AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Review Article

Shining light on transition metal tungstate-based nanomaterials for electrochemical applications: Structures, progress, and perspectives

Kaijia Feng1,2Zhefei Sun3Yong Liu1,2( )Feng Tao1Junqing Ma1Han Qian1Renhong Yu1Kunming Pan1,2( )Guangxin Wang1Shizhong Wei1,2Qiaobao Zhang3,4( )
National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of Non–Ferrous Materials Science & Processing Technology, School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
Provincial and Ministerial Co–construction of Collaborative Innovation Center for Non-ferrous Metal New Materials and Advanced Processing Technology, Henan Key Laboratory of High-temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471023, China
Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China
Fujian Key Laboratory of Surface and Interface Engineering for High Performance Materials, Xiamen University, Xiamen 361005, China
Show Author Information

Graphical Abstract

The advantages and recent advances of transition metal tungstate-based nanomaterials in electrochemical applications are systemically summarized.

Abstract

Transition metal tungstate-based nanomaterials have become one of the research hotspots in electrochemistry due to their abundant natural resources, low costs, and environmental friendliness. Extensive studies have demonstrated their significant potentials for electrochemical applications, such as supercapacitors, Li-ion batteries, Na-ion batteries, electrochemical sensing, and electrocatalysis. Considering the rapidly growing research enthusiasm for this topic over the last several years, herein, a critical review of recent progress on the application of transition metal tungstates and their composites for electrochemical applications is summarized. The relationships between synthetic methods, nano/micro structures and electrochemical properties are systematically discussed. Finally, their promising prospects for future development are also proposed. It is anticipated that this review will inspire ongoing interest in rational designing and fabricating novel transition metal tungstate-based nanomaterials for high-performance electrochemical devices.

References

1

Sun, T.; Xie, J.; Guo, W.; Li, D. S.; Zhang, Q. C. Covalent-organic frameworks: Advanced organic electrode materials for rechargeable batteries. Adv. Energy Mater. 2020, 10, 1904199.

2

Guo, X. W.; Chen, C. Y.; Zhang, Y. C.; Xu, Y. X.; Pang, H. The application of transition metal cobaltites in electrochemistry. Energy Storage Mater. 2019, 23, 439–465.

3

Tang, Y. J.; Zheng, S. S.; Xu, Y. X.; Xiao, X.; Xue, H. G.; Pang, H. Advanced batteries based on manganese dioxide and its composites. Energy Storage Mater. 2018, 12, 284–309.

4

Chu, S.; Majumdar, A. Opportunities and challenges for a sustainable energy future. Nature 2012, 488, 294–303.

5

Hu, E. L.; Ning, J. Q.; He, B.; Li, Z. P.; Zheng, C. C.; Zhong, Y. J.; Zhang, Z. Y.; Hu, Y. Unusual formation of tetragonal microstructures from nitrogen-doped carbon nanocapsules with cobalt nanocores as a bi-functional oxygen electrocatalyst. J. Mater. Chem. A 2017, 5, 2271–2279.

6

David, L. Smart grids: The energy storage problem. Nature 2010, 463, 18–20.

7

Zhang, J.; Gu, P.; Xu, J.; Xue, H. G.; Pang, H. High performance of electrochemical lithium storage batteries: ZnO-based nanomaterials for lithium-ion and lithium-sulfur batteries. Nanoscale 2016, 8, 18578–18595.

8

Luo, B.; Ye, D. L.; Wang, L. Z. Recent progress on integrated energy conversion and storage systems. Adv. Sci. 2017, 4, 1700104.

9

Schon, T. B.; McAllister, B. T.; Li, P. F.; Seferos, D. S. The rise of organic electrode materials for energy storage. Chem. Soc. Rev. 2016, 45, 6345–6404.

10

Roger, I.; Shipman, M. A.; Symes, M. D. Earth-abundant catalysts for electrochemical and photoelectrochemical water splitting. Nat. Rev. Chem. 2017, 1, 0003.

11

Wu, H.; Cui, Y. Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 2012, 7, 414–429.

12

Wang, Z. J.; Cao, D. W.; Xu, R.; Qu, S. C.; Wang, Z. G.; Lei, Y. Realizing ordered arrays of nanostructures: A versatile platform for converting and storing energy efficiently. Nano Energy 2016, 19, 328–362.

13

Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Sodium-ion batteries. Adv. Funct. Mater. 2013, 23, 947–958.

14

Zhang, C. L.; Yin, H. H.; Han, M.; Dai, Z. H.; Pang, H.; Zheng, Y. L.; Lan, Y. Q.; Bao, J. C.; Zhu, J. M. Two-dimensional tin selenide nanostructures for flexible all-solid-state supercapacitors. ACS Nano 2014, 8, 3761–3770.

15

Liu, W.; Song, M. S.; Kong, B.; Cui, Y. Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 2017, 29, 1603436.

16

Chen, R. J.; Luo, R.; Huang, Y. X.; Wu, F.; Li, L. Advanced high energy density secondary batteries with multi-electron reaction materials. Adv. Sci. 2016, 3, 1600051.

17

Lim, E.; Kim, H.; Jo, C.; Chun, J.; Ku, K.; Kim, S.; Lee, H. I.; Nam, I. S.; Yoon, S.; Kang, K. et al. Advanced hybrid supercapacitor based on a mesoporous niobium pentoxide/carbon as high-performance. ACS Nano 2014, 8, 8968–8978.

18

Zhang, G. X.; Xiao, X.; Li, B.; Gu, P.; Xue, H. G.; Pang, H. Transition metal oxides with one-dimensional/one-dimensional-analogue nanostructures for advanced supercapacitors. J. Mater. Chem. A 2017, 5, 8155–8186.

19

Tao, F.; Liu, Y.; Ren, X. Y.; Wang, J.; Zhou, Y. Z.; Miao, Y. J.; Ren, F. Z.; Wei, S. Z.; Ma, J. M. Different surface modification methods and coating materials of zinc metal anode. J. Energy Chem. 2022, 66, 397–412.

20

Wu, C. H.; Zhu, G. J.; Wang, Q.; Wu, M. H.; Zhang, H. J. Sn-based nanomaterials: From composition and structural design to their electrochemical performances for Li- and Na-ion batteries. Energy Storage Mater. 2021, 43, 430–462.

21

He, F. Y.; Tang, C.; Zhu, G. J.; Liu, Y. D.; Du, A. J.; Zhang, Q. B.; Wu, M. H.; Zhang, H. J. Leaf-inspired design of mesoporous Sb2S3/N-doped Ti3C2Tx composite towards fast sodium storage. Sci. China Chem. 2021, 64, 964–973.

22

Li, S. Q.; Fan, Z. Y. Special issue: Advances in electrochemical energy materials. Materials 2020, 13, 844.

23

Abbas, Q.; Mirzaeian, M.; Hunt, M. R. C.; Hall, P.; Raza, R. Current state and future prospects for electrochemical energy storage and conversion systems. Energies 2020, 13, 5847.

24

Wang, H.; Yang, Y.; Guo, L. Renewable-biomolecule-based electrochemical energy-storage materials. Adv. Energy Mater. 2017, 7, 1700663.

25

Wang, H.; Yang, Y.; Guo, L. Nature-inspired electrochemical energy-storage materials and devices. Adv. Energy Mater. 2017, 7, 1601709.

26

Li, B.; Gu, P.; Feng, Y. C.; Zhang, G. X.; Huang, K. S.; Xue, H. G.; Pang, H. Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv. Funct. Mater. 2017, 27, 1605784.

27

Fernão Pires, V.; Romero-Cadaval, E.; Vinnikov, D.; Roasto, I.; Martins, J. F. Power converter interfaces for electrochemical energy storage systems—A review. Energy Convers. Manage. 2014, 86, 453–475.

28

Feng, X. Y.; Wu, H. H.; Gao, B.; Świętosławski, M.; He, X.; Zhang, Q. B. Lithiophilic N-doped carbon bowls induced Li deposition in layered graphene film for advanced lithium metal batteries. Nano Res. 2022, 15, 352–360.

29

Wang, F.; Liu, Y.; Wei, H. J.; Li, T. F.; Xiong, X. H.; Wei, S. Z.; Ren, F. Z.; Volinsky, A. A. Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries. Rare Met. 2021, 40, 448–470.

30

Liu, Y.; Wei, H. J.; Zhai, X. L.; Wang, F.; Ren, X. Y.; Xiong, Y.; Akiyoshi, O.; Pan, K. M.; Ren, F. Z.; Wei, S. Z. Graphene-based interlayer for high-performance lithium-sulfur batteries: A review. Mater. Des. 2021, 211, 110171.

31

Cai, M. T.; Zhang, H. H.; Zhang, Y. G.; Xiao, B. S.; Wang, L.; Li, M.; Wu, Y.; Sa, B. S.; Liao, H. G.; Zhang, L. et al. Boosting the potassium-ion storage performance enabled by engineering of hierarchical MoSSe nanosheets modified with carbon on porous carbon sphere. Sci. Bull. 2022, 67, 933–945.

32

Miao, W. K.; Han, Q. H.; Zhang, H. M.; Chen, K. L.; Zhang, L.; Li, Y.; Han, S. M. Uniform phosphorus doped CoWO4@NiWO4 nanocomposites for asymmetric supercapacitors. J. Alloys Compd. 2021, 877, 160301.

33

He, G. J.; Li, J. M.; Li, W. Y.; Li, B.; Noor, N.; Xu, K. B.; Hu, J. Q.; Parkin, I. P. One pot synthesis of nickel foam supported self-assembly of NiWO4 and CoWO4 nanostructures that act as high performance electrochemical capacitor electrodes. J. Mater. Chem. A 2015, 3, 14272–14278.

34

Chen, S. M.; Yang, G.; Jia, Y.; Zheng, H. J. Three-dimensional NiCo2O4@NiWO4 core−shell nanowire arrays for high performance supercapacitors. J. Mater. Chem. A 2017, 5, 1028–1034.

35
Wang W. Hu L. W. Ge J. B. Hu Z. Q. Sun H. B. Sun H. Zhang H. Q. Zhu H. M. Jiao S. Q. In situ self-assembled FeWO4/graphene mesoporous composites for Li-ion and Na-ion batteries Chem. Mater. 2014 26 3721 3730 10.1021/cm501122u

Wang, W.; Hu, L. W.; Ge, J. B.; Hu, Z. Q.; Sun, H. B.; Sun, H.; Zhang, H. Q.; Zhu, H. M.; Jiao, S. Q. In situ self-assembled FeWO4/graphene mesoporous composites for Li-ion and Na-ion batteries. Chem. Mater. 2014, 26, 3721–3730.

36

Oh, S. Y.; Hong, S. Y.; Jeong, Y. R.; Yun, J.; Park, H.; Jin, S. W.; Lee, G.; Oh, J. H.; Lee, H. et al. Skin-attachable, stretchable electrochemical sweat sensor for glucose and pH detection. ACS Appl. Mater. Interfaces 2018, 10, 13729–13740.

