Journal Home > Volume 15 , Issue 10

The sensitivity of graphene’s Raman characteristics to external perturbations can be exploited for sensing applications. To apply this principle, Raman spectroscopy of graphene in contact with a chemical/biological analyte is recorded to unravel a correlation between analyte’s physical/chemical/biological properties and electronic properties (Fermi energy and dopants level) of graphene. As an example, we demonstrate the principle and operation of glucose measurement using graphene’s Raman spectroscopy, utilizing both affinity and enzymatic detection methods. In the affinity detection, we monitor Raman spectrum of graphene in contact with a glucose containing sample to quantify the attachment of glucose onto 1-pyrene boronic acid (PBA) functionalized graphene. It is revealed that glucose covalent bond to PBA induces n-type doping in graphene and increases its Fermi level following the Hill–Langmuir equation. In the enzymatic detection, we show that graphene’s Fermi energy shifts due to the biocatalytic oxidation of glucose by immobilized glucose oxidase (GOx) enzymes. As a result, graphene becomes p-doped with increasing glucose concentration. We attribute this sensitivity to a re-distribution of ionic charges within the electric double layer (EDL) of graphene upon introducing the glucose molecules. This model explains both our affinity and enzymatic glucose detection experiments. Beyond glucose detection, our graphene Raman spectroscopy-based sensor (GRS) may extend its applications to a broader range of remote and non-invasive detection without the need to employ electronics such as field-effect transistors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Glucose measurement via Raman spectroscopy of graphene: Principles and operation

Show Author's information Alireza Ahmadianyazdi1,2Ngoc Hoang Lan Nguyen2Jie Xu1Vikas Berry2( )
Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
Department of Chemical Engineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA

Abstract

The sensitivity of graphene’s Raman characteristics to external perturbations can be exploited for sensing applications. To apply this principle, Raman spectroscopy of graphene in contact with a chemical/biological analyte is recorded to unravel a correlation between analyte’s physical/chemical/biological properties and electronic properties (Fermi energy and dopants level) of graphene. As an example, we demonstrate the principle and operation of glucose measurement using graphene’s Raman spectroscopy, utilizing both affinity and enzymatic detection methods. In the affinity detection, we monitor Raman spectrum of graphene in contact with a glucose containing sample to quantify the attachment of glucose onto 1-pyrene boronic acid (PBA) functionalized graphene. It is revealed that glucose covalent bond to PBA induces n-type doping in graphene and increases its Fermi level following the Hill–Langmuir equation. In the enzymatic detection, we show that graphene’s Fermi energy shifts due to the biocatalytic oxidation of glucose by immobilized glucose oxidase (GOx) enzymes. As a result, graphene becomes p-doped with increasing glucose concentration. We attribute this sensitivity to a re-distribution of ionic charges within the electric double layer (EDL) of graphene upon introducing the glucose molecules. This model explains both our affinity and enzymatic glucose detection experiments. Beyond glucose detection, our graphene Raman spectroscopy-based sensor (GRS) may extend its applications to a broader range of remote and non-invasive detection without the need to employ electronics such as field-effect transistors.

Keywords: graphene, Raman spectroscopy, glucose, glucose oxidase, affinity detection

References(47)

1

Fu, W. Y.; Feng, L. Y.; Panaitov, G.; Kireev, D.; Mayer, D.; Offenhäusser, A.; Krause, H. J. Biosensing near the neutrality point of graphene. Sci. Adv. 2017, 3, e1701247.

2

He, Q. Y.; Wu, S. X.; Yin, Z. Y.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764–1772.

3

Huang, Y. X.; Dong, X. C.; Shi, Y. M.; Li, C. M.; Li, L. J.; Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale 2010, 2, 1485–1488.

4

Shi, H. T.; Poudel, N.; Hou, B. Y.; Shen, L.; Chen, J. H.; Benderskii, A. V.; Cronin, S. B. Sensing local pH and ion concentration at graphene electrode surfaces using in situ Raman spectroscopy. Nanoscale 2018, 10, 2398–2403.

5

Yuan, W. J.; Zhou, Y.; Li, Y. R.; Li, C.; Peng, H. L.; Zhang, J.; Liu, Z. F.; Dai, L. M.; Shi, G. Q. The edge-and basal-plane-specific electrochemistry of a single-layer graphene sheet. Sci. Rep. 2013, 3, 2248.

6

Li, W.; Tan, C.; Lowe, M. A.; Abruña, H. D.; Ralph, D. C. Electrochemistry of individual monolayer graphene sheets. ACS Nano 2011, 5, 2264–2270.

7

Chen, R.; Nioradze, N.; Santhosh, P.; Li, Z. T.; Surwade, S. P.; Shenoy, G. J.; Parobek, D. G.; Kim, M. A.; Liu, H. T.; Amemiya, S. Ultrafast electron transfer kinetics of graphene grown by chemical vapor deposition. Angew. Chem., Int. Ed. 2015, 54, 15134–15137.

