Journal Home > Volume 16 , Issue 3

Although the operating mechanism of sodium-ion battery (SIB) resembles that of lithium-ion battery, common film-forming additive for lithium-ion battery does not play its role in SIB. Therefore, it is essential to tailor new additives for SIB. Hard carbon (HC), as the most used anode material of SIB, has the disadvantage of interphasial instability, especially under the condition of long-term cycling. The incessant accumulation of electrolyte decomposition products leads to a significant increase in interphasial impedance and a sharp decline in discharge capacity. In this work, N-phenyl-bis(trifluoromethanesulfonimide) (PTFSI) was proposed as a novel film-forming electrolyte additive, which effectively enhances the long-term cycling performance for HC anode in SIB. The passivation film generated from the preferential reduction of PTFSI improves the capacity retention of HC/Na half-cell from 0% to 68% after 500 cycles. Profoundly, the enhanced interphasial stability of HC anode results in a 52% increase in capacity retention of HC/Na3V2(PO4)3 full-cells after 100 cycles.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enhanced interphasial stability of hard carbon for sodium-ion battery via film-forming electrolyte additive

Show Author's information Wenguang Zhang1Fanghong Zeng1Huijuan Huang2Yan Yu2Mengqing Xu1( )Lidan Xing1( )Weishan Li1
Engineering Research Center of MTEES (Ministry of Education), Research Center of BMET (Guangdong Province), Engineering Lab. of OFMHEB (Guangdong Province), Key Lab. of ETESPG (GHEI), and Innovative Platform for ITBMD (Guangzhou Municipality), School of Chemistry, South China Normal University, Guangzhou 510006, China
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, CAS Key Laboratory of Materials for Energy Conversion, University of Science and Technology of China, Hefei 230026, China

Abstract

Although the operating mechanism of sodium-ion battery (SIB) resembles that of lithium-ion battery, common film-forming additive for lithium-ion battery does not play its role in SIB. Therefore, it is essential to tailor new additives for SIB. Hard carbon (HC), as the most used anode material of SIB, has the disadvantage of interphasial instability, especially under the condition of long-term cycling. The incessant accumulation of electrolyte decomposition products leads to a significant increase in interphasial impedance and a sharp decline in discharge capacity. In this work, N-phenyl-bis(trifluoromethanesulfonimide) (PTFSI) was proposed as a novel film-forming electrolyte additive, which effectively enhances the long-term cycling performance for HC anode in SIB. The passivation film generated from the preferential reduction of PTFSI improves the capacity retention of HC/Na half-cell from 0% to 68% after 500 cycles. Profoundly, the enhanced interphasial stability of HC anode results in a 52% increase in capacity retention of HC/Na3V2(PO4)3 full-cells after 100 cycles.

Keywords: sodium-ion battery, hard carbon anode, interphasial stability, N-phenyl-bis(trifluoromethanesulfonimide)

References(60)

[1]

Goodenough, J. B.; Park, K. S. The Li-ion rechargeable battery: A perspective. J. Am. Chem. Soc. 2013, 135, 1167–1176.

[2]

Larcher, D.; Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 2015, 7, 19–29.

[3]

Manthiram, A. An outlook on lithium ion battery technology. ACS Cent. Sci. 2017, 3, 1063–1069.

[4]

Balogun, M. S.; Qiu, W. T.; Luo, Y.; Meng, H.; Mai, W. J.; Onasanya, A.; Olaniyi, T. K.; Tong, Y. X. A review of the development of full cell lithium-ion batteries: The impact of nanostructured anode materials. Nano Res. 2016, 9, 2823–2851.

[5]

Sun, D. P.; Tan, Z.; Tian, X. Z.; Ke, F.; Wu Y. L.; Zhang, J. Graphene: A promising candidate for charge regulation in high-performance lithium-ion batteries. Nano Res. 2021, 14, 4370–4385.

[6]

Tian, Y. S.; Zeng, G. B.; Rutt, A.; Shi, T.; Kim, H.; Wang, J. Y.; Koettgen, J.; Sun, Y. Z.; Ouyang, B.; Chen, T. N. et al. Promises and challenges of next-generation “beyond Li-ion” batteries for electric vehicles and grid decarbonization. Chem. Rev. 2021, 121, 1623–1669.

