine nanospheres with multiple quenching effect on TiO2/CdS: Mn for highly sensitive photoelectrochemical assay of tumor markers. Anal. Bioanal. Chem. 2021, 413, 2045–2054.

28

Milenković, D. A.; Dimić, D. S.; Avdović, E. H.; Amić, A. D.; Marković, J. M. D.; Marković, Z. S. Advanced oxidation process of coumarins by hydroxyl radical: Towards the new mechanism leading to less toxic products. Chem. Eng. J. 2020, 395, 124971.

29

Zhang, J.; Guo, Y.; Xiong, Y. H.; Zhou, D. D.; Dong, S. S. An environmentally friendly Z-scheme WO3/CDots/CdS heterostructure with remarkable photocatalytic activity and anti-photocorrosion performance. J. Catal. 2017, 356, 1–13.

30

Jiang, N.; Li, X. C.; Guo, H.; Li, J.; Shang, K. F.; Lu, N.; Wu, Y. Plasma-assisted catalysis decomposition of BPA over graphene-CdS nanocomposites in pulsed gas–liquid hybrid discharge: Photocorrosion inhibition and synergistic mechanism analysis. Chem. Eng. J. 2021, 412, 128627.

31

Tang, Y. H.; Hu, X.; Liu, C. B. Perfect inhibition of CdS photocorrosion by graphene sheltering engineering on TiO2 nanotube array for highly stable photocatalytic activity. Phys. Chem. Chem. Phys. 2014, 16, 25321–25329.

32

Nie, N.; He, F.; Zhang, L. Y.; Cheng, B. Direct Z-scheme PDA-modified ZnO hierarchical microspheres with enhanced photocatalytic CO2 reduction performance. Appl. Surf. Sci. 2018, 457, 1096–1102.

33

Sun, X. T.; Yan, L. T.; Xu, R. X.; Xu, M. Y.; Zhu, Y. Y. Surface modification of TiO2 with polydopamine and its effect on photocatalytic degradation mechanism. Colloids Surf. A 2019, 570, 199–209.

34

Kim, S.; Moon, G. H., Kim, G.; Kang, U.; Park, H.; Choi, W. TiO2 complexed with dopamine-derived polymers and the visible light photocatalytic activities for water pollutants. J. Catal. 2017, 346, 92–100.

35

David, S.; Mahadik, M. A.; Chung, H. S.; Ryu, J. H.; Jang, J. S. Facile hydrothermally synthesized a novel CdS nanoflower/rutile-TiO2 nanorod heterojunction photoanode used for photoelectrocatalytic hydrogen generation. ACS Sustainable Chem. Eng. 2017, 5, 7537–7548.

36

Wang, R. Y.; Ma, H. M.; Zhang, Y.; Wang, Q.; Yang, Z. P.; Du, B.; Wu, D.; Wei, Q. Photoelectrochemical sensitive detection of insulin based on CdS/polydopamine co-sensitized WO3 nanorod and signal amplification of carbon nanotubes@polydopamine. Biosens. Bioelectron. 2017, 96, 345–350.

37

Ye, M. D.; Gong, J. J.; Lai, Y. K.; Lin, C. J.; Lin, Z. Q. High-efficiency photoelectrocatalytic hydrogen generation enabled by palladium quantum dots-sensitized TiO2 nanotube arrays. J. Am. Chem. Soc. 2012, 134, 15720–15723.

38

Cai, J. S.; Huang, J. Y.; Ge, M. Z.; Iocozzia, J.; Lin, Z. Q.; Zhang, K. Q.; Lai, Y. K. Immobilization of Pt nanoparticles via rapid and reusable electropolymerization of dopamine on TiO2 nanotube arrays for reversible SERS substrates and nonenzymatic glucose sensors. Small 2017, 13, 1604240.

39

Fujii, M.; Nagasuna, K.; Fujishima, M.; Akita, T.; Tada, H. Photodeposition of CdS quantum dots on TiO2: Preparation, characterization, and reaction mechanism. J. Phys. Chem. C 2009, 113, 16711–16716.

40

Hayden, S. C.; Allam, N. K.; El-Sayed, M. A. TiO2 nanotube/CdS hybrid electrodes: Extraordinary enhancement in the inactivation of Escherichia coli. J. Am. Chem. Soc. 2010, 132, 14406–14408.