8

Fu, W. Y.; Jiang, L.; Van Geest, E. P.; Lima, L. M. C.; Schneider, G. F. Sensing at the surface of graphene field-effect transistors. Adv. Mater. 2017, 29, 1603610.

9

Ohno, Y.; Maehashi, K.; Matsumoto, K. Chemical and biological sensing applications based on graphene field-effect transistors. Biosens. Bioelectron. 2010, 26, 1727–1730.

10

Zhan, B. B.; Li, C.; Yang, J.; Jenkins, G.; Huang, W.; Dong, X. C. Graphene field-effect transistor and its application for electronic sensing. Small 2014, 10, 4042–4065.

11

Reddy, D.; Register, L. F.; Carpenter, G. D.; Banerjee, S. K. Graphene field-effect transistors. J. Phys. D:Appl. Phys. 2011, 44, 313001.

12

Childres, I.; Jauregui, L. A.; Foxe, M.; Tian, J. F.; Jalilian, R.; Jovanovic, I.; Chen, Y. P. Effect of electron-beam irradiation on graphene field effect devices. Appl. Phys. Lett. 2010, 97, 173109.

13

Lohmann, T.; Von Klitzing, K.; Smet, J. H. Four-terminal magneto-transport in graphene p–n junctions created by spatially selective doping. Nano Lett. 2009, 9, 1973–1979.

14

Huang, B. C.; Zhang, M.; Wang, Y. J.; Woo, J. Contact resistance in top-gated graphene field-effect transistors. Appl. Phys. Lett. 2011, 99, 032107.

15

Giubileo, F.; Di Bartolomeo, A. The role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 2017, 92, 143–175.

16

Yin, J.; Zhang, Z. H.; Li, X. M.; Zhou, J. X.; Guo, W. L. Harvesting energy from water flow over graphene. Nano Lett. 2012, 12, 1736–1741.

17

Keisham, B.; Cole, A.; Nguyen, P.; Mehta, A.; Berry, V. Cancer cell hyperactivity and membrane dipolarity monitoring via Raman mapping of interfaced graphene: Toward non-invasive cancer diagnostics. ACS Appl. Mater. Interfaces 2016, 8, 32717–32722.

18

Paulus, G. L. C.; Nelson, J. T.; Lee, K. Y.; Wang, Q. H.; Reuel, N. F.; Grassbaugh, B. R.; Kruss, S.; Landry, M. P.; Kang, J. W.; Ende, E. V. et al. A graphene-based physiometer array for the analysis of single biological cells. Sci. Rep. 2014, 4, 6865.

19

Keisham, B.; Seksenyan, A.; Denyer, S.; Kheirkhah, P.; Arnone, G. D.; Avalos, P.; Bhimani, A. D.; Svendsen, C.; Berry, V.; Mehta, A. I. Quantum capacitance based amplified graphene phononics for studying neurodegenerative diseases. ACS Appl. Mater. Interfaces 2019, 11, 169–175.

20

Yazdi, A. A.; Xu, J.; Berry, V. Phononics of graphene interfaced with flowing ionic fluid: An avenue for high spatial resolution flow sensor applications. ACS Nano 2021, 15, 6998–7005.

21

Malard, L. M.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S. Raman spectroscopy in graphene. Phys. Rep. 2009, 473, 51–87.

22

McNichols, R. J.; Cote, G. L. Optical glucose sensing in biological fluids: An overview. J. Biomed. Opt. 2000, 5, 5–16.

23

Steiner, M. S.; Duerkop, A.; Wolfbeis, O. S. Optical methods for sensing glucose. Chem. Soc. Rev. 2011, 40, 4805–4839.

24

Deng, S.; Rhee, D.; Lee, W.-K.; Che, S.; Keisham, B.; Berry, V.; Odom, T. W. Graphene wrinkles enable spatially defined chemistry. Nano letters 2019, 9, 5640–5646.

25

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

26

Zhu, Y. B.; Hao, Y. F.; Adogla, E. A.; Yan, J.; Li, D. C.; Xu, K. X.; Wang, Q.; Hone, J.; Lin, Q. A graphene-based affinity nanosensor for detection of low-charge and low-molecular-weight molecules. Nanoscale 2016, 8, 5815–5819.

27

Matsumoto, A.; Ikeda, S.; Harada, A.; Kataoka, K. Glucose-responsive polymer bearing a novel phenylborate derivative as a glucose-sensing moiety operating at physiological pH conditions. Biomacromolecules 2003, 4, 1410–1416.

28

Zhao, L.; Huang, Q. W.; Liu, Y. Y.; Wang, Q.; Wang, L. Y.; Xiao, S. S.; Bi, F.; Ding, J. X. Boronic acid as glucose-sensitive agent regulates drug delivery for diabetes treatment. Materials (Basel) 2017, 10, 170.