37

Xie, L.; Liu, Y.; Bai, H. Y.; Li, C. X.; Mao, B. D.; Sun, L.; Shi, W. D. Core−shell structured ZnCo2O4@ZnWO4 nanowire arrays on nickel foam for advanced asymmetric supercapacitors. J. Colloid Interface Sci. 2018, 531, 64–73.

38

Anitha, T.; Reddy, A. E.; Vinodh, R.; Kim, H. J.; Cho, Y. R. Preparation and characterization of CoWO4/CoMn2O4 nanoflakes composites on Ni foam for electrochemical supercapacitor applications. J. Energy Storage 2020, 30, 101483.

39

Han, S.; Lin, L. Y.; Zhang, K. H.; Luo, L. J.; Peng, X. H.; Hu, N. ZnWO4 nanoflakes decorated NiCo2O4 nanoneedle arrays grown on carbon cloth as supercapacitor electrodes. Mater. Lett. 2017, 193, 89–92.

40

Ojha, D. P.; Karki, H. P.; Song, J. H.; Kim, H. J. Decoration of g-C3N4 with hydrothermally synthesized FeWO4 nanorods as the high-performance supercapacitors. Chem. Phys. Lett. 2018, 712, 83–88.

41

Ma, G. F.; Zhang, Z. G.; Sun, K. J.; Feng, E. K.; Peng, H.; Zhou, X. Z.; Lei, Z. Q. High-performance aqueous asymmetric supercapacitor based on K03WO3 nanorods and nitrogen-doped porous carbon. J. Power Sources 2016, 330, 219–230.

42

Zhang, M. C.; Fan, H. Q.; Zhao, N.; Peng, H. J.; Ren, X. H.; Wang, W. J.; Li, H.; Chen, G. Y.; Zhu, Y. N.; Jiang, X. B. et al. 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 2018, 347, 291–300.

43

Xu, K. Q.; Yan, Y.; Ma, L. B.; Shen, X. P.; Chen, H. Y.; Ji, Z. Y.; Yuan, A. H.; Zhu, G. X.; Zhu, J.; Kong, L. R. Facile synthesis of novel tungsten-based hierarchical core−shell composite for ultrahigh volumetric lithium storage. J. Colloid Interface Sci. 2020, 567, 28–36.

44
Zhang, H. ; Bai, R. J. ; Lu, C. ; Li, J. ; Xu, Y. G. ; Kong, L. B. ; Liu, M. C. RGO-modified CoWO4 nanoparticles as new high-performance electrode materials for sodium-ion storage. Ionics 2019, 25, 533–540.
45

Yu, P.; Wang, L.; Liu, X.; Fu, H. G.; Yu, H. T. CoWO4 nanopaticles wrapped by RGO as high capacity anode material for lithium ion batteries. Rare Met. 2017, 36, 411–417.

46

Brijesh, K.; Nagaraja, H. S. ZnWO4/r-GO nanocomposite as high capacity anode for lithium-ion battery. Ionics 2020, 26, 2813–2823.

47

Xing, L. L.; Deng, P.; He, B.; Nie, Y. X.; Wu, X. L.; Yuan, S.; Cui, C. X.; Xue, X. Y. Assembly of FeWO4-SnO2 core–shell nanorods and their high reversible capacity as lithium-ion battery anodes. Electrochim. Acta 2014, 118, 45–50.

48

Xing, L. L.; Yuan, S.; He, B.; Zhao, Y. Y.; Wu, X. L.; Xue, X. Y. Synergistic effect of SnO2/ZnWO4 core-shell nanorods with high reversible lithium storage capacity. Chem. - Asian J. 2013, 8, 1530–1535.

49

Muthumariyappan, A.; Rajaji, U.; Chen, S. M.; Chen, T. W.; Li, Y. L.; Ramalingam, R. J. One-pot sonochemical synthesis of Bi2WO6 nanospheres with multilayer reduced graphene nanosheets modified electrode as rapid electrochemical sensing platform for high sensitive detection of oxidative stress biomarker in biological sample. Ultrason. Sonochem. 2019, 57, 233–241.

50

Koyappayil, A.; Berchmans, S.; Lee, M. H. Dual enzyme-like properties of silver nanoparticles decorated Ag2WO4 nanorods and its application for H2O2 and glucose sensing. Colloids Surf. B Biointerf. 2020, 189, 110840.

51

Wu, X. F.; Bao, C. C.; Niu, Q. Q.; Lu, W. B. A novel method to construct a 3D FeWO4 microsphere-array electrode as a non-enzymatic glucose sensor. Nanotechnology 2019, 30, 165501.

52

Eranjaneya, H.; Adarakatti, P. S.; Siddaramanna, A.; Thimmanna, C. G. Nickel tungstate nanoparticles: Synthesis, characterization and electrochemical sensing of mercury(II) ions. J. Mater. Sci. Mater. Electron. 2019, 30, 3574–3584.

53

Kumar, R.; Bhuvana, T.; Sharma, A. Nickel tungstate-graphene nanocomposite for simultaneous electrochemical detection of heavy metal ions with application to complex aqueous media. RSC Adv. 2017, 7, 42146–42158.

54

AlShehri, S. M.; Ahmed, J.; Ahamad, T.; Arunachalam, P.; Ahmad, T.; Khan, A. Bifunctional electro-catalytic performances of CoWO4 nanocubes for water redox reactions (OER/ORR). RSC Adv. 2017, 7, 45615–45623.

55

Srirapu, V. K. V. P.; Kumar, A.; Srivastava, P.; Singh, R. N.; Sinha, A. S. K. Nanosized CoWO4 and NiWO4 as efficient oxygen-evolving electrocatalysts. Electrochim. Acta 2016, 209, 75–84.

56

Ke, J.; Adnan Younis, M.; Kong, Y.; Zhou, H. R.; Liu, J.; Lei, L. C.; Hou, Y. Nanostructured ternary metal tungstate-based photocatalysts for environmental purification and solar water splitting: A review. Nano-Micro Lett. 2018, 10, 69.

57

López, X. A.; Fuentes, A. F.; Zaragoza, M. M.; Díaz Guillén, J. A.; Gutiérrez, J. S.; Ortiz, A. L.; Collins-Martínez, V. Synthesis, characterization and photocatalytic evaluation of MWO4 (M = Ni, Co, Cu and Mn) tungstates. Int. J. Hydrogen Energy 2016, 41, 23312–23317.

58

Niu, L. Y.; Li, Z. P.; Xu, Y.; Sun, J. F.; Hong, W.; Liu, X. H.; Wang, J. Q.; Yang, S. R. Simple synthesis of amorphous NiWO4 nanostructure and its application as a novel cathode material for asymmetric supercapacitors. ACS Appl. Mater. Interfaces 2013, 5, 8044–8052.

59

Dai, L.; Yang, G. X.; Zhou, H. Z.; He, Z. X.; Li, Y. H.; Wang, L. Mixed potential NH3 sensor based on Mg-doped lanthanum silicate oxyapatite. Sens. Actuators B Chem. 2016, 224, 356–363.

60

Peng, T.; Liu, C.; Hou, X. Y.; Zhang, Z. W.; Wang, C. L.; Yan, H. L.; Lu, Y.; Liu, X. M.; Luo, Y. S. Control growth of mesoporous nickel tungstate nanofiber and its application as anode material for lithium-ion batteries. Electrochim. Acta 2017, 224, 460–467.

61

Tao, K. Y.; Dan, H. M.; Hai, Y.; Liu, L.; Gong, Y. Ultrafine Co2P anchored on porous CoWO4 nanofiber matrix for hydrogen evolution: Anion-induced compositional/morphological transformation and interfacial electron transfer. Electrochim. Acta 2019, 328, 135123.

62

Guo, X.; Li, M. G.; Liu, Y. Q.; Huang, Y. R.; Geng, S.; Yang, W. W.; Yu, Y. S. Hierarchical core–shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J. Colloid Interface Sci. 2020, 563, 405–413.

63

Xu, L.; Deng, D. J.; Wang, C.; Chen, F.; Qian, J. C.; Li, H. N. FeWO4/nitrogen-doped multi-dimensional porous carbon for the highly efficient and stable oxygen reduction reaction. J. Alloys Compd. 2021, 853, 157342.

64

Huang, Y. X.; Yan, C.; Shi, X.; Zhi, W.; Li, Z. M.; Yan, Y. X.; Zhang, M. L.; Cao, G. Z. Ni085Co0. 15WO4 nanosheet electrodes for supercapacitors with excellent electrical conductivity and capacitive performance. Nano Energy 2018, 48, 430–440.

65

Yan, T. J.; Li, L. P.; Tong, W. M.; Zheng, J.; Wang, Y. J.; Li, G. S. CdWO4 polymorphs: Selective preparation, electronic structures, and photocatalytic activities. J. Solid State Chem. 2011, 184, 357–364.

66

Zhang, J. F.; Pan, J. G.; Shao, L. Y.; Shu, J.; Zhou, M. J.; Pan, J. G. Micro-sized cadmium tungstate as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 2014, 614, 249–252.

67

Denk, M.; Kuhness, D.; Wagner, M.; Surnev, S.; Negreiros, F. R.; Sementa, L.; Barcaro, G.; Vobornik, I.; Fortunelli, A.; Netzer, F. P. Metal tungstates at the ultimate two-dimensional limit: Fabrication of a CuWO4 nanophase. ACS Nano 2014, 8, 3947–3954.

68

Song, C. Y.; Mao, H. C.; Yang, Y. B.; Liu, X.; Yin, Z. P.; Hu, Z. P.; Wu, K. H.; Zhang, J. X. Atomic-scale characterization of negative differential resistance in ferroelectric Bi2WO6. Adv. Funct. Mater. 2022, 32, 2105256.

69

Song, C. Y.; Gao, J. C.; Liu, J. Y.; Yang, Y. B.; Tian, C. F.; Hong, J. W.; Weng, H. M.; Zhang, J. X. Atomically resolved edge states on a layered ferroelectric oxide. ACS Appl. Mater. Interfaces 2020, 12, 4150–4154.

70

Priya, A. M.; Selvan, R. K.; Senthilkumar, B.; Satheeshkumar, M. K.; Sanjeeviraja, C. Synthesis and characterization of CdWO4 nanocrystals. Ceram. Int. 2011, 37, 2485–2488.

71

Liu, S. T.; Wang, C.; Wu, J. H.; Tian, B. L.; Sun, Y. M.; Lv, Y.; Mu, Z. Y.; Sun, Y. X.; Li, X. S.; Wang, F. Y. et al. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state. ACS Catal. 2021, 11, 12476–12484.

72

Ge, J. H.; Wu, J. H.; Dong, J.; Jia, J. B.; Ye, B. R.; Jiang, S.; Zeng, J. J.; Bao, Q. L. Hydrothermal synthesis of hybrid rod-like hollow CoWO4/Co1−xS for high-performance supercapacitors. ChemElectroChem 2018, 5, 1047–1055.

