Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Lithium-sulfur (Li-S) battery is considered as a promising energy storage system due to its ultrahigh theoretical energy density of 2,600 Wh·kg−1. Redox mediation strategies have been proposed to promote the sluggish sulfur redox kinetics. Nevertheless, the applicability of redox mediators in practical high-energy-density Li-S batteries has seldomly been manifested. In this work, 5,7,12,14-pentacenetetrone (PT) is proposed as an effective redox mediator to promote the sulfur redox kinetics under practical working conditions. A high initial specific discharge capacity of 993 mAh·g−1 is achieved at 0.1 C with high-sulfur-loading cathodes of 4.0 mgS·cm−2 and low electrolyte/sulfur (E/S) ratio of 5 μL·mgS−1. More importantly, practical Li-S pouch cells with the PT mediator realize an actual initial energy density of 344 Wh·kg−1 and cycle stably for 20 cycles wih a high capacity retention of 88%. This work proposes an effective redox mediator and further verifies the redox mediation strategy for practical high-energy-density Li-S batteries.
Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919.
Zhou, B. Y.; Wu, Y.; Zhou, B.; Wang, R. J.; Ke, W. W.; Zhang, S. J.; Hao, J. M. Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy 2016, 96, 603–613.
Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.
Wang, F.; Wang, B.; Li, J. X.; Wang, B.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 2021, 15, 2197–2218.
Xiao, Y.; Xu, R.; Xu, L.; Ding, J. F.; Huang, J. Q. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater. 2021, 1, 100013.
Zhang, L.; Chen, Y. H. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater. 2021, 1, 100004.
Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, Adv. Mater., 1800561.
Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.
He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.
Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.
Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.
Castillo, J.; Qiao, L. X.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. M. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003.
Geng, C. N.; Hua, W. X.; Wang, D. W.; Ling, G. W.; Zhang, C.; Yang, Q. H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques. SusMat 2021, 1, 51–65.
Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022, 2, 34–64.
Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.
Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Proietti Zaccaria, R. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.
Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.
He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.
Li, G. C.; Yang, L. Q.; Jiang, X.; Zhang, T. R.; Lin, H. B.; Yao, Q. F.; Lee, J. Y. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries. J. Power Sources 2018, 378, 418–422.
Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533–541.
Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E. J.; Zheng, J. P. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim. Acta 2017, 248, 90–97.
Angulakshmi, N.; Dhanalakshmi, R. B.; Sathya, S.; Ahn, J. H.; Stephan, A. M. Understanding the electrolytes of lithium-sulfur batteries. Batteries Supercaps 2021, 4, 1064–1095.
Tsao, Y.; Lee, M.; Miller, E. C.; Gao, G. P.; Park, J.; Chen, S. C.; Katsumata, T.; Tran, H.; Wang, L. W.; Toney, M. F. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 2019, 3, 872–884.
Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.
Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.
Zhang, Z.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.
Hwang, J. Y.; Kim, H. M.; Shin, S.; Sun, Y. K. Designing a high-performance lithium-sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator. Adv. Funct. Mater. 2018, 28, 1704294.
Lu, R. C.; Cheng, M.; Mao, L. J.; Zhang, M.; Yuan, H. X.; Amin, K. R.; Yang, C.; Cheng, Y. L.; Meng, Y. N.; Wei, Z. X. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat 2020, 2, e12010.
Cao, X. Y.; Zhang, M. G.; Zhu, F. S.; Zhang, X. L. Fabrication and characterization of N-doped porous carbon Co-Fe alloy composite cathode materials for promoting the electrochemical performance of Li-S batteries. J. Alloys Compd. 2022, 895, 162609.
Liu, X.; Li, Y.; Xu, X.; Zhou, L.; Mai, L. Q. Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. J. Energy Chem. 2021, 61, 104–134.
Fan, C. Y.; Xiao, P.; Li, H. H.; Wang, H. F.; Zhang, L. L.; Sun, H. Z.; Wu, X. L.; Xie, H. M.; Zhang, J. P. Nanoscale polysulfides reactors achieved by chemical Au–S interaction: Improving the performance of Li-S batteries on the electrode level. ACS Appl. Mater. Interfaces 2015, 7, 27959–27967.
Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater. 2021, 36, 466–477.
Zha, C. Y.; Wu, D. H.; Gu, X. Q.; Chen, H. Y. Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. J. Energy Chem. 2021, 59, 599–607.
Wang, Q.; Zhao, H. Q.; Li, B. Y.; Yang, C. H.; Li, M. Y.; Li, Y. N.; Han, P.; Wu, M. M.; Li, T. Y.; Liu, R. P. MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery. Chin. Chem. Lett. 2021, 32, 1157–1160.
Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.
Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N,S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.
Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.
Li, J. F.; Niu, Z. H.; Guo, C.; Li, M.; Bao, W. Z. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. J. Energy Chem. 2021, 54, 434–451.
Zhao, M.; Peng, Y. Q.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 203–208.
Song, Y. W.; Qin, J. L.; Zhao, C. X.; Zhao, M.; Hou, L. P.; Peng, Y. Q.; Peng, H. J.; Li, B. Q. The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium-sulfur batteries. J. Energy Chem. 2022, 64, 568–573.
Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.
Zhao, C. X.; Chen, W. J.; Zhao, M.; Song, Y. W.; Liu, J. N.; Li, B. Q.; Yuan, T. Q.; Chen, C. M.; Zhang, Q.; Huang, J. Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat 2021, 3, e12066.
Frischmann, P. D.; Gerber, L. C. H.; Doris, S. E.; Tsai, E. Y.; Fan, F. Y.; Qu, X. H.; Jain, A.; Persson, K. A.; Chiang, Y. M.; Helms, B. A. Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium-sulfur batteries. Chem. Mater. 2015, 27, 6765–6770.
Frischmann, P. D.; Hwa, Y.; Cairns, E. J.; Helms, B. A. Redox-active supramolecular polymer binders for lithium-sulfur batteries that adapt their transport properties in operando. Chem. Mater. 2016, 28, 7414–7421.
Hwa, Y.; Frischmann, P. D.; Helms, B. A.; Cairns, E. J. Aqueous-processable redox-active supramolecular polymer binders for advanced lithium/sulfur cells. Chem. Mater. 2018, 30, 685–691.
Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J. Phys. Chem. Lett. 2014, 5, 915–918.
Kim, K. R.; Lee, K. S.; Ahn, C. Y.; Yu, S. H.; Sung, Y. E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Sci. Rep. 2016, 6, 32433.
Zhao, M.; Peng, H. J.; Wei, J. Y.; Huang, J. Q.; Li, B. Q.; Yuan, H.; Zhang, Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 2020, 4, 1900344.
Zhao, M.; Chen, X.; Li, X. Y.; Li, B. Q.; Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007298.
Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eScience 2021, 1, 44–52.
Ye, H. L.; Sun, J. G.; Lim, X. F.; Zhao, Y.; Lee, J. Y. Mediator-assisted catalysis of polysulfide conversion for high-loading lithium-sulfur batteries operating under the lean electrolyte condition. Energy Storage Mater. 2021, 38, 338–343.
Yao, M.; Ando, H.; Kiyobayashi, T. Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries. Energy Procedia 2016, 89, 222–230.
Song, Y. W.; Peng, Y. Q.; Zhao, M.; Lu, Y.; Liu, J. N.; Li, B. Q.; Zhang, Q. Understanding the impedance response of lithium polysulfide symmetric cells. Small Sci. 2021, 1, 2100042.
Drvarič Talian, S.; Moškon, J.; Dominko, R.; Gaberšček, M. Reactivity and diffusivity of Li polysulfides: A fundamental study using impedance spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 29760–29770.
Drvarič Talian, S.; Kapun, G.; Moškon, J.; Vizintin, A.; Randon-Vitanova, A.; Dominko, R.; Gaberšček, M. Which process limits the operation of a Li-S system. Chem. Mater. 2019, 31, 9012–9023.
Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.
Zhao, M.; Peng, H. J.; Li, B. Q.; Chen, X.; Xie, J.; Liu, X. Y.; Zhang, Q.; Huang, J. Q. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem., Int. Ed. 2020, 59, 9011–9017.