41

Liu, Y.; Yu, Y. X.; Zhang, W. D. MoS2/CdS heterojunction with high photoelectrochemical activity for H2 evolution under visible light: The role of MoS2. J. Phys. Chem. C 2013, 117, 12949–12957.

42

Jia, J.; Xue, P.; Hu, X. Y.; Wang, Y. S.; Liu, E. Z.; Fan, J. Electron-transfer cascade from CdSe@ZnSe core–shell quantum dot accelerates photoelectrochemical H2 evolution on TiO2 nanotube arrays. J. Catal. 2019, 375, 81–94.

43

Somasundaram, S.; Chenthamarakshan, C. R.; De Tacconi, N. R.; Ming, Y.; Rajeshwar, K. Photoassisted deposition of chalcogenide semiconductors on the titanium dioxide surface: Mechanistic and other aspects. Chem. Mater. 2004, 16, 3846–3852.

44

Paul, K. K.; Sreekanth, N.; Biroju, R. K.; Narayanan, T. N.; Giri, P. K. Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure. Sol. Energy Mater. Sol. Cells 2018, 185, 364–374.

45

Dreyer, D. R.; Miller, D. J.; Freeman, B. D.; Paul, D. R.; Bielawski, C. W. Elucidating the structure of poly(dopamine). Langmuir 2012, 28, 6428–6435.

46

Wang, H. F.; Wei, L. Y.; Wang, Z. Q.; Chen, S. G. Preparation, characterization and long-term antibacterial activity of Ag-poly(dopamine)-TiO2 nanotube composites. RSC Adv. 2016, 6, 14097–14104.

47

Zheng, X. L.; Song, J. P.; Ling, T.; Hu, Z. P.; Yin, P. F.; Davey, K.; Du, X. W.; Qiao, S. Z. Strongly coupled nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv. Mater. 2016, 28, 4935–4942.

48

Meissner, D.; Benndorf, C.; Memming, R. Photocorrosion of cadmium sulfide: Analysis by photoelectron spectroscopy. Appl. Surf. Sci. 1987, 27, 423–436.

49

Zangmeister, R. A.; Morris, T. A.; Tarlov, M. J. Characterization of polydopamine thin films deposited at short times by autoxidation of dopamine. Langmuir 2013, 29, 8619–8628.

50

Han, Z. B.; Fei, J. W.; Li, J. F.; Deng, Y.; Lv, M. Z.; Zhao, J.; Wang, C. H.; Zhao, X. M. Enhanced dye-sensitized photocatalysis for water purification by an alveoli-like bilayer Janus membrane. Chem. Eng. J. 2021, 407, 127214.

51

Ji, X. Y.; Wang, J.; Mei, L.; Tao, W.; Barrett, A.; Su, Z. G.; Wang, S. M.; Ma, G. H.; Shi, J. J.; Zhang, S. P. Porphyrin/SiO2/Cp*Rh(bpy)Cl hybrid nanoparticles mimicking chloroplast with enhanced electronic energy transfer for biocatalyzed artificial photosynthesis. Adv. Funct. Mater. 2018, 28, 1705083.

52

Gao, B. W.; Sun, M. X.; Ding, W.; Ding, Z. P.; Liu, W. Z. Decoration of γ-graphyne on TiO2 nanotube arrays: Improved photoelectrochemical and photoelectrocatalytic properties. Appl. Catal. B 2021, 281, 119492.

53

Cai, X. Y.; Mao, L.; Fujitsuka, M.; Majima, T.; Kasani, S.; Wu, N. Q.; Zhang, J. Y. Effects of Bi-dopant and co-catalysts upon hole surface trapping on La2Ti2O7 nanosheet photocatalysts in overall solar water splitting. Nano Res. 2022, 15, 438–445.

54

Wang, H.; Liang, Y. H.; Liu, L.; Hu, J. S.; Wu, P.; Cui, W. Q. Enriched photoelectrocatalytic degradation and photoelectric performance of BiOI photoelectrode by coupling rGO. Appl. Catal. B 2017, 208, 22–34.

File
12274_2022_4588_MOESM1_ESM.pdf (936.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 April 2022
Revised: 24 May 2022
Accepted: 25 May 2022
Published: 06 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (U1908227, 52072041, and 51962023), the Beijing Natural Science Foundation (No. JQ21007), and the University of Chinese Academy of Sciences (No. Y8540XX2D2).

Return