[7]

Yan, G. C.; Mariyappan, S.; Rousse, G.; Jacquet, Q.; Deschamps, M.; David, R.; Mirvaux, B.; Freeland, J. W.; Tarascon, J. M. Higher energy and safer sodium ion batteries via an electrochemically made disordered Na3V2(PO4)2F3 material. Nat. Commun. 2019, 10, 585.

[8]

Wang, Y.; Liu, Y. K.; Liu, Y. C.; Shen, Q. Y.; Chen, C. C.; Qiu, F. Y.; Li, P.; Jiao, L. F.; Qu, X. H. Recent advances in electrospun electrode materials for sodium-ion batteries. J. Energy Chem. 2021, 54, 225–241.

[9]

Ma, X. M.; Cao, X. X.; Zhou, Y. F.; Guo, S.; Shi, X. D.; Fang, G. Z.; Pan, A. Q.; Lu, B. G.; Zhou, J.; Liang, S. Q. Tuning crystal structure and redox potential of NASICON-type cathodes for sodium-ion batteries. Nano Res. 2020, 13, 3330–3337.

[10]

Dong, R. Q.; Zheng, L. M.; Bai, Y.; Ni, Q.; Li, Y.; Wu, F.; Ren, H. X.; Wu, C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes. Adv. Mater. 2021, 33, 2008810.

[11]

Bai, Q.; Yang, L. F.; Chen, H. L.; Mo, Y. F. Computational studies of electrode materials in sodium-ion batteries. Adv. Energy Mater. 2018, 8, 1702998.

[12]

Qian, J. F.; Wu, C.; Cao, Y. L.; Ma, Z. F.; Huang, Y. H.; Ai, X. P.; Yang, H. X. Prussian blue cathode materials for sodium-ion batteries and other ion batteries. Adv. Energy Mater. 2018, 8, 1702619.

[13]

Cai, Y. S.; Liu, F.; Luo, Z. G.; Fang, G. Z.; Zhou, J.; Pan, A. Q.; Liang, S. Q. Pilotaxitic Na1.1V3O7.9 nanoribbons/graphene as high-performance sodium ion battery and aqueous zinc ion battery cathode. Energy Storage Mater. 2018, 13, 168–174.

[14]

Wasalathilake, K. C.; Li, H. N.; Xu, L.; Yan, C. Recent advances in graphene based materials as anode materials in sodium-ion batteries. J. Energy Chem. 2020, 42, 91–107.

[15]

Sarkar, S.; Roy, S.; Zhao, Y. F.; Zhang, J. J. Recent advances in semimetallic pnictogen (As, Sb, Bi) based anodes for sodium-ion batteries: Structural design, charge storage mechanisms, key challenges and perspectives. Nano Res. 2021, 14, 3690–3723.

[16]

Xie, F.; Xu, Z.; Guo, Z. Y.; Titirici, M. M. Hard carbons for sodium-ion batteries and beyond. Prog. Energy 2020, 2, 042002.

[17]

Bai, P. X.; He, Y. W.; Zou, X. X.; Zhao, X. X.; Xiong, P. X.; Xu, Y. H. Elucidation of the sodium-storage mechanism in hard carbons. Adv. Energy Mater. 2018, 8, 1703217.

[18]

Reddy, M. A.; Helen, M.; Groß, A.; Fichtner, M.; Euchner, H. Insight into sodium insertion and the storage mechanism in hard carbon. ACS Energy Lett. 2018, 3, 2851–2857.

[19]

Au, H.; Alptekin, H.; Jensen, A. C. S.; Olsson, E.; O’Keefe, C. A.; Smith, T.; Crespo-Ribadeneyra, M.; Headen, T. F.; Grey, C. P.; Cai, Q. et al. A revised mechanistic model for sodium insertion in hard carbons. Energy Environ. Sci. 2020, 10, 3469–3479.

