Journal Home > Volume 16 , Issue 6

Lithium-sulfur (Li-S) battery is considered as a promising energy storage system due to its ultrahigh theoretical energy density of 2,600 Wh·kg−1. Redox mediation strategies have been proposed to promote the sluggish sulfur redox kinetics. Nevertheless, the applicability of redox mediators in practical high-energy-density Li-S batteries has seldomly been manifested. In this work, 5,7,12,14-pentacenetetrone (PT) is proposed as an effective redox mediator to promote the sulfur redox kinetics under practical working conditions. A high initial specific discharge capacity of 993 mAh·g−1 is achieved at 0.1 C with high-sulfur-loading cathodes of 4.0 mgS·cm−2 and low electrolyte/sulfur (E/S) ratio of 5 μL·mgS−1. More importantly, practical Li-S pouch cells with the PT mediator realize an actual initial energy density of 344 Wh·kg−1 and cycle stably for 20 cycles wih a high capacity retention of 88%. This work proposes an effective redox mediator and further verifies the redox mediation strategy for practical high-energy-density Li-S batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Boosting sulfur redox kinetics by a pentacenetetrone redox mediator for high-energy-density lithium-sulfur batteries

Show Author's information Yan-Qi Peng1,2Meng Zhao1,2Zi-Xian Chen1,2Qian Cheng1,2Yiran Liu1,2Xi-Yao Li3Yun-Wei Song3Bo-Quan Li1,2( )Jia-Qi Huang1,2( )
School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China
Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, China
Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China

Abstract

Lithium-sulfur (Li-S) battery is considered as a promising energy storage system due to its ultrahigh theoretical energy density of 2,600 Wh·kg−1. Redox mediation strategies have been proposed to promote the sluggish sulfur redox kinetics. Nevertheless, the applicability of redox mediators in practical high-energy-density Li-S batteries has seldomly been manifested. In this work, 5,7,12,14-pentacenetetrone (PT) is proposed as an effective redox mediator to promote the sulfur redox kinetics under practical working conditions. A high initial specific discharge capacity of 993 mAh·g−1 is achieved at 0.1 C with high-sulfur-loading cathodes of 4.0 mgS·cm−2 and low electrolyte/sulfur (E/S) ratio of 5 μL·mgS−1. More importantly, practical Li-S pouch cells with the PT mediator realize an actual initial energy density of 344 Wh·kg−1 and cycle stably for 20 cycles wih a high capacity retention of 88%. This work proposes an effective redox mediator and further verifies the redox mediation strategy for practical high-energy-density Li-S batteries.

Keywords: lithium-sulfur batteries, lithium polysulfides, redox mediation, sulfur redox kinetics, pouch cells

References(57)

[1]

Lund, H. Renewable energy strategies for sustainable development. Energy 2007, 32, 912–919.

[2]

Zhou, B. Y.; Wu, Y.; Zhou, B.; Wang, R. J.; Ke, W. W.; Zhang, S. J.; Hao, J. M. Real-world performance of battery electric buses and their life-cycle benefits with respect to energy consumption and carbon dioxide emissions. Energy 2016, 96, 603–613.

[3]

Koohi-Fayegh, S.; Rosen, M. A. A review of energy storage types, applications and recent developments. J. Energy Storage 2020, 27, 101047.

[4]

Wang, F.; Wang, B.; Li, J. X.; Wang, B.; Zhou, Y.; Wang, D. L.; Liu, H. K.; Dou, S. X. Prelithiation: A crucial strategy for boosting the practical application of next-generation lithium ion battery. ACS Nano 2021, 15, 2197–2218.

[5]

Xiao, Y.; Xu, R.; Xu, L.; Ding, J. F.; Huang, J. Q. Recent advances in anion-derived SEIs for fast-charging and stable lithium batteries. Energy Mater. 2021, 1, 100013.

[6]

Zhang, L.; Chen, Y. H. Electrolyte solvation structure as a stabilization mechanism for electrodes. Energy Mater. 2021, 1, 100004.