29

Tu, J. B.; Torrente-Rodríguez, R. M.; Wang, M. Q.; Gao, W. The era of digital health: A review of portable and wearable affinity biosensors. Adv. Funct. Mater. 2020, 30, 1906713.

30

Froehlicher, G.; Berciaud, S. Raman spectroscopy of electrochemically gated graphene transistors: Geometrical capacitance, electron–phonon, electron–electron, and electron–defect scattering. Phys. Rev. B 2015, 91, 205413.

31

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

32

Kajisa, T.; Sakata, T. Molecularly imprinted artificial biointerface for an enzyme-free glucose transistor. ACS Appl. Mater. Interfaces 2018, 10, 34983–34990.

33

Lerner, M. B.; Kybert, N.; Mendoza, R.; Villechenon, R.; Lopez, M. A. B.; Johnson, A. T. C. Scalable, non-invasive glucose sensor based on boronic acid functionalized carbon nanotube transistors. Appl. Phys. Lett. 2013, 102, 183113.

34

Zhang, Y.; Ma, R.; Zhen, X. V.; Kudva, Y. C.; Buhlmann, P.; Koester, S. J. Capacitive sensing of glucose in electrolytes using graphene quantum capacitance varactors. ACS Appl. Mater. Interfaces 2017, 9, 38863–38869.

35

Stefan, M. I.; Le Novère, N. Cooperative binding. PLoS Comput. Biol. 2013, 9, e1003106.

36

Zhai, Y. L.; Zhu, Z. J.; Zhou, S. S.; Zhu, C. Z.; Dong, S. J. Recent advances in spectroelectrochemistry. Nanoscale 2018, 10, 3089–3111.

37

Bankar, S. B.; Bule, M. V.; Singhal, R. S.; Ananthanarayan, L. Glucose oxidase-an overview. Biotechnol. Adv. 2009, 27, 489–501.

38

Liang, B.; Guo, X. S.; Fang, L.; Hu, Y. C.; Yang, G.; Zhu, Q.; Wei, J. W.; Ye, X. S. Study of direct electron transfer and enzyme activity of glucose oxidase on graphene surface. Electrochem. Commun. 2015, 50, 1–5.

39

Yazdi, A. A.; Preite, R.; Milton, R. D.; Hickey, D. P.; Minteer, S. D.; Xu, J. Rechargeable membraneless glucose biobattery: Towards solid-state cathodes for implantable enzymatic devices. J. Power Sources 2017, 343, 103–108.

40

Kwon, S. S.; Shin, J. H.; Choi, J.; Nam, S.; Park, W. I. Defect-mediated molecular interaction and charge transfer in graphene mesh-glucose sensors. ACS Appl. Mater. Interfaces 2017, 9, 14216–14221.

41

Zhang, M.; Liao, C. Z.; Mak, C. H.; You, P.; Mak, C. L.; Yan, F. Highly sensitive glucose sensors based on enzyme-modified whole-graphene solution-gated transistors. Sci. Rep. 2015, 5, 8311.

42

Karachevtsev, V. A.; Stepanian, S. G.; Glamazda, A. Y.; Karachevtsev, M. V.; Eremenko, V. V.; Lytvyn, O. S.; Adamowicz, L. Noncovalent interaction of single-walled carbon nanotubes with 1-pyrenebutanoic acid succinimide ester and glucoseoxidase. J. Phys. Chem. C 2011, 115, 21072–21082.

43

Loos, K.; Kennedy, S. B.; Eidelman, N.; Tai, Y.; Zharnikov, M.; Amis, E. J.; Ulman, A.; Gross, R. A. Combinatorial approach to study enzyme/surface interactions. Langmuir 2005, 21, 5237–5241.

44

Gray, C. J.; Weissenborn, M. J.; Eyers, C. E.; Flitsch, S. L. Enzymatic reactions on immobilised substrates. Chem. Soc. Rev. 2013, 42, 6378–6405.

45

Laurent, N.; Haddoub, R.; Flitsch, S. L. Enzyme catalysis on solid surfaces. Trends Biotechnol. 2008, 26, 328–337.

46

Wu, P.; Du, P.; Zhang, H.; Cai, C. X. Microscopic effects of the bonding configuration of nitrogen-doped graphene on its reactivity toward hydrogen peroxide reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 6920–6928.

47

Düzenli, D. A comparative density functional study of hydrogen peroxide adsorption and activation on the graphene surface doped with N, B, S, Pd, Pt, Au, Ag, and Cu atoms. J. Phys. Chem. C 2016, 120, 20149–20157.

File
12274_2022_4587_MOESM1_ESM.pdf (2.4 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 April 2022
Revised: 23 May 2022
Accepted: 26 May 2022
Published: 07 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgement

The authors acknowledge the financial support from Office of Naval Research (No. N00014-18-1-2583), National Science Foundation (Nos. CMMI-1503681 and CMMI-1030963), and Early Career Faculty (No. 80NSSC17K0522) from NASA’s Space Technology Research Grants Program and University of Illinois at Chicago.

Return