73

Zheng, H. J.; Yang, G.; Chen, S. M.; Jia, Y. Hydrothermal synthesis of 3D porous structure Bi2WO6/reduced graphene oxide hydrogels for enhancing supercapacitor performance. ChemElectroChem 2017, 4, 577–584.

74

Tian, J. J.; Xue, Y.; Yu, X. P.; Pei, Y. C.; Zhang, H. C.; Wang, J. J. Solvothermal synthesis of NiWO4 nanostructure and its application as a cathode material for asymmetric supercapacitors. RSC Adv. 2018, 8, 41740–41748.

75

Zhang, J. C.; Xu, C. Y.; Zhang, R. C.; Guo, X. Y.; Wang, J.; Zhang, X. H.; Zhang, D. J.; Yuan, B. Q. Solvothermal synthesis of cobalt tungstate microrings for enhanced nonenzymatic glucose sensor. Mater. Lett. 2018, 210, 291–294.

76

Sundaresan, P.; Gnanaprakasam, P.; Chen, S. M.; Mangalaraja, R. V.; Lei, W.; Hao, Q. L. Simple sonochemical synthesis of lanthanum tungstate (La2(WO4)3) nanoparticles as an enhanced electrocatalyst for the selective electrochemical determination of anti-scald-inhibitor diphenylamine. Ultrason. Sonochem. 2019, 58, 104647.

77

Xu, X. Y.; Gao, J. P.; Huang, G. B.; Qiu, H. X.; Wang, Z. Y.; Wu, J. Z.; Pan, Z.; Xing, F. B. Fabrication of CoWO4@NiWO4 nanocomposites with good supercapacitve performances. Electrochim. Acta 2015, 174, 837–845.

78

Li, F. H.; Xu, X. Y.; Huo, J. L.; Wang, W. A simple synthesis of MnWO4 nanoparticles as a novel energy storage material. Mater. Chem. Phys. 2015, 167, 22–27.

79

Hou, J. F.; Gao, J. F.; Kong, L. B. Interfacial engineering in crystalline cobalt tungstate/amorphous cobalt boride heterogeneous nanostructures for enhanced electrochemical performances. ACS Appl. Energy Mater. 2020, 3, 11470–11479.

80

Buvat, G.; Iadecola, A.; Blanchard, F.; Brousse, T.; Roussel, P.; Lethien, C. A first outlook of sputtered FeWO4 thin films for micro-supercapacitor electrodes. J. Electrochem. Soc. 2021, 168, 030524.

81

Pourmasoud, S.; Eghbali-Arani, M.; Ameri, V.; Rahimi-Nasrabadi, M.; Ahmadi, F.; Sobhani-Nasab, A. Synthesis of some transition MWO4 (M: Mn, Fe, Co, Ni, Cu, Zn, Cd) nanostructures by hydrothermal method. J. Mater. Sci. Mater. Electron. 2019, 30, 8105–8144.

82

Hsu, F. H.; Hsu, S. Y.; Pao, C. W.; Chen, J. L.; Chen, C. L.; Chen, J. M.; Lu, K. T. Electrochemical properties and mechanism of CoMoO4@NiWO4 core–shell nanoplates for high-performance supercapacitor electrode application studied via in situ X-ray absorption spectroscopy. Nanoscale 2020, 12, 13388–13397.

83

Chen, F. S.; Cui, X. Y.; Liu, C.; Cui, B. H.; Dou, S. M.; Xu, J.; Liu, S. L.; Zhang, H.; Deng, Y. D.; Chen, Y. N. et al. NiS/Ni3S2@NiWO4 nanoarrays towards all-solid-state hybrid supercapacitor with record-high energy density. Sci. China Mater. 2021, 64, 852–860.

84

Zhang, M. C.; Fan, H. Q.; Ren, X. H.; Zhao, N.; Peng, H. J.; Wang, C.; Wu, X. B.; Dong, G. Z.; Long, C. B.; Wang, W. J. et al. Study of pseudocapacitive contribution to superior energy storage of 3D heterostructure CoWO4/Co3O4 nanocone arrays. J. Power Sources 2019, 418, 202–210.

85

Nithya, V. D.; Selvan, R. K.; Kalpana, D.; Vasylechko, L.; Sanjeeviraja, C. Synthesis of Bi2WO6 nanoparticles and its electrochemical properties in different electrolytes for pseudocapacitor electrodes. Electrochim. Acta 2013, 109, 720–731.

86

Harichandran, G.; Divya, P.; Radha, S.; Yesuraj, J. Facile and controllable CTAB-assisted sonochemical synthesis of one-dimensional MnWO4 nanorods for supercapacitor application. J. Mol. Struct. 2020, 1199, 126931.

87

Harichandran, G.; Divya, P.; Yesuraj, J.; Muthuraaman, B. Sonochemical synthesis of chain-like ZnWO4 nanoarchitectures for high performance supercapacitor electrode application. Mater. Charact. 2020, 167, 110490.

88

Nagaraju, G.; Kakarla, R.; Cha, S. M.; Yu, J. S. Highly flexible conductive fabrics with hierarchically nanostructured amorphous nickel tungsten tetraoxide for enhanced electrochemical energy storage. Nano Res. 2015, 8, 3749–3763.

89

Huang, Y. X.; Gao, Y.; Liu, C. H.; Cao, Z. Z.; Wang, Y.; Li, Z. M.; Yan, Y. X.; Zhang, M. L.; Cao, G. Z. Amorphous NiWO4 nanospheres with high-conductivity and -capacitive performance for supercapacitors. J. Phys. Chem. C 2019, 123, 30067–30076.

90

He, Y. T.; Wang, L. X.; Jia, D. Z.; Zhao, Z. B.; Qiu, J. S. NiWO4/Ni/carbon composite fibres for supercapacitors with excellent cycling performance. Electrochim. Acta 2016, 222, 446–454.

91

Yang, Y. H.; Zhu, J.; Shi, W.; Zhou, J.; Gong, D. C.; Gu, S. Z.; Wang, L.; Xu, Z.; Lu, B. N. 3D nanoporous ZnWO4 nanoparticles with excellent electrochemical performances for supercapacitors. Mater. Lett. 2016, 177, 34–38.

92

Ede, S. R.; Ramadoss, A.; Nithiyanantham, U.; Anantharaj, S.; Kundu, S. Bio-molecule assisted aggregation of ZnWO4 nanoparticles (NPs) into chain-like assemblies: Material for high performance supercapacitor and as catalyst for benzyl alcohol oxidation. Inorg. Chem. 2015, 54, 3851–3863.

93

Kumar, R. D.; Karuppuchamy, S. Microwave-assisted synthesis of copper tungstate nanopowder for supercapacitor applications. Ceram. Int. 2014, 40, 12397–12402.

94

Wang, Y. G.; Song, Y. F.; Xia, Y. Y. Electrochemical capacitors: Mechanism, materials, systems, characterization and applications. Chem. Soc. Rev. 2016, 45, 5925–5950.

95

Jiang, Y. Q.; Liu, J. P. Definitions of pseudocapacitive materials: A brief review. Energy Environ. Mater. 2019, 2, 30–37.

96

González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Review on supercapacitors: Technologies and materials. Renew. Sustain. Energy Rev. 2016, 58, 1189–1206.

97

Raza, W.; Ali, F.; Raza, N.; Luo, Y. W.; Kim, K. H.; Yang, J. H.; Kumar, S.; Mehmood, A.; Kwon, E. E. Recent advancements in supercapacitor technology. Nano Energy 2018, 52, 441–473.

98

Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805–1834.

99

Wang, D. G.; Liang, Z. B.; Gao, S.; Qu, C.; Zou, R. Q. Metal-organic framework-based materials for hybrid supercapacitor application. Coord. Chem. Rev. 2020, 404, 213093.

100

Rajpurohit, A. S.; Punde, N. S.; Rawool, C. R.; Srivastava, A. K. Fabrication of high energy density symmetric supercapacitor based on cobalt-nickel bimetallic tungstate nanoparticles decorated phosphorus-sulphur co-doped graphene nanosheets with extended voltage. Chem. Eng. J. 2019, 371, 679–692.

101

Xing, X. T.; Gui, Y. L.; Zhang, G. J.; Song, C. Y. CoWO4 nanoparticles prepared by two methods displaying different structures and supercapacitive performances. Electrochim. Acta 2015, 157, 15–22.

102

Guan, B. K.; Hu, L. L.; Zhang, G. H.; Guo, D.; Fu, T.; Li, J. D.; Duan, H. G.; Li, C. C.; Li, Q. H. Facile synthesis of ZnWO4 nanowall arrays on Ni foam for high performance supercapacitors. RSC Adv. 2014, 4, 4212–4217.

103

Raghavendra, K. V. G.; Vinodh, R.; Gopi, C. V. V. M.; Kummara, M. R.; Kim, H. J. Facile synthesis of hierarchical agglomerated cauliflower-like ZnWO4@NiO nanostructures as an efficient electrode material for high-performance supercapacitor applications. Mater. Lett. 2020, 268, 127594.

104

Nithiyanantham, U.; Ede, S. R.; Anantharaj, S.; Kundu, S. Self-assembled NiWO4 nanoparticles into chain-like aggregates on DNA scaffold with pronounced catalytic and supercapacitor activities. Cryst. Growth Des. 2015, 15, 673–686.

105

Pourmortazavi, S. M.; Rahimi-Nasrabadi, M.; Karimi, M. S.; Mirsadeghi, S. Evaluation of photocatalytic and supercapacitor potential of nickel tungstate nanoparticles synthesized by electrochemical method. New J. Chem. 2018, 42, 19934–19944.

106

Ikram, M.; Javed, Y.; Shad, N. A.; Sajid, M. M.; Irfan, M.; Munawar, A.; Hussain, T.; Imran, M.; Hussain, D. Facile hydrothermal synthesis of nickel tungstate (NiWO4) nanostructures with pronounced supercapacitor and electrochemical sensing activities. J. Alloys Compd. 2021, 878, 160314.

107

Tang, J.; Chen, M. M.; Xu, H. Zn ion-doped amorphous NiWO4 nanospheres as cathode material for high-performance asymmetric supercapacitors. J. Electron. Mater. 2021, 50, 7240–7249.

108

Ma, L. L.; Chang, Z. Q.; Guo, L. F.; Li, T. Y.; Li, G.; Wang, K. Y. String-like core–shell ZnCo2O4@NiWO4 nanowire/nanosheet arrays on Ni foam for binder-free supercapacitor electrodes. Ionics 2020, 26, 2537–2547.

109

Feng, X. S.; Huang, Y.; Chen, M. H.; Chen, X. F.; Li, C.; Zhou, S. H.; Gao, X. G. Self-assembly of 3D hierarchical MnMoO4/NiWO4 microspheres for high-performance supercapacitor. J. Alloys Compd. 2018, 763, 801–807.

110

Reddy, A. E.; Anitha, T.; Gopi, C. V. V. M.; Rao, S. S.; Kim, H. J. NiMoO4@NiWO4 honeycombs as a high performance electrode material for supercapacitor applications. Dalton Trans. 2018, 47, 9057–9063.