[20]

Sun, J. G.; Sun, Y.; Oh, J. A. S.; Gu, Q. L.; Zheng, W. D.; Goh, M.; Zeng, K. Y.; Cheng, Y.; Lu, L. Insight into the structure-capacity relationship in biomass derived carbon for high-performance sodium-ion batteries. J. Energy Chem. 2021, 62, 497–504.

[21]

Jiang, K. R.; Tan, X. H.; Zhai, S. L.; Cadien, K.; Li, Z. Carbon nanosheets derived from reconstructed lignin for potassium and sodium storage with low voltage hysteresis. Nano Res. 2021, 14, 4664–4673.

[22]

Tang, K.; Fu, L. J.; White, R. J.; Yu, L. H.; Titirici, M. M.; Antonietti, M.; Maier, J. Hollow carbon nanospheres with superior rate capability for sodium-based batteries. Adv. Energy Mater. 2012, 2, 873–877.

[23]

Li, Y. M.; Hu, Y. S.; Li, H.; Chen, L. Q.; Huang, X. J. A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries. J. Mater. Chem. A 2016, 4, 96–104.

[24]

Bai, Y.; Wang, Z.; Wu, C.; Xu, R.; Wu, F.; Liu, Y. C.; Li, H.; Li, Y.; Lu, J.; Amine, K. Hard carbon originated from polyvinyl chloride nanofibers as high-performance anode material for Na-ion battery. ACS Appl. Mater. Interfaces 2015, 7, 5598–5604.

[25]

Feng, J. K.; An, Y. L.; Ci, L. J.; Xiong, S. L. Nonflammable electrolyte for safer non-aqueous sodium batteries. J. Mater. Chem. A 2015, 3, 14539–14544.

[26]

Feng, J. K.; Ci, L. J.; Xiong, S. L. Biphenyl as overcharge protection additive for nonaqueous sodium batteries. RSC Adv. 2015, 5, 96649–96652.

[27]

Wang, J. H.; Yamada, Y.; Sodeyama, K.; Watanabe, E.; Takada, K.; Tateyama, Y.; Yamada, A. Fire-extinguishing organic electrolytes for safe batteries. Nat. Energy 2018, 3, 22–29.

[28]

Komaba, S.; Ishikawa, T.; Yabuuchi, N.; Murata, W.; Ito, A.; Ohsawa, Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. ACS Appl. Mater. Interfaces 2011, 3, 4165–4168.

[29]

Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Electrochemical Na insertion and solid electrolyte interphase for hard-carbon electrodes and application to Na-ion batteries. Adv. Funct. Mater. 2011, 21, 3859–3867.

[30]

Lan, G. Y.; Zhou, H. B.; Xing, L. D.; Chen, J. W.; Li, Z. F.; Guo, R. D.; Che, Y. X.; Li, W. S. Insight into the interaction between Ni-rich LiNi0.8Co0.1Mn0.1O2 cathode and BF4-introducing electrolyte at 4.5 V high voltage. J. Energy Chem. 2019, 39, 235–243.

[31]

Liang, H. J.; Gu, Z. Y.; Zhao, X. X.; Guo, J. Z.; Yang, J. L.; Li, W. H.; Li, B.; Liu, Z. M.; Li, W. L.; Wu, X. L. Ether-based electrolyte chemistry towards high-voltage and long-life Na-ion full batteries. Angew. Chem., Int. Ed. 2021, 60, 26837–26846.

[32]

Purushotham, U.; Takenaka, N.; Nagaoka, M. Additive effect of fluoroethylene and difluoroethylene carbonates for the solid electrolyte interphase film formation in sodium-ion batteries: A quantum chemical study. RSC Adv. 2016, 6, 65232–65242.

[33]

Che, H. Y.; Liu, J.; Wang, H.; Wang, X. P.; Zhang, S. S.; Liao, X. Z.; Ma, Z. F. Rubidium and cesium ions as electrolyte additive for improving performance of hard carbon anode in sodium-ion battery. Electrochem. Commun. 2017, 83, 20–23.

[34]

Benchakar, M.; Naéjus, R.; Damas, C.; Santos-Peña, J. Exploring the use of EMImFSI ionic liquid as additive or co-solvent for room temperature sodium ion battery electrolytes. Electrochim. Acta 2020, 330, 135193.