[7]

Li, M.; Lu, J.; Chen, Z. W.; Amine, K. 30 years of lithium-ion batteries. Adv. Mater. 2018, Adv. Mater., 1800561.

[8]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[9]

He, W.; Guo, W. B.; Wu, H. L.; Lin, L.; Liu, Q.; Han, X.; Xie, Q. S.; Liu, P. F.; Zheng, H. F.; Wang, L. S. et al. Challenges and recent advances in high capacity Li-rich cathode materials for high energy density lithium-ion batteries. Adv. Mater. 2021, 33, 2005937.

[10]

Duffner, F.; Kronemeyer, N.; Tübke, J.; Leker, J.; Winter, M.; Schmuch, R. Post-lithium-ion battery cell production and its compatibility with lithium-ion cell production infrastructure. Nat. Energy 2021, 6, 123–134.

[11]

Zhao, M.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q.; Zhang, Q. A perspective toward practical lithium-sulfur batteries. ACS Cent. Sci. 2020, 6, 1095–1104.

[12]

Castillo, J.; Qiao, L. X.; Santiago, A.; Judez, X.; de Buruaga, A. S.; Jiménez-Martín, G.; Armand, M.; Zhang, H.; Li, C. M. Perspective of polymer-based solid-state Li-S batteries. Energy Mater. 2022, 2, 200003.

[13]

Geng, C. N.; Hua, W. X.; Wang, D. W.; Ling, G. W.; Zhang, C.; Yang, Q. H. Demystifying the catalysis in lithium-sulfur batteries: Characterization methods and techniques. SusMat 2021, 1, 51–65.

[14]

Li, H. T.; Li, Y. G.; Zhang, L. Designing principles of advanced sulfur cathodes toward practical lithium-sulfur batteries. SusMat 2022, 2, 34–64.

[15]

Wild, M.; O'Neill, L.; Zhang, T.; Purkayastha, R.; Minton, G.; Marinescu, M.; Offer, G. J. Lithium sulfur batteries, a mechanistic review. Energy Environ. Sci. 2015, 8, 3477–3494.

[16]

Li, T.; Bai, X.; Gulzar, U.; Bai, Y. J.; Capiglia, C.; Deng, W.; Zhou, X. F.; Liu, Z. P.; Feng, Z. F.; Proietti Zaccaria, R. A comprehensive understanding of lithium-sulfur battery technology. Adv. Funct. Mater. 2019, 29, 1901730.

[17]

Shi, Z. X.; Li, M.; Sun, J. Y.; Chen, Z. W. Defect engineering for expediting Li-S chemistry: Strategies, mechanisms, and perspectives. Adv. Energy Mater. 2021, 11, 2100332.

[18]

He, J. R.; Manthiram, A. A review on the status and challenges of electrocatalysts in lithium-sulfur batteries. Energy Storage Mater. 2019, 20, 55–70.

[19]

Li, G. C.; Yang, L. Q.; Jiang, X.; Zhang, T. R.; Lin, H. B.; Yao, Q. F.; Lee, J. Y. A multi-electron redox mediator for redox-targeting lithium-sulfur flow batteries. J. Power Sources 2018, 378, 418–422.

[20]

Li, B. Q.; Kong, L.; Zhao, C. X.; Jin, Q.; Chen, X.; Peng, H. J.; Qin, J. L.; Chen, J. X.; Yuan, H.; Zhang, Q. et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries. InfoMat 2019, 1, 533–541.

[21]

Shen, C.; Xie, J. X.; Zhang, M.; Andrei, P.; Hendrickson, M.; Plichta, E. J.; Zheng, J. P. Understanding the role of lithium polysulfide solubility in limiting lithium-sulfur cell capacity. Electrochim. Acta 2017, 248, 90–97.