111

Jha, S.; Mehta, S.; Chen, Y.; Renner, P.; Sankar, S. S.; Parkinson, D.; Kundu, S.; Liang, H. NiWO4 nanoparticle decorated lignin as electrodes for asymmetric flexible supercapacitors. J. Mater. Chem. C 2020, 8, 3418–3430.

112

Mallick, S.; Mondal, A.; Raj, C. R. Rationally designed mesoporous carbon-supported Ni-NiWO4@NiS nanostructure for the fabrication of hybrid supercapacitor of long-term cycling stability. J. Power Sources 2020, 477, 229038.

113

Hou, J. F.; Gao, J. F.; Kong, L. B. Enhancing the kinetic process in biphasic crystalline NiWO4/amorphous Co-B electrode materials toward energy storage with ultrahigh rate performance. Chem. - Asian J. 2021, 16, 4130–4136.

114

Kumar, S.; Saeed, G.; Kim, N. H.; Lee, J. H. Fabrication of Co-Ni-Zn ternary oxide@NiWO4 core–shell nanowire arrays and Fe2O3-CNTs@GF for ultra-high-performance asymmetric supercapacitor. Compos. B Eng. 2019, 176, 107223.

115

Hekmat, F.; Tutel, Y.; Unalan, H. E. Wearable supercapacitors based on nickel tungstate decorated commercial cotton fabrics. Int. J. Energy Res. 2020, 44, 7603–7616.

116

Sanati, S.; Rezvani, Z.; Habibi, B. The NiGa-LDH@NiWO4 nanocomposite as an electrode material for pseudocapacitors. New J. Chem. 2018, 42, 18426–18436.

117

Xing, X. T.; Wang, J. H. Reduced graphene oxide incorporated NiWO4 for high-performance energy storage. J. Mater. Sci. Mater. Electron. 2016, 27, 11613–11622.

118

Xu, X. W.; Pei, L. Y.; Yang, Y.; Shen, J. F.; Ye, M. X. Facile synthesis of NiWO4/reduced graphene oxide nanocomposite with excellent capacitive performance for supercapacitors. J. Alloys Compd. 2016, 654, 23–31.

119

Chen, S. M.; Yang, G.; Jia, Y.; Zheng, H. J. Facile synthesis of CoWO4 nanosheet arrays grown on nickel foam substrates for asymmetric supercapacitors. ChemElectroChem 2016, 3, 1490–1496.

120

Adib, K.; Rahimi-Nasrabadi, M.; Rezvani, Z.; Pourmortazavi, S. M.; Ahmadi, F.; Naderi, H. R.; Ganjali, M. R. Facile chemical synthesis of cobalt tungstates nanoparticles as high performance supercapacitor. J. Mater. Sci. Mater. Electron. 2016, 27, 4541–4550.

121

Patil, S. J.; Chodankar, N. R.; Huh, Y. S.; Han, Y. K.; Lee, D. W. Bottom-up approach for designing cobalt tungstate nanospheres through sulfur amendment for high-performance hybrid supercapacitors. ChemSusChem 2021, 14, 1602–1611.

122

Chu, D. W.; Guo, D. X.; Xiao, B. X.; Tan, L. C.; Ma, H. Y.; Pang, H. J.; Wang, X. M.; Jiang, Y. X. 3D hollow flower-like CoWO4 derived from ZIF-67 grown on Ni-foam for high-performance asymmetrical supercapacitors. Chem. - Asian J. 2020, 15, 1750–1755.

123

Thiagarajan, K.; Balaji, D.; Madhavan, J.; Theerthagiri, J.; Lee, S. J.; Kwon, K. Y.; Choi, M. Y. Cost-effective synthesis of efficient CoWO4/Ni nanocomposite electrode material for supercapacitor applications. Nanomaterials 2020, 10, 2195.

124

Ding, K.; Zhang, X.; Li, J. P.; Yang, P.; Cheng, X. Formation of dandelion-like Co3O4/CoWO4 heterojunctions for enhanced supercapacitive performance. ChemElectroChem 2017, 4, 3011–3017.

125

Xu, X. W.; Yang, Y.; Wang, M.; Dong, P.; Baines, R.; Shen, J. F.; Ye, M. X. Straightforward synthesis of hierarchical Co3O4@CoWO4/rGO core-shell arrays on Ni as hybrid electrodes for asymmetric supercapacitors. Ceram. Int. 2016, 42, 10719–10725.

126

Sohouli, E.; Adib, K.; Maddah, B.; Najafi, M. Manganese dioxide/cobalt tungstate/nitrogen-doped carbon nano-onions nanocomposite as new supercapacitor electrode. Ceram. Int. 2022, 48, 295–303.

127

Wang, Y. D.; Shen, C.; Niu, L. Y.; Sun, Z. K.; Ruan, F. P.; Xu, M.; Shan, S.; Li, C.; Liu, X. J.; Gong, Y. Y. High rate capability of mesoporous NiWO4-CoWO4 nanocomposite as a positive material for hybrid supercapacitor. Mater. Chem. Phys. 2016, 182, 394–401.

128

Xu, X. W.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of reduced graphene oxide/CoWO4 nanocomposites with enhanced electrochemical performances for supercapacitors. Electrochim. Acta 2014, 150, 23–34.

129

Naderi, H. R.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ganjali, M. R. Decoration of nitrogen-doped reduced graphene oxide with cobalt tungstate nanoparticles for use in high-performance supercapacitors. Appl. Surf. Sci. 2017, 423, 1025–1034.

130

Lokhande, V.; Lee, S. J.; Lokhande, A.; Kim, J. H.; Ji, T. 1. 5 V Symmetric supercapacitor device based on hydrothermally synthesized Carbon nanotubes and Cobalt Tungstate nanocomposite electrodes. Mater. Chem. Phys. 2018, 211, 214–224.

131

Ma, H.; Shen, Z. G.; Peng, Z. J.; Guan, S. D.; Fu, X. L. Carbon cloth supported Co1−xNixWO4 nanostructures for high-performance electrochemical capacitor electrodes. J. Alloys Compd. 2020, 845, 155654.

132

Sanati, S.; Rezvani, Z.; Abazari, R.; Hou, Z. Q.; Dai, H. X. Hierarchical CuAl-layered double hydroxide/CoWO4 nanocomposites with enhanced efficiency for use in supercapacitors with long cycling stability. New J. Chem. 2019, 43, 15240–15248.

133

Yesuraj, J.; Suthanthiraraj, S. A. Bio-molecule templated hydrothermal synthesis of ZnWO4 nanomaterial for high-performance supercapacitor electrode application. J. Mol. Struct. 2019, 1181, 131–141.

134

Lin, L. Y.; Li, L.; Hussain, S.; Zhao, S. Q.; Wu, L. K.; Peng, X. H.; Hu, N. Hierarchical 3D NiCo2O4@ZnWO4 core-shell structures as binder-free electrodes for all-solid-state supercapacitors. Appl. Surf. Sci. 2018, 452, 113–122.

135

Raghavendra, K. V. G.; Sreekanth, T. V. M.; Ko, T. J.; Kim, J.; Yoo, K. Facile hydrothermal synthesis of novel ZnWO4/ZnCo2O4 electrode for high-performance supercapacitors. Mater. Lett. 2021, 287, 129296.

136

Zhang, K. H.; Lin, L. Y.; Hussain, S.; Han, S. Core–shell NiCo2O4@ZnWO4 nanosheets arrays electrode material deposited at carbon-cloth for flexible electrochemical supercapacitors. J. Mater. Sci. Mater. Electron. 2018, 29, 12871–12877.

137

Vinayaraj, S.; Brijesh, K.; Dhanush, P. C.; Nagaraja, H. S. ZnWO4/SnO2 composite for supercapacitor applications. Phys. B Condens. Matter 2020, 596, 412369.

138

Luo, L. J.; Liu, T. M.; Zhang, S.; Ke, B.; Yu, L.; Hussain, S.; Lin, L. Y. Hierarchical Co3O4@ZnWO4 core/shell nanostructures on nickel foam: Synthesis and electrochemical performance for supercapacitors. Ceram. Int. 2017, 43, 5095–5101.

139

Brijesh, K.; Nagaraja, H. S. Lower band gap Sb/ZnWO4/r-GO nanocomposite based supercapacitor electrodes. J. Electron. Mater. 2019, 48, 4188–4195.

140

Nithiyanantham, U.; Ede, S. R.; Kesavan, T.; Ragupathy, P.; Mukadam, M. D.; Yusuf, S. M.; Kundu, S. Shape-selective formation of MnWO4 nanomaterials on a DNA scaffold: Magnetic, catalytic and supercapacitor studies. RSC Adv. 2014, 4, 38169–38181.

141

Yesuraj, J.; Elanthamilan, E.; Muthuraaman, B.; Suthanthiraraj, S. A.; Merlin, J. P. Bio-assisted hydrothermal synthesis and characterization of MnWO4 nanorods for high-performance supercapacitor applications. J. Electron. Mater. 2019, 48, 7239–7249.

142

Raj, B. G. S.; Acharya, J.; Seo, M. K.; Khil, M. S.; Kim, H. Y.; Kim, B. S. One-pot sonochemical synthesis of hierarchical MnWO4 microflowers as effective electrodes in neutral electrolyte for high performance asymmetric supercapacitors. Int. J. Hydrogen Energy 2019, 44, 10838–10851.

143

Naik, K. K.; Gangan, A. S.; Pathak, A.; Chakraborty, B.; Nayak, S. K.; Rout, C. S. Facile hydrothermal synthesis of MnWO4 nanorods for non-enzymatic glucose sensing and supercapacitor properties with insights from density functional theory simulations. ChemistrySelect 2017, 2, 5707–5715.

144

Donolikar, P. D.; Patil, S.; Sadale, S. B.; Ryu, J.; Patil, D. R. Redox-active electrolyte-based MnWO4//AC asymmetric supercapacitors. J. Mater. Sci. Mater. Electron. 2021, 32, 8054–8063.

145

Sardar, K.; Thakur, S.; Maiti, S.; Besra, N.; Bairi, P.; Chanda, K.; Majumdar, G.; Chattopadhyay, K. K. Amalgamation of MnWO4 nanorods with amorphous carbon nanotubes for highly stabilized energy efficient supercapacitor electrodes. Dalton Trans. 2021, 50, 5327–5341.

146

Tang, J. H.; Shen, J. F.; Li, N.; Ye, M. X. Facile synthesis of layered MnWO4/reduced graphene oxide for supercapacitor application. J. Alloys Compd. 2016, 666, 15–22.

147

Mallick, S.; Samanta, A.; Raj, C. R. Mesoporous carbon-supported manganese tungstate nanostructures for the development of zinc-air battery powered long lifespan asymmetric supercapacitor. Sustainable Energy Fuels 2020, 4, 4008–4017.