[35]

Kim, D. H.; Kang, B.; Lee, H. Comparative study of fluoroethylene carbonate and succinic anhydride as electrolyte additive for hard carbon anodes of Na-ion batteries. J. Power Sources 2019, 423, 137–143.

[36]

Jiang, Y.; Zhou, X. F.; Li, D. J.; Cheng, X. L.; Liu, F. F.; Yu, Y. Highly reversible Na storage in Na3V2(PO4)3 by optimizing nanostructure and rational surface engineering. Adv. Energy Mater. 2018, 8, 1800068.

[37]
Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A. et al. Gaussian 09, Revision A; Gaussian, Inc.: Wallingford, CT, 2009.
[38]

Xing, L. D.; Zheng, X. W.; Schroeder, M.; Alvarado, J.; von Wald Cresce, A.; Xu, K.; Li, Q. S.; Li, W. S. Deciphering the ethylene carbonate-propylene carbonate mystery in Li-ion batteries. Acc. Chem. Res. 2018, 51, 282–289.

[39]

Liu, M. Z.; Vatamanu, J.; Chen, X. L.; Xing, L. D.; Xu, K.; Li, W. S. Hydrolysis of LiPF6-containing electrolyte at high voltage. ACS Energy Lett. 2021, 6, 2096–2102.

[40]

Luo, X. H.; Xing, L. D.; Vatamanu, J.; Chen, J. W.; Chen, J. K.; Liu, M. Z.; Wang, C.; Xu, K.; Li, W. S. Inhibiting manganese(II) from catalyzing electrolyte decomposition in lithium-ion batteries. J. Energy Chem. 2022, 65, 1–8.

[41]

Liao, B.; Li, H. Y.; Xu, M. Q.; Xing, L. D.; Liao, Y. H.; Ren, X. B.; Fan, W. Z.; Yu, L.; Xu, K.; Li, W. S. Designing low impedance interface films simultaneously on anode and cathode for high energy batteries. Adv. Energy Mater. 2018, 8, 1800802.

[42]

Yamauchi, H.; Ikejiri, J.; Tsunoda, K.; Tanaka, A.; Sato, F.; Honma, T.; Komatsu, T. Enhanced rate capabilities in a glass-ceramic-derived sodium all-solid-state battery. Sci. Rep. 2020, 10, 9453.

[43]

Che, Y. X.; Lin, X. Y.; Xing, L. D.; Guan, X. C.; Guo, R. D.; Lan, G. Y.; Zheng, Q. F.; Zhang, W. G.; Li, W. S. Protective electrode/electrolyte interphases for high energy lithium-ion batteries with p-toluenesulfonyl fluoride electrolyte additive. J. Energy Chem. 2021, 52, 361–371.

[44]

Fan, L. L.; Li, X. F. Recent advances in effective protection of sodium metal anode. Nano Energy 2018, 53, 630–642.

[45]

Lee, B.; Paek, E.; Mitlin, D.; Lee, S. W. Sodium metal anodes: Emerging solutions to dendrite growth. Chem. Rev. 2019, 119, 5416–5460.

[46]

Fondard, J.; Irisarri, E.; Courrèges, C.; Palacin, M. R.; Ponrouch, A.; Dedryvère, R. SEI composition on hard carbon in Na-ion batteries after long cycling: Influence of salts (NaPF6, NaTFSI) and additives (FEC, DMCF). J. Electrochem. Soc. 2020, 167, 070526.

[47]

Xu, X. F.; Zhou, D.; Qin, X. Y.; Lin, K.; Kang, F. Y.; Li, B. H.; Shanmukaraj, D.; Rojo, T.; Armand, M.; Wang, G. X. A room-temperature sodium-sulfur battery with high capacity and stable cycling performance. Nat. Commun. 2018, 9, 3870.

[48]

Zhang, W. G.; Xing, L. D.; Chen, J. W.; Zhou, H. B.; Liang, S. M.; Huang, W. Y.; Li, W. S. Improving the cyclic stability of MoO2 anode for sodium ion batteries via film-forming electrolyte additive. J. Alloys Compd. 2020, 822, 153530.