[22]

Angulakshmi, N.; Dhanalakshmi, R. B.; Sathya, S.; Ahn, J. H.; Stephan, A. M. Understanding the electrolytes of lithium-sulfur batteries. Batteries Supercaps 2021, 4, 1064–1095.

[23]

Tsao, Y.; Lee, M.; Miller, E. C.; Gao, G. P.; Park, J.; Chen, S. C.; Katsumata, T.; Tran, H.; Wang, L. W.; Toney, M. F. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 2019, 3, 872–884.

[24]

Liu, T.; Li, H. J.; Yue, J. M.; Feng, J. N.; Mao, M. L.; Zhu, X. Z.; Hu, Y. S.; Li, H.; Huang, X. J.; Chen, L. Q. et al. Ultralight electrolyte for high-energy lithium-sulfur pouch cells. Angew. Chem., Int. Ed. 2021, 60, 17547–17555.

[25]

Lei, J.; Liu, T.; Chen, J. J.; Zheng, M. S.; Zhang, Q.; Mao, B. W.; Dong, Q. F. Exploring and understanding the roles of Li2Sn and the strategies to beyond present Li-S batteries. Chem 2020, 6, 2533–2557.

[26]

Zhang, Z.; Kong, L. L.; Liu, S.; Li, G. R.; Gao, X. P. A high-efficiency sulfur/carbon composite based on 3D graphene nanosheet@carbon nanotube matrix as cathode for lithium-sulfur battery. Adv. Energy Mater. 2017, 7, 1602543.

[27]

Hwang, J. Y.; Kim, H. M.; Shin, S.; Sun, Y. K. Designing a high-performance lithium-sulfur batteries based on layered double hydroxides-carbon nanotubes composite cathode and a dual-functional graphene-polypropylene-Al2O3 separator. Adv. Funct. Mater. 2018, 28, 1704294.

[28]

Lu, R. C.; Cheng, M.; Mao, L. J.; Zhang, M.; Yuan, H. X.; Amin, K. R.; Yang, C.; Cheng, Y. L.; Meng, Y. N.; Wei, Z. X. Nitrogen-doped nanoarray-modified 3D hierarchical graphene as a cofunction host for high-performance flexible Li-S battery. EcoMat 2020, 2, e12010.

[29]

Cao, X. Y.; Zhang, M. G.; Zhu, F. S.; Zhang, X. L. Fabrication and characterization of N-doped porous carbon Co-Fe alloy composite cathode materials for promoting the electrochemical performance of Li-S batteries. J. Alloys Compd. 2022, 895, 162609.

[30]

Liu, X.; Li, Y.; Xu, X.; Zhou, L.; Mai, L. Q. Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: Materials and advances. J. Energy Chem. 2021, 61, 104–134.

[31]

Fan, C. Y.; Xiao, P.; Li, H. H.; Wang, H. F.; Zhang, L. L.; Sun, H. Z.; Wu, X. L.; Xie, H. M.; Zhang, J. P. Nanoscale polysulfides reactors achieved by chemical Au–S interaction: Improving the performance of Li-S batteries on the electrode level. ACS Appl. Mater. Interfaces 2015, 7, 27959–27967.

[32]

Wang, Y.; Deng, Z.; Huang, J. Y.; Li, H. J.; Li, Z. Y.; Peng, X. S.; Tian, Y.; Lu, J. G.; Tang, H. C.; Chen, L. X. et al. 2D Zr-Fc metal-organic frameworks with highly efficient anchoring and catalytic conversion ability towards polysulfides for advanced Li-S battery. Energy Storage Mater. 2021, 36, 466–477.

[33]

Zha, C. Y.; Wu, D. H.; Gu, X. Q.; Chen, H. Y. Triple-phase interfaces of graphene-like carbon clusters on antimony trisulfide nanowires enable high-loading and long-lasting liquid Li2S6-based lithium-sulfur batteries. J. Energy Chem. 2021, 59, 599–607.