148

Yao, S. Y.; Xing, L.; Dong, Y. D.; Wu, X. Hierarchical WO3@MnWO4 core–shell structure for asymmetric supercapacitor with ultrahigh cycling performance at low temperature. J. Colloid Interface Sci. 2018, 531, 216–224.

149

Saranya, S.; Selvan, R. K.; Priyadharsini, N. Synthesis and characterization of polyaniline/MnWO4 nanocomposites as electrodes for pseudocapacitors. Appl. Surf. Sci. 2012, 258, 4881–4887.

150

Goubard-Bretesche, N.; Crosnier, O.; Payen, C.; Favier, F.; Brousse, T. Nanocrystalline FeWO4 as a pseudocapacitive electrode material for high volumetric energy density supercapacitors operated in an aqueous electrolyte. Electrochem. Commun. 2015, 57, 61–64.

151

Jadhav, S.; Donolikar, P. D.; Chodankar, N. R.; Dongale, T. D.; Dubal, D. P.; Patil, D. R. Nano-dimensional iron tungstate for super high energy density symmetric supercapacitor with redox electrolyte. J. Solid State Electrochem. 2019, 23, 3459–3465.

152

Sharma, M.; Bhargav, A. Iron tungsten nanorods electrode with high capacitance: An extraordinary cycling stability for durable aqueous supercapacitors. Energy Fuels. 2022, 36, 618–625.

153

Zhang, W. Q.; He, X.; Zhao, L.; Li, W. X.; Fang, W.; Chen, H.; Xin, Z. P. A novel WO2@FeWO4 composite derived from polyoxometalates@Fe-metal-organic frameworks and its electrochemical properties. J. Mater. Sci. Mater. Electron. 2018, 29, 14612–14619.

154

Nithya, V. D.; Selvan, R. K.; Vasylechko, L.; Sanjeeviraja, C. Surfactant assisted sonochemical synthesis of Bi2WO6 nanoparticles and their improved electrochemical properties for use in pseudocapacitors. RSC Adv. 2014, 4, 4343–4352.

155

Zhang, W. K.; Peng, L.; Wang, J. W.; Guo, C. L.; Chan, S. H.; Zhang, L. High electrochemical performance of Bi2WO6/carbon nano-onion composites as electrode materials for pseudocapacitors. Front. Chem. 2020, 8, 577.

156

Gote, G. H.; Pathak, M.; More, M. A.; Late, D. J.; Rout, C. S. Development of pristine and Au-decorated Bi2O3/Bi2WO6 nanocomposites for supercapacitor electrodes. RSC Adv. 2019, 9, 32573–32580.

157

Ahmed, J.; Ahamad, T.; Alhokbany, N.; Almaswari, B. M.; Ahmad, T.; Hussain, A.; Al-Farraj, E. S. S.; Alshehri, S. M. Molten salts derived copper tungstate nanoparticles as bifunctional electro-catalysts for electrolysis of water and supercapacitor applications. ChemElectroChem 2018, 5, 3938–3945.

158

Kumar, R. D.; Andou, Y.; Sathish, M.; Karuppuchamy, S. Synthesis of nanostructured Cu-WO3 and CuWO4 for supercapacitor applications. J. Mater. Sci. Mater. Electron. 2016, 27, 2926–2932.

159

Ede, S. R.; Kundu, S. Microwave synthesis of SnWO4 nanoassemblies on DNA scaffold: A novel material for high performance supercapacitor and as catalyst for butanol oxidation. ACS Sustainable Chem. Eng. 2015, 3, 2321–2336.

160

Dhandapani, E.; Prabhu, S.; Duraisamy, N.; Ramesh, R. Bifunctional copper zinc bimetallic tungstate nanoparticles decorated reduced graphene oxide (CuZnWO4/rGO) for high-performance photocatalytic and supercapacitor application. J. Mater. Sci. Mater. Electron. 2022, 33, 8446–8459.

161

Mahieddine, A.; Amara, L. A.; Gabouze, N.; Belkhettab, I. Physicochemical properties and electrochemical hydrogen storage performance of Li2M(WO4)2 (M = Co, Ni and Cu). Int. J. Hydrogen Energy 2020, 45, 30029–30041.

162

Rahimi-Nasrabadi, M.; Pourmohamadian, V.; Karimi, M. S.; Naderi, H. R.; Karimi, M. A.; Didehban, K.; Ganjali, M. R. Assessment of supercapacitive performance of europium tungstate nanoparticles prepared via hydrothermal method. J. Mater. Sci. Mater. Electron. 2017, 28, 12391–12398.

163

Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Naderi, H. R.; Pourmohamadian, V.; Ahmadi, F.; Ganjali, M. R.; Ehrlich, H. Sonochemical synthesis of terbium tungstate for developing high power supercapacitors with enhanced energy densities. Ultrason. Sonochem. 2018, 45, 189–196.

164

Sobhani-Nasab, A.; Naderi, H.; Rahimi-Nasrabadi, M.; Ganjali, M. R. Evaluation of supercapacitive behavior of samarium tungstate nanoparticles synthesized via sonochemical method. J. Mater. Sci. Mater. Electron. 2017, 28, 8588–8595.

165

Kumar, R. D.; Andou, Y.; Karuppuchamy, S. Synthesis and characterization of nanostructured Ni-WO3 and NiWO4 for supercapacitor applications. J. Alloys Compd. 2016, 654, 349–356.

166

Chebrolu, V. T. V.; Balakrishnan, B.; Cho, I.; Bak, J. S.; Kim, H. J. Selenium vacancies enriched the performance of supercapacitors with excellent cycling stability via a simple chemical bath deposition method. Dalton Trans. 2019, 48, 8254–8263.

167

Fan, X. M.; Yu, C.; Yang, J.; Ling, Z.; Hu, C.; Zhang, M. D.; Qiu, J. S. A layered-nanospace-confinement strategy for the synthesis of two-dimensional porous carbon nanosheets for high-rate performance supercapacitors. Adv. Energy Mater. 2015, 5, 1401761.

168

Kumar, R. D.; Karuppuchamy, S. Microwave mediated synthesis of nanostructured Co-WO3 and CoWO4 for supercapacitor applications. J. Alloys Compd. 2016, 674, 384–391.

169

Muzaffar, A.; Ahamed, M. B.; Deshmukh, K. Hydrothermal synthesis of ZnWO4-MnO2 nanopowder doped with carbon black nanoparticles for high-performance supercapacitor applications. J. Mater. Sci. Mater. Electron. 2019, 30, 21250–21258.

170

Goubard-Bretesche, N.; Crosnier, O.; Buvat, G.; Favier, F.; Brousse, T. Electrochemical study of aqueous asymmetric FeWO4/MnO2 supercapacitor. J. Power Sources 2016, 326, 695–701.

171

Lu, J.; Chen, Z. W.; Pan, F.; Cui, Y.; Amine, K. High-performance anode materials for rechargeable lithium-ion batteries. Electrochem. Energy Rev. 2018, 1, 35–53.

172

Liu, Y.; Wang, Y.; Wang, F.; Lei, Z. X.; Zhang, W. H.; Pan, K. M.; Liu, J.; Chen, M.; Wang, G. X.; Ren, F. Z. et al. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries. Nanomaterials 2019, 9, 1689.

173

Ke, C. Z.; Liu, F.; Zheng, Z. M.; Zhang, H. H.; Cai, M. T.; Li, M.; Yan, Q. Z.; Chen, H. X.; Zhang, Q. B. Boosting lithium storage performance of Si nanoparticles via thin carbon and nitrogen/phosphorus co-doped two-dimensional carbon sheet dual encapsulation. Rare Met. 2021, 40, 1347–1356.

174

Qie, L.; Chen, W. M.; Wang, Z. H.; Shao, Q. G.; Li, X.; Yuan, L. X.; Hu, X. L.; Zhang, W. X.; Huang, Y. H. Nitrogen-doped porous carbon nanofiber webs as anodes for lithium ion batteries with a superhigh capacity and rate capability. Adv. Mater. 2012, 24, 2047–2050.

175

Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188.

176

Fang, Y.; Lv, Y. Y.; Che, R. C.; Wu, H. Y.; Zhang, X. H.; Gu, D.; Zheng, G. F.; Zhao, D. Y. Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 2013, 135, 1524–1530.

177

Su, F. Y.; He, Y. B.; Li, B. H.; Chen, X. C.; You, C. H.; Wei, W.; Lv, W.; Yang, Q. H.; Kang, F. Y. Could graphene construct an effective conducting network in a high-power lithium ion battery? Nano Energy 2012, 1, 429–439.

178

Stein, A.; Wang, Z. Y.; Fierke, M. A. Functionalization of porous carbon materials with designed pore architecture. Adv. Mater. 2009, 21, 265–293.

179

Park, C. M.; Kim, J. H.; Kim, H.; Sohn, H. J. Li-alloy based anode materials for Li secondary batteries. Chem. Soc. Rev. 2010, 39, 3115–3141.

180

Lee, K.; Mazare, A.; Schmuki, P. One-dimensional titanium dioxide nanomaterials: Nanotubes. Chem. Rev. 2014, 114, 9385–9454.

181

Poizot. P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature 2000, 407, 496–499.

182

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

183

Rowsell, J. L. C.; Rowsell, V. P.; Nazar, L. F. Layered lithium iron nitride: A promising anode material for Li-ion batteries. J. Am. Chem. Soc. 2001, 123, 8598–8599.

184

Wang, X. X.; Li, Y.; Liu, M. C.; Kong, L. B. Fabrication and electrochemical investigation of MWO4 (M = Co, Ni) nanoparticles as high-performance anode materials for lithium-ion batteries. Ionics 2018, 24, 363–372.

185
He Y. C. Zhong L. P. Wang X. J. He J. X. Wang L. Zhong C. Liu M. J. Zhao Y. Lai X. Bi J. et al ZIF-8 derived ZnWO4 nanocrystals: Calcination temperature induced evolution of composition and microstructures, and their electrochemical performances as anode for lithium-ion batteries Electrochim. Acta 2021 367 137435 10.1016/j.electacta.2020.137435

He, Y. C. ; Zhong, L. P. ; Wang, X. J. ; He, J. X. ; Wang, L. ; Zhong, C. ; Liu, M. J. ; Zhao, Y. ; Lai, X. ; Bi, J. et al. ZIF-8 derived ZnWO4 nanocrystals: Calcination temperature induced evolution of composition and microstructures, and their electrochemical performances as anode for lithium-ion batteries. Electrochim. Acta 2021, 367, 137435.

186

Zhang, L. S.; Wang, Z. T.; Wang, L. Z.; Xing, Y.; Li, X. F.; Zhang, Y. Electrochemical performance of ZnWO4/CNTs composite as anode materials for lithium-ion battery. Appl. Surf. Sci. 2014, 305, 179–185.

187

Kang, S.; Li, Y. Y.; Wu, M. M.; Cai, M.; Shen, P. K. Synthesis of hierarchically flower-like FeWO4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. Int. J. Hydrogen Energy 2014, 39, 16081–16087.