[49]

Xiao, B. W.; Soto, F. A.; Gu, M.; Han, K. S.; Song, J. H.; Wang, H.; Engelhard, M. H.; Murugesan, V.; Mueller, K. T.; Reed, D. et al. Lithium-pretreated hard carbon as high-performance sodium-ion battery anodes. Adv. Energy Mater. 2018, 8, 1801441.

[50]

Malmgren, S.; Ciosek, K.; Lindblad, R.; Plogmaker, S.; Kühn, J.; Rensmo, H.; Edström, K.; Hahlin, M. Consequences of air exposure on the lithiated graphite SEI. Electrochim. Acta 2013, 105, 83–91.

[51]

Tian, B. B.; Światowska, J.; Maurice, V.; Zanna, S.; Seyeux, A.; Klein, L. H.; Marcus, P. Combined surface and electrochemical study of the lithiation/delithiation mechanism of the iron oxide thin-film anode for lithium-ion batteries. J. Phys. Chem. C 2013, 117, 21651–21661.

[52]

Michan, A. L.; Parimalam, B. S.; Leskes, M.; Kerber, R. N.; Yoon, T.; Grey, C. P.; Lucht, B. L. Fluoroethylene carbonate and vinylene carbonate reduction: Understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation. Chem. Mater. 2016, 28, 8149–8159.

[53]

Zheng, J. M.; Chen, S. R.; Zhao, W. G.; Song, J. H.; Engelhard, M. H.; Zhang, J. G. Extremely stable sodium metal batteries enabled by localized high-concentration electrolytes. ACS Energy Lett. 2018, 3, 315–321.

[54]

Bai, P. X.; He, Y. W.; Xiong, P. X.; Zhao, X. X.; Xu, K.; Xu, Y. H. Long cycle life and high rate sodium-ion chemistry for hard carbon anodes. Energy Storage Mater. 2018, 13, 274–282.

[55]

Ma, L. A.; Naylor, A. J.; Nyholm, L.; Younesi, R. Strategies for mitigating dissolution of solid electrolyte interphases in sodium-ion batteries. Angew. Chem. 2021, 133, 4905–4913.

[56]

Lee, Y.; Lim, H.; Kim, S. O.; Kim, H. S.; Kim, K. J.; Lee, K. Y.; Choi, W. Thermal stability of Sn anode material with non-aqueous electrolytes in sodium-ion batteries. J. Mater. Chem. A 2018, 6, 20383–20392.

[57]

Liu, M. Z.; Xing, L. D.; Xu, K.; Zhou, H. B.; Lan, J. L.; Wang, C.; Li, W. S. Deciphering the paradox between the Co-intercalation of sodium-solvent into graphite and its irreversible capacity. Energy Storage Mater. 2020, 26, 32–39.

[58]

Yuan, H. C.; Ma, F. X.; Wei, X. B.; Lan, J. L.; Liu, Y.; Yu, Y. H.; Yang, X. P.; Park, H. S. Ionic-conducting and robust multilayered solid electrolyte interphases for greatly improved rate and cycling capabilities of sodium ion full cells. Adv. Energy Mater. 2020, 10, 2001418.

[59]

Doi, K.; Yamada, Y.; Okoshi, M.; Ono, J.; Chou, C. P.; Nakai, H.; Yamada, A. Reversible sodium metal electrodes: Is fluorine an essential interphasial component? Angew. Chem., Int. Ed. 2019, 58, 8024–8028.

[60]

Fleutot, B.; Pecquenard, B.; Martinez, H.; Letellier, M.; Levasseur, A. Investigation of the local structure of LiPON thin films to better understand the role of nitrogen on their performance. Solid State Ionics 2011, 186, 29–36.

File
12274_2022_4583_MOESM1_ESM.pdf (1.6 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 03 January 2022
Revised: 22 April 2022
Accepted: 26 May 2022
Published: 22 June 2022
Issue date: March 2023

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21972049) and the Guangdong Program for Distinguished Young Scholar (No. 2017B030306013).

Return