[34]

Wang, Q.; Zhao, H. Q.; Li, B. Y.; Yang, C. H.; Li, M. Y.; Li, Y. N.; Han, P.; Wu, M. M.; Li, T. Y.; Liu, R. P. MOF-derived Co9S8 nano-flower cluster array modified separator towards superior lithium sulfur battery. Chin. Chem. Lett. 2021, 32, 1157–1160.

[35]

Zhang, Y. S.; Zhang, P.; Zhang, S. J.; Wang, Z.; Li, N.; Silva, S. R. P.; Shao, G. S. A flexible metallic TiC nanofiber/vertical graphene 1D/2D heterostructured as active electrocatalyst for advanced Li-S batteries. InfoMat 2021, 3, 790–803.

[36]

Huang, X.; Tang, J. Y.; Luo, B.; Knibbe, R.; Lin, T.; Hu, H.; Rana, M.; Hu, Y. X.; Zhu, X. B.; Gu, Q. F. et al. Sandwich-like ultrathin TiS2 nanosheets confined within N,S codoped porous carbon as an effective polysulfide promoter in lithium-sulfur batteries. Adv. Energy Mater. 2019, 9, 1901872.

[37]

Lim, W. G.; Kim, S.; Jo, C.; Lee, J. A comprehensive review of materials with catalytic effects in Li-S batteries: Enhanced redox kinetics. Angew. Chem., Int. Ed. 2019, 58, 18746–18757.

[38]

Li, J. F.; Niu, Z. H.; Guo, C.; Li, M.; Bao, W. Z. Catalyzing the polysulfide conversion for promoting lithium sulfur battery performances: A review. J. Energy Chem. 2021, 54, 434–451.

[39]

Zhao, M.; Peng, Y. Q.; Li, B. Q.; Zhang, X. Q.; Huang, J. Q. Regulation of carbon distribution to construct high-sulfur-content cathode in lithium-sulfur batteries. J. Energy Chem. 2021, 56, 203–208.

[40]

Song, Y. W.; Qin, J. L.; Zhao, C. X.; Zhao, M.; Hou, L. P.; Peng, Y. Q.; Peng, H. J.; Li, B. Q. The formation of crystalline lithium sulfide on electrocatalytic surfaces in lithium-sulfur batteries. J. Energy Chem. 2022, 64, 568–573.

[41]

Zhao, C. X.; Li, X. Y.; Zhao, M.; Chen, Z. X.; Song, Y. W.; Chen, W. J.; Liu, J. N.; Wang, B.; Zhang, X. Q.; Chen, C. M. et al. Semi-immobilized molecular electrocatalysts for high-performance lithium-sulfur batteries. J. Am. Chem. Soc. 2021, 143, 19865–19872.

[42]

Zhao, C. X.; Chen, W. J.; Zhao, M.; Song, Y. W.; Liu, J. N.; Li, B. Q.; Yuan, T. Q.; Chen, C. M.; Zhang, Q.; Huang, J. Q. Redox mediator assists electron transfer in lithium-sulfur batteries with sulfurized polyacrylonitrile cathodes. EcoMat 2021, 3, e12066.

[43]

Frischmann, P. D.; Gerber, L. C. H.; Doris, S. E.; Tsai, E. Y.; Fan, F. Y.; Qu, X. H.; Jain, A.; Persson, K. A.; Chiang, Y. M.; Helms, B. A. Supramolecular perylene bisimide-polysulfide gel networks as nanostructured redox mediators in dissolved polysulfide lithium-sulfur batteries. Chem. Mater. 2015, 27, 6765–6770.

[44]

Frischmann, P. D.; Hwa, Y.; Cairns, E. J.; Helms, B. A. Redox-active supramolecular polymer binders for lithium-sulfur batteries that adapt their transport properties in operando. Chem. Mater. 2016, 28, 7414–7421.

[45]

Hwa, Y.; Frischmann, P. D.; Helms, B. A.; Cairns, E. J. Aqueous-processable redox-active supramolecular polymer binders for advanced lithium/sulfur cells. Chem. Mater. 2018, 30, 685–691.