188

Liu, J. F.; Zhang, Z. F.; Wang, Z.; Tang, M. Y.; Li, J. Q.; Yi, J. H.; Zuo, T. Y.; Wu, Y. F.; Ma, Q. B. Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. J. Alloys Compd. 2017, 727, 107–113.

189

Li, F. H.; Na, H. Y.; Jin, W.; Xu, X. Y.; Wang, W.; Gao, J. P. Facile synthesis of CoWO4/RGO composites as superior anode materials for lithium-ion batteries. J. Solid State Electrochem. 2018, 22, 2767–2774.

190

Gao, G.; Dang, W.; Wu, H. M.; Zhang, G. X.; Feng, C. Q. Synthesis of MnWO4@C as novel anode material for lithium ion battery. J. Mater. Sci. Mater. Electron. 2018, 29, 12804–12812.

191

Shim, H. W.; Cho, I. S.; Hong, K. S.; Lim, A. H.; Kim, D. W. Wolframite-type ZnWO4 nanorods as new anodes for Li-Ion batteries. J. Phys. Chem. C 2011, 115, 16228–16233.

192

Ilango, P. R.; Prasanna, K.; Jo, Y. N.; Santhoshkumar, P.; Lee, C. W. Wet chemical synthesis and characterization of nanocrystalline ZnWO4 for application in Li-ion batteries. Mater. Chem. Phys. 2018, 207, 367–372.

193

Pavithra, N. S.; Nagaraju, G.; Viswanatha, R. Surfactant assisted sonochemical synthesis of zinc tungstate nanoparticles: Anode for Li-ion battery and photocatalytic activities. Eur. Phys. J. Plus 2018, 133, 498.

194

Brijesh, K.; Vinayraj, S.; Dhanush, P. C.; Bindu, K.; Nagaraja, H. S. ZnWO4/SnO2@r-GO nanocomposite as an anode material for high capacity lithium ion battery. Electrochim. Acta 2020, 354, 136676.

195

Brijesh, K.; Nagaraja, H. S. GeO2/ZnWO4@CNT nanocomposite as a novel anode material for lithium-ion battery. J. Solid State Electrochem. 2020, 24, 2525–2533.

196

Brijesh, K.; Dhanush, P. C.; Vinayraj, S.; Nagaraja, H. S. Monoclinic Wolframite ZnWO4/SiO2 nanocomposite as an anode material for lithium ion battery. Mater. Lett. 2020, 275, 128108.

197

Wang, X.; Li, B. L.; Liu, D. P.; Xiong, H. M. ZnWO4 nanocrystals/reduced graphene oxide hybrids: Synthesis and their application for Li ion batteries. Sci. China Chem. 2014, 57, 122–126.

198

Zhang, L. S.; Wang, Z. T.; Wang, L. Z.; Xing, Y.; Zhang, Y. Preparation of ZnWO4/graphene composites and its electrochemical properties for lithium-ion batteries. Mater. Lett. 2013, 108, 9–12.

199

Shim, H. W.; Lim, A. H.; Lee, G. H.; Jung, H. C.; Kim, D. W. Fabrication of core/shell ZnWO4/carbon nanorods and their Li electroactivity. Nanoscale Res. Lett. 2012, 7, 9.

200

Yang, L. J.; He, X.; Lv, C. J.; Jiang, L. D.; Wang, B. J.; Shu, K. Y. One-step preparation and characterization of zinc tungstate-carbon nanoparticles with application to lithium-ion batteries. Instrum. Sci. Technol. 2016, 44, 603–613.

201

Shim, H. W.; Cho, I. S.; Hong, K. S.; Cho, W. I.; Kim, D. W. Li electroactivity of iron(II) tungstate nanorods. Nanotechnology 2010, 21, 465602.

202

Kendrick, E.; Światek, A.; Barker, J. Synthesis and characterisation of iron tungstate anode materials. J. Power Sources 2009, 189, 611–615.

203

Zhang, E.; Xing, Z.; Wang, J.; Ju, Z. C.; Qian, Y. T. Enhanced energy storage and rate performance induced by dense nanocavities inside MnWO4 nanobars. RSC Adv. 2012, 2, 6748–6751.

204

Wei, J. Y.; Ma, J. X.; Wang, W.; Li, T. H.; Wu, N.; Zhang, D. B. Study of the effect of f-doping on lithium electrochemical behavior in MnWO4 anode nanomaterials. J. Inorg. Organomet. Polym. Mater. 2021, 31, 3175–3182.

205

Kumar, R.; Gupta, P. K.; Agrawal, A.; Nagarale, R. K.; Sharma, A. Hydrothermally synthesized reduced graphene oxide-NiWO4 nanocomposite for lithium-ion battery anode. J. Electrochem. Soc. 2017, 164, A785–A795.

206

Alharthi, F. A.; Alsaiari, M. A.; Jalalah, M. S.; Shashank, M.; Shashikanth; Alghamdi, A. A.; Algethami, J. S.; Ganganagappa, N. Combustion synthesis of β-SnWO4-rGO: Anode material for Li-ion battery and photocatalytic dye degradation. Ceram. Int. 2021, 47, 10291–10300.

207

Zhao, W. X.; Ma, X. Q. ZnWO4 nanosheets anchored into reduced graphene oxide as anode materials for enhanced sodium-ion storage performance. J. Alloys Compd. 2019, 774, 378–385.

208

Wang, P.; Xie, S. M.; She, Y. Y.; Fan, W. G.; Leung, M. K. H.; Wang, H. K. Microwave-hydrothermal synthesis of hierarchical Sb2WO6 nanostructures as a new anode material for sodium storage. ChemistrySelect 2019, 4, 1078–1083.

209

Azevêdo, H. V. S. B.; Raimundo, R. A.; Ferreira, L. S.; Silva, M. M. S.; Morales, M. A.; Macedo, D. A.; Gomes, U. U.; Cavalcante, D. G. L. Green synthesis of CoWO4 powders using agar-agar from red seaweed (Rhodophyta): Structure, magnetic properties and battery-like behavior. Mater. Chem. Phys. 2020, 242, 122544.

210

Wang, Z. Y.; Wang, Z. C.; Madhavi, S.; Lou, X. W. One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties. Chem. -Eur. J. 2012, 18, 7561–7567.

211

Wen, Z.; Wang, Q.; Zhang, Q.; Li, J. In situ growth of mesoporous SnO2 on multiwalled carbon nanotubes:A novel composite with porous-tube structure as anode for lithium batteries. Adv. Funct. Mater. 2007, 17, 2772–2778.

212

Li, C. L.; Sun, K.; Yu, L.; Fu, Z. W. Electrochemical reaction of lithium with orthorhombic bismuth tungstate thin films fabricated by radio-frequency sputtering. Electrochim. Acta 2009, 55, 6–12.

213

Huang, R. K.; Ge, H.; Lin, X. J.; Guo, Y. L.; Yuan, R. S.; Fu, X. Z.; Li, Z. H. Facile one-pot preparation of α-SnWO4/reduced graphene oxide (RGO) nanocomposite with improved visible light photocatalytic activity and anode performance for Li-ion batteries. RSC Adv. 2013, 3, 1235–1242.

214

Zhang, L. S.; Bai, Q. L.; Wang, L. Z.; Zhang, A. Q.; Zhang, Y.; Xing, Y. Synthesis and electrochemical properties of SrWO4/graphene composite as anode material for lithium-ion batteries. Funct. Mater. Lett. 2014, 7, 1450010.

215

Wang, W.; Wu, N.; Zhou, J. M.; Li, F.; Wei, Y.; Li, T. H.; Wu, X. L. MnWO4 nanoparticles as advanced anodes for lithium-ion batteries: F-doped enhanced lithiation/delithiation reversibility and Li-storage properties. Nanoscale 2018, 10, 6832–6836.

216

Shim, H. W.; Lim, A. H.; Kim, J. C.; Lee, G. H.; Kim, D. W. Hydrothermal realization of a hierarchical, flowerlike MnWO4@MWCNTs nanocomposite with enhanced reversible Li storage as a new anode material. Chem. - Asian J. 2013, 8, 2851–2858.

217

Wang, Y. L.; Zheng, Y. C.; Zhao, J. P.; Li, Y. Flexible fiber-shaped lithium and sodium-ion batteries with exclusive ion transport channels and superior pseudocapacitive charge storage. J. Mater. Chem. A 2020, 8, 11155–11164.

218

Xu, K.; Zhang, B. Y.; Mohiuddin, M.; Ha, N.; Wen, X. M.; Zhou, C. H.; Li, Y. X.; Ren, G. H.; Zhang, H. J.; Zavabeti, A. et al. Free-standing ultra-thin Janus indium oxysulfide for ultrasensitive visible-light-driven optoelectronic chemical sensing. Nano Today 2021, 37, 101096.

219

Dai, L.; Zhou, H. Z.; Yang, G. X.; Li, Y. H.; Zhu, J.; Wang, L. Ammonia sensing characteristics of La10Si5MgO26-based amperometric-type sensor attached with nano-structured CoWO4 sensing electrode. J. Alloys Compd. 2016, 663, 86–93.

220

Vilian, A. T. E.; Oh, S. Y.; Rethinasabapathy, M.; Umapathi, R.; Hwang, S. K.; Oh, C. W.; Park, B.; Huh, Y. S.; Han, Y. K. Improved conductivity of flower-like MnWO4 on defect engineered graphitic carbon nitride as an efficient electrocatalyst for ultrasensitive sensing of chloramphenicol. J. Hazard. Mater. 2020, 399, 122868.

221

Li, Y.; Li, X. G.; Tang, Z. Y.; Tang, Z. N.; Yu, J.; Wang, J. Hydrogen sensing of the mixed-potential-type MnWO4/YSZ/Pt sensor. Sens. Actuators B Chem. 2015, 206, 176–180.

222

Gonzalez, C. M.; Du, X.; Dunford, J. L.; Post, M. L. Copper tungstate thin-films for nitric oxide sensing. Sens. Actuators B Chem. 2012, 173, 169–176.

223

Ponnaiah, S. K.; Periakaruppan, P. A glassy carbon electrode modified with a copper tungstate and polyaniline nanocomposite for voltammetric determination of quercetin. Microchim. Acta 2018, 185, 524.

224

Chen, T. W.; Chinnapaiyan, S.; Chen, S. M.; Ali, M. A.; Elshikh, M. S.; Lee, S. Y.; Chang, W. H.; Mahmoud, A. H. Sonochemical approach to the synthesis of metal tungstate/nafion composite with electrocatalytic properties and its electrochemical sensing performance. Ultrason. Sonochem. 2020, 66, 104901.

225

Hao, C. T.; Zhou, Y. Z.; Dang, Y.; Chai, S. N.; Han, G. P.; Li, Z. L.; Zhang, H. Z.; Zhang, Y. C. The partial substitution of Cd by La ions in CdWO4 nanocrystal for the efficiently enhanced electrochemical sensing of BPA. Electrochim. Acta 2019, 318, 581–589.

226

Aneesh, K.; Vusa, C. S. R.; Berchmans, S. Enhanced peroxidase-like activity of CuWO4 nanoparticles for the detection of NADH and hydrogen peroxide. Sens. Actuators B Chem. 2017, 253, 723–730.

227

Dai, L.; Meng, W. W.; Meng, W.; Zhou, H. Z.; Yang, G. X.; Li, Y. H.; Wang, L. An Impedancemetric NH3 sensor based on La10Si5MgO26 electrolyte and Nano-structured CoWO4 sensing electrode. J. Electrochem. Soc. 2016, 163, B1–B7.

228

Diao, Q.; Yang, F. S.; Yin, C. G.; Li, J. G.; Yang, S. Q.; Liang, X. S.; Lu, G. Y. Ammonia sensors based on stabilized zirconia and CoWO4 sensing electrode. Solid State Ionics 2012, 225, 328–331.

229

Meng, W. W.; Wang, L.; Li, Y. H.; Zhou, H. Z.; He, Z. X.; Meng, W.; Dai, L. Mixed-potential type NH3 sensor based on CoWO4-PdO sensing electrode prepared by self-demixing. Electrochim. Acta 2019, 321, 134668.

230

Zhao, Y. M.; Ikram, M.; Wang, J. Z.; Liu, Z.; Du, L. J.; Zhou, J.; Kan, K.; Zhang, W. J.; Li, L.; Shi, K. Y. Ultrafast NH3 sensing properties of WO3@CoWO4 heterojunction nanofibres at room temperature. Aust. J. Chem. 2018, 71, 87–94.

231
Tang, Z. Y. ; Li, X. G. ; Yang, J. H. ; Yu, J. ; Wang, J. ; Tang, Z. N. Mixed potential hydrogen sensor using ZnWO4 sensing electrode. Sens. Actuators B Chem. 2014, 195, 520–525.
232
Imanaka, N.; Tamura, S. The development of novel trivalent ion conducting solids and their application for gas sensors. J. Electroceram. 2010, 24, 331–344.
233

Liao, S. H.; Lu, S. Y.; Bao, S. J.; Yu, Y. N.; Yu, L. Electrospinning synthesis of porous CoWO4 nanofibers as an ultrasensitive, nonenzymatic, hydrogen-peroxide-sensing interface with enhanced electrocatalysis. ChemElectroChem 2015, 2, 2061–2070.

234

Sivakumar, M.; Madhu, R.; Chen, S. M.; Veeramani, V.; Manikandan, A.; Hung, W. H.; Miyamoto, N.; Chueh, Y. L. Low-temperature chemical synthesis of CoWO4 nanospheres for sensitive nonenzymatic glucose sensor. J. Phys. Chem. C 2016, 120, 17024–17028.

235

Eranjaneya, H.; Adarakatti, P. S.; Siddaramanna, A.; Malingappa, P.; Chandrappa, G. T. Citric acid assisted synthesis of manganese tungstate nanoparticles for simultaneous electrochemical sensing of heavy metal ions. Mater. Sci. Semicond. Process. 2018, 86, 85–92.

236

Manisha; Naik, K. K. High electrocatalytic activity of Ag doped MnWO4 microflowers towards glucose molecules. J. Mater. Sci. Mater. Electron. 2021, 32, 15182–15189.

237

Mohammadnia, M. S.; Khosrowshahi, E. M.; Naghian, E.; Keihan, A. H.; Sohouli, E.; Plonska-Brzezinska, M. E.; Sobhani-Nasab, A.; Rahimi-Nasrabadi, M.; Ahmadi, F. Application of carbon nanoonion-NiMoO4-MnWO4 nanocomposite for modification of glassy carbon electrode: Electrochemical determination of ascorbic acid. Microchem. J. 2020, 159, 105470.

238

Khoobi, A.; Shahdost-fard, F.; Arbabi, M.; Akbari, M.; Mirzaei, H.; Nejati, M.; Lotfinia, M.; Sobhani-Nasab, A.; Banafshe, H. R. Sonochemical synthesis of ErVO4/MnWO4 heterostructures: Application as a novel nanostructured surface for electrochemical determination of tyrosine in biological samples. Polyhedron 2020, 177, 114302.

239

Karthika, A.; Karuppasamy, P.; Selvarajan, S.; Suganthi, A.; Rajarajan, M. Electrochemical sensing of nicotine using CuWO4 decorated reduced graphene oxide immobilized glassy carbon electrode. Ultrason. Sonochem. 2019, 55, 196–206.

240

Bhardwaj, A.; Kim, I. H.; Mathur, L.; Park, J. Y.; Song, S. J. Ultrahigh-sensitive mixed-potential ammonia sensor using dual-functional NiWO4 electrocatalyst for exhaust environment monitoring. J. Hazard. Mater. 2021, 403, 123797.

241

Mani, S.; Vediyappan, V.; Chen, S. M.; Madhu, R.; Pitchaimani, V.; Chang, J. Y.; Liu, S. B. Hydrothermal synthesis of NiWO4 crystals for high performance non-enzymatic glucose biosensors. Sci. Rep. 2016, 6, 24128.

242

Mollarasouli, F.; Majidi, M. R.; Asadpour-Zeynali, K. Enhanced activity for non-enzymatic glucose biosensor by facile electro-deposition of cauliflower-like NiWO4 nanostructures. J. Taiwan Inst. Chem. Eng. 2021, 118, 301–308.

243

Kothandan, V. A.; Mani, S.; Chen, S. M.; Chen, S. H. Ultrasonic-assisted synthesis of nickel tungstate nanoparticles on poly(3, 4-ethylene dioxythiophene): poly(4-styrene sulfonate) for the effective electrochemical detection of caffeic acid. Mater. Today Commun. 2021, 26, 101833.

244

Rajakumaran, R.; Krishnapandi, A.; Chen, S. M.; Balamurugan, K.; Chang, F. M.; Sakthinathan, S. Electrochemical investigation of zinc tungstate nanoparticles; a robust sensor platform for the selective detection of furazolidone in biological samples. Microchem. J. 2021, 160, 105750.

245

Zhou, Y. Z.; Cui, R. R.; Dang, Y.; Li, Y.; Zou, Y. Doping controlled oxygen vacancies of ZnWO4 as a novel and effective sensing platform Zfor carbendazim and biomolecule. Sens. Actuators B Chem. 2019, 296, 126680.

246

Li, Y.; Hua, S. G.; Zhou, Y. Z.; Dang, Y.; Cui, R. R.; Fu, Y. L. Activating ZnWO4 nanorods for efficient electroanalysis of bisphenol A via the strategy of In doping induced band gap change. J. Electroanal. Chem. 2020, 856, 113613.

247

Zhou, Y. Z.; Yang, L. H.; Zhu, M.; Dang, Y.; Peng, Z. L. Hydrothermal method prepared La-doped ZnWO4 nanospheres as electrocatalytic sensing materials for selective and sensitive determination of dopamine and uric acid. J. Electrochem. Soc. 2016, 163, B737–B743.

248

Dang, Y.; Wang, X. J.; Cui, R. R.; Chen, S. L.; Zhou, Y. Z. A novel electrochemical sensor for the selective determination of hydroquinone and catechol using synergic effect of electropolymerized nicotinic acid film and Cd-doped ZnWO4 nanoneedle. J. Electroanal. Chem. 2019, 834, 196–205.

249

Brijesh, K.; Bindu, K.; Amudha, A.; Nagaraja, H. S. Dual electrochemical application of r-GO wrapped ZnWO4/Sb nanocomposite. Mater. Res. Express 2019, 6, 115030.

250

Rajaji, U.; Govindasamy, M.; Chen, S. M.; Chen, T. W.; Liu, X. H.; Chinnapaiyan, S. Microwave-assisted synthesis of Bi2WO6 flowers decorated graphene nanoribbon composite for electrocatalytic sensing of hazardous dihydroxybenzene isomers. Compos. B Eng. 2018, 152, 220–230.

251

Govindasamy, M.; Manavalan, S.; Chen, S. M.; Umamaheswari, R.; Chen, T. W. Determination of oxidative stress biomarker 3-nitro-L-tyrosine using CdWO4 nanodots decorated reduced graphene oxide. Sens. Actuators B Chem. 2018, 272, 274–281.

252

Manickavasagan, A.; Ramachandran, R.; Chen, S. M.; Velluchamy, M. Ultrasonic assisted fabrication of silver tungstate encrusted polypyrrole nanocomposite for effective photocatalytic and electrocatalytic applications. Ultrason. Sonochem. 2020, 64, 104913.

253

Manavalan, S.; Govindasamy, M.; Chen, S. M.; Rajaji, U.; Chen, T. W.; Ali, M. A.; Al-Hemaid, F. M. A.; Elshikh, M. S.; Farah, M. A. Reduced graphene oxide supported raspberry-like SrWO4 for sensitive detection of catechol in green tea and drinking water samples. J. Taiwan Inst. Chem. Eng. 2018, 89, 215–223.

254

Muthukutty, B.; Krishnapandi, A.; Chen, S. M. The facile co-precipitation synthesis of strontium tungstate anchored on a boron nitride (SrWO4/BN) composite as a promising electrocatalyst for pharmaceutical drug analysis. New J. Chem. 2020, 44, 2489–2499.

255

Karthika, A.; Raja, V. R.; Karuppasamy, P.; Suganthi, A.; Rajarajan, M. A novel electrochemical sensor for determination of hydroquinone in water using FeWO4/SnO2 nanocomposite immobilized modified glassy carbon electrode. Arabian J. Chem. 2020, 13, 4065–4081.

256

Ranjith, K. S.; Vilian, A. T. E.; Ghoreishian, S. M.; Umapathi, R.; Huh, Y. S.; Han, Y. K. An ultrasensitive electrochemical sensing platform for rapid detection of rutin with a hybridized 2D-1D MXene-FeWO4 nanocomposite. Sens. Actuators B Chem. 2021, 344, 130202.

257

Khan, A.; Khan, A. A. P.; Asiri, A. M.; Khan, I. Facial synthesis, characterization of graphene oxide-zirconium tungstate (GO-Zr(WO4)2) nanocomposite and its application as modified microsensor for dopamine. J. Alloys Compd. 2017, 723, 811–819.

258

Sundaresan, P.; Krishnapandi, A.; Chen, S. M. Design and investigation of ytterbium tungstate nanoparticles: An efficient catalyst for the sensitive and selective electrochemical detection of antipsychotic drug chlorpromazine. J. Taiwan Inst. Chem. Eng. 2019, 96, 509–519.

259

Esmaeili, C.; Karimi, M. S.; Norouzi, P.; Wu, F.; Ganjali, M. R.; Safitri, E. Gadolinium(III) tungstate nanoparticles modified carbon paste electrode for determination of progesterone using FFT square-wave voltammetry method. J. Electrochem. Soc. 2020, 167, 067513.