[46]

Meini, S.; Elazari, R.; Rosenman, A.; Garsuch, A.; Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems. J. Phys. Chem. Lett. 2014, 5, 915–918.

[47]

Kim, K. R.; Lee, K. S.; Ahn, C. Y.; Yu, S. H.; Sung, Y. E. Discharging a Li-S battery with ultra-high sulphur content cathode using a redox mediator. Sci. Rep. 2016, 6, 32433.

[48]

Zhao, M.; Peng, H. J.; Wei, J. Y.; Huang, J. Q.; Li, B. Q.; Yuan, H.; Zhang, Q. Dictating high-capacity lithium-sulfur batteries through redox-mediated lithium sulfide growth. Small Methods 2020, 4, 1900344.

[49]

Zhao, M.; Chen, X.; Li, X. Y.; Li, B. Q.; Huang, J. Q. An organodiselenide comediator to facilitate sulfur redox kinetics in lithium-sulfur batteries. Adv. Mater. 2021, 33, 2007298.

[50]

Zhao, M.; Li, X. Y.; Chen, X.; Li, B. Q.; Kaskel, S.; Zhang, Q.; Huang, J. Q. Promoting the sulfur redox kinetics by mixed organodiselenides in high-energy-density lithium-sulfur batteries. eScience 2021, 1, 44–52.

[51]

Ye, H. L.; Sun, J. G.; Lim, X. F.; Zhao, Y.; Lee, J. Y. Mediator-assisted catalysis of polysulfide conversion for high-loading lithium-sulfur batteries operating under the lean electrolyte condition. Energy Storage Mater. 2021, 38, 338–343.

[52]

Yao, M.; Ando, H.; Kiyobayashi, T. Polycyclic quinone fused by a sulfur-containing ring as an organic positive-electrode material for use in rechargeable lithium batteries. Energy Procedia 2016, 89, 222–230.

[53]

Song, Y. W.; Peng, Y. Q.; Zhao, M.; Lu, Y.; Liu, J. N.; Li, B. Q.; Zhang, Q. Understanding the impedance response of lithium polysulfide symmetric cells. Small Sci. 2021, 1, 2100042.

[54]

Drvarič Talian, S.; Moškon, J.; Dominko, R.; Gaberšček, M. Reactivity and diffusivity of Li polysulfides: A fundamental study using impedance spectroscopy. ACS Appl. Mater. Interfaces 2017, 9, 29760–29770.

[55]

Drvarič Talian, S.; Kapun, G.; Moškon, J.; Vizintin, A.; Randon-Vitanova, A.; Dominko, R.; Gaberšček, M. Which process limits the operation of a Li-S system. Chem. Mater. 2019, 31, 9012–9023.

[56]

Peng, H. J.; Zhang, G.; Chen, X.; Zhang, Z. W.; Xu, W. T.; Huang, J. Q.; Zhang, Q. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries. Angew. Chem., Int. Ed. 2016, 55, 12990–12995.

[57]

Zhao, M.; Peng, H. J.; Li, B. Q.; Chen, X.; Xie, J.; Liu, X. Y.; Zhang, Q.; Huang, J. Q. Electrochemical phase evolution of metal-based pre-catalysts for high-rate polysulfide conversion. Angew. Chem., Int. Ed. 2020, 59, 9011–9017.

File
4584_ESM.pdf (785.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 21 March 2022
Revised: 12 May 2022
Accepted: 26 May 2022
Published: 21 June 2022
Issue date: June 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Key Research and Development Program (No. 2021YFB2400300), Beijing Natural Science Foundation (No. JQ20004), the Natural Scientific Foundation of China (No. 22109007), Scientific and Technological Key Project of Shanxi Province (No. 20191102003), and Beijing Institute of Technology Research Fund Program for Young Scholars. We thank Chen-Xi Bi, Li-Peng Hou, and Dr. Xue-Qiang Zhang for helpful discussion.

Return