260

Fan, Z. C.; Wang, M. J.; Wu, S. N.; Wang, H. R.; Li, J. P.; Liu, L.; Rong, J.; Tong, Z. W.; Zhang, X. B. A novel nanotube based on self-assembled iron porphyrin/tantalum tungstate composite for electrochemical detection of dopamine. J. Mater. Sci. 2020, 55, 7833–7842.

261

Kumar, J. V.; Karthik, R.; Chen, S. M.; Balasubramanian, P.; Muthuraj, V.; Selvam, V. A novel cerium tungstate nanosheets modified electrode for the effective electrochemical detection of carcinogenic nitrite ions. Electroanalysis 2017, 29, 2385–2394.

262

Muthamizh, S.; Suresh, R.; Giribabu, K.; Manigandan, R.; Kumar, S. P.; Munusamy, S.; Narayanan, V. MnWO4 nanocapsules: Synthesis, characterization and its electrochemical sensing property. J. Alloys Compd. 2015, 619, 601–609.

263

Shad, N. A.; Bajwa, S. Z.; Amin, N.; Taj, A.; Hameed, S.; Khan, Y.; Dai, Z. F.; Cao, C. B.; Khan, W. S. Solution growth of 1D zinc tungstate (ZnWO4) nanowires; design, morphology, and electrochemical sensor fabrication for selective detection of chloramphenicol. J. Hazard. Mater. 2019, 367, 205–214.

264

Kumar, M.; Lee, Y. H.; Kim, M. S.; Jeong, D. I.; Kang, B. K.; Yoon, D. H. Morphology-controlled synthesis of 3D flower-like NiWO4 microstructure via surfactant-free wet chemical method. J. Alloys Compd. 2018, 753, 791–798.

265

Daemi, S.; Moalem-Banhangi, M.; Ghasemi, S.; Ashkarran, A. A. An efficient platform for the electrooxidation of formaldehyde based on amorphous NiWO4 nanoparticles modified electrode for fuel cells. J. Electroanal. Chem. 2019, 848, 113270.

266
Soomro R. A. Kalwar N. H. Avci A. Pehlivan E. Hallam K. R. Willander M. In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase Biosens. Bioelectron. 2019 141 111331 10.1016/j.bios.2019.111331

Soomro, R. A.; Kalwar, N. H.; Avci, A.; Pehlivan, E.; Hallam, K. R.; Willander, M. In-situ growth of NiWO4 saw-blade-like nanostructures and their application in photo-electrochemical (PEC) immunosensor system designed for the detection of neuron-specific enolase. Biosens. Bioelectron. 2019, 141, 111331.

267

Chen, W.; Niu, X. L.; Li, X. Y.; Hu, A. H.; Ma, Q. W.; Xie, H.; He, B. L.; Sun, W. ZnWO4 nanorod modified electrode for uric acid electrocatalytic sensing and application. Int. J. Electrochem. Sci. 2017, 12, 8516–8525.

268

You, L.; Cao, Y.; Sun, Y. F.; Sun, P.; Zhang, T.; Du, Y.; Lu, G. Y. Humidity sensing properties of nanocrystalline ZnWO4 with porous structures. Sens. Actuators B Chem. 2012, 161, 799–804.

269

Cao, X. A.; Wu, W. F.; Chen, N.; Peng, Y.; Liu, Y. H. An ether sensor utilizing cataluminescence on nanosized ZnWO4. Sens. Actuators B Chem. 2009, 137, 83–87.

270
Li, Y. X. ; Zhai, X. L. ; Liu, Y. ; Wei, H. J. ; Ma, J. Q. ; Chen, M. ; Liu, X. M. ; Zhang, W. H. ; Wang, G. X. ; Ren, F. Z. et al. WO3-based materials as electrocatalysts for hydrogen evolution reaction. Front. Mater. 2020, 7, 105.
271
Zhu, P.; Xiong, X.; Wang, D. S. Regulations of active moiety in single atom catalysts for electrochemical hydrogen evolution reaction. Nano Res., in press,https://doi.org/10.1007/s12274-022-4265-y.
272

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

273

Tiwari, A.; Singh, V.; Nagaiah, T. C. Non-noble cobalt tungstate catalyst for effective electrocatalytic oxidation of borohydride. ACS Appl. Mater. Interfaces 2019, 11, 21465–21472.

274

Peng, B.; Xia, M. Y.; Li, C.; Yue, C. S.; Diao, P. Network structured CuWO4/BiVO4/Co-Pi nanocomposite for solar water splitting. Catalysts 2018, 8, 663.

275

Wu, Q.; Sheng, M. Q.; Shi, J. L.; Zhou, Q. Y.; Liao, F.; Lv, F. CoWO4/CoP2 nanoflakes grown on carbon nanotube film as an efficient electrocatalyst for water splitting in alkaline media. Appl. Surf. Sci. 2020, 514, 145919.

276

Karkera, G.; Sarkar, T.; Bharadwaj, M. D.; Prakash, A. S. Design and development of efficient bifunctional catalysts by tuning the electronic properties of cobalt-manganese tungstate for oxygen reduction and evolution reactions. ChemCatChem 2017, 9, 3681–3690.

277

Malavekar, D. B.; Lokhande, V. C.; Patil, D. J.; Kale, S. B.; Patil, U. M.; Ji, T.; Lokhande, C. D. Amorphous nickel tungstate films prepared by SILAR method for electrocatalytic oxygen evolution reaction. J. Colloid Interface Sci. 2022, 609, 734–745.

278

Hai, G. J.; Huang, J. F.; Cao, L. Y.; Kajiyoshi, K.; Wang, L.; Feng, L. L. Hierarchical W18O49/NiWO4/NF heterojunction with tuned composition and charge transfer for efficient water splitting. Appl. Surf. Sci. 2021, 562, 150145.

279

Alshehri, S. M.; Ahmed, J.; Ahamad, T.; Alhokbany, N.; Arunachalam, P.; Al-Mayouf, A. M.; Ahmad, T. Synthesis, characterization, multifunctional electrochemical (OGR/ORR/SCs) and photodegradable activities of ZnWO4 nanobricks. J. Sol-Gel Sci. Technol. 2018, 87, 137–146.

280

Chandrasekaran, S.; Arumugam, E.; Karuppiah, C.; Karuppaiah, S.; Haidyrah, A. S.; Chandran, B.; Yang, C. C. A novel cobalt tungstate and reduced graphene oxide composite for hydrogen evolution reaction in acid medium. Mater. Lett. 2021, 300, 130274.

281

Thiruppathi, M.; Leeladevi, K.; Ramalingan, C.; Chen, K. C.; Nagarajan, E. R. Construction of novel biochar supported copper tungstate nanocomposites: A fruitful divergent catalyst for photocatalysis and electrocatalysis. Mater. Sci. Semicond. Process. 2020, 106, 104766.

282

Thiruppathi, M.; Kumar, J. V.; Vahini, M.; Ramalingan, C.; Nagarajan, E. R. A study on divergent functional properties of sphere-like CuWO4 anchored on 2D graphene oxide sheets towards the photocatalysis of ciprofloxacin and electrocatalysis of methanol. J. Mater. Sci. Mater. Electron. 2019, 30, 10172–10182.

283

Hu, S. J.; Wang, B. L.; Ma, Y. H.; Li, M. Y.; Zhang, L. T.; Huang, Z. X. Ultrathin bismuth tungstate nanosheets as an effective photo-assisted support for electrocatalytic methanol oxidation. J. Colloid Interface Sci. 2019, 552, 179–185.

284

Yuan, C.; Gao, H. F.; Xu, Q. Y.; Song, X. Y.; Zhai, C. Y.; Zhu, M. S. Pt decorated 2D/3D heterostructure of Bi2WO6 nanosheet/Cu2S snowflake for improving electrocatalytic methanol oxidation with visible-light assistance. Appl. Surf. Sci. 2020, 521, 146431.

285

Zhang, H. M.; He, J.; Zhai, C. Y.; Zhu, M. S. 2D Bi2WO6/MoS2 as a new photo-activated carrier for boosting electrocatalytic methanol oxidation with visible light illumination. Chin. Chem. Lett. 2019, 30, 2338–2342.

286

Yue, X.; Zheng, Y.; Chen, Y. D.; Huang, S. M. Overall water splitting on Ni019WO4 nanowires as highly efficient and durable bifunctional non-precious metal electrocatalysts. Electrochim. Acta 2020, 333, 135554.

287

Wang, Y.; Liu, G. Reduced graphene oxide supported nickel tungstate nano-composite electrocatalyst for anodic urea oxidation reaction in direct urea fuel cell. Int. J. Hydrogen Energy 2020, 45, 33500–33511.

288

Xue, X. Y.; Yu, F.; Peng, B. H.; Wang, G.; Lv, Y.; Chen, L.; Yao, Y. B.; Dai, B.; Shi, Y. L.; Guo, X. H. One-step synthesis of nickel-iron layered double hydroxides with tungstate acid anions via flash nano-precipitation for the oxygen evolution reaction. Sustainable Energy Fuels 2019, 3, 237–244.

289

Pan, L.; Li, L.; Chen, Y. H. Synthesis and electrocatalytic properties of microsized Ag2WO4 and nanoscaled MWO4 (M = Co, Mn). J. Sol-Gel Sci. Technol. 2013, 66, 330–336.

290

Zhu, Y. P.; Guo, C. X.; Zheng, Y.; Qiao, S. Z. Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes. Acc. Chem. Res. 2017, 50, 915–923.

291

Shandilya, M.; Rai, R.; Singh, J. Review: Hydrothermal technology for smart materials. Adv. Appl. Ceram. 2016, 115, 354–376.

292

Yamakov, V.; Wolf, D.; Phillpot, S. R.; Mukherjee, A. K.; Gleiter, H. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 2004, 3, 43–47.

293

Siqueira, K. P. F.; Dias, A. Microwave-hydrothermal synthesis of transition metal tungstates with nanosized particles. Solid State Phenom. 2012, 194, 209–212.

294

Li, X.; Elshahawy, A. M.; Guan, C.; Wang, J. Metal phosphides and phosphates-based electrodes for electrochemical supercapacitors. Small 2017, 13, 1701530.

295

Li, X. J.; Li, J. H.; Bai, J.; Dong, Y. F.; Li, L. S.; Zhou, B. X. The inhibition effect of tert-butyl alcohol on the TiO2 Nano assays photoelectrocatalytic degradation of different organics and its mechanism. Nano-Micro Lett. 2016, 8, 221–231.

Nano Research
Pages 6924-6960
Cite this article:
Feng K, Sun Z, Liu Y, et al. Shining light on transition metal tungstate-based nanomaterials for electrochemical applications: Structures, progress, and perspectives. Nano Research, 2022, 15(8): 6924-6960. https://doi.org/10.1007/s12274-022-4581-2
Topics:

2620

Views

22

Crossref

23

Web of Science

24

Scopus

1

CSCD

Altmetrics

Received: 12 May 2022
Revised: 22 May 2022
Accepted: 24 May 2022
Published: 25 June 2022
© Tsinghua University Press 2022
Return