Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Moiré superlattices are formed by a lattice mismatch or twist angle in two-dimensional materials, which can generate periodical moiré potentials leading to strong changes in the band structure, resulting in new quantum phenomena. However, the experimental engineering of in-situ deformation of moiré heterostructures remains deficient. Here, we demonstrate a dynamic local deformation of the twisted heterostructures using a diamond anvil cell (DAC), enabling in-situ dynamic modulation of moiré potential in twisted WS2–WSe2 heterostructures at room temperature. Deformation of the twisted heterostructure increases the moiré potential, causing a red shift of the moiré exciton resonance, and observed the red shift of the intralayer exciton resonance up to 16.3 meV (less than 1.1 GPa). The blue shift of the interlayer excitons of twisted WS2–WSe2 heterostructures shows an evident transition of the pressure sensitive exciton, induced by the dominant effect of modifying the band structure on optical properties. Combined with the spectral changes of pressurized Raman, which further demonstrated that the DAC can efficiently regulate the interlayer coupling. Our results offer an effective strategy for in-situ dynamic modulation of moiré potential, providing a promising platform for the development of novel quantum devices.
Rivera, P.; Seyler, K. L.; Yu, H. Y.; Schaibley, J. R.; Yan, J. Q.; Mandrus, D. G.; Yao, W.; Xu, X. D. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 2016, 351, 688–691.
Yu, J.; Kuang, X. F.; Zhong, J. H.; Cao, L. K.; Zeng, C.; Ding, J. N.; Cong, C. X.; Wang, S. H.; Dai, P. F.; Yue, X. F. et al. Observation of double indirect interlayer exciton in WSe2/WS2 heterostructure. Opt. Express 2020, 28, 13260–13268.
Wu, B.; Wang, Y. P.; Zhong, J. H.; Zeng, C.; Madoune, Y.; Zhu, W. T.; Liu, Z. W.; Liu, Y. P. Observation of double indirect interlayer exciton in MoSe2/WSe2 heterostructure. Nano Res. 2022, 15, 2661–2666.
Cao, L. K.; Zhong, J. H.; Yu, J.; Zeng, C.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W.; Liu, Y. P. Valley-polarized local excitons in WSe2/WS2 vertical heterostructures. Opt. Express 2020, 28, 22135–22143.
Zeng, C.; Zhong, J. H.; Wang, Y. P.; Yu, J.; Cao, L. K.; Zhao, Z. L.; Ding, J. N.; Cong, C. X.; Yue, X. F.; Liu, Z. W. et al. Observation of split defect-bound excitons in twisted WSe2/WSe2 homostructure. Appl. Phys. Lett. 2020, 117, 153103.
Abbas, G.; Li, Y.; Wang, H. D.; Zhang, W. X.; Wang, C.; Zhang, H. Recent advances in twisted structures of flatland materials and crafting moiré superlattices. Adv. Funct. Mater. 2020, 30, 2000878.
Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S. L.; Luo, J. Y.; Sanchez-Yamagishi, J. D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84.
Chen, G. R.; Jiang, L. L.; Wu, S.; Lyu, B. S.; Li, H. Y.; Chittari, B. L.; Watanabe, K.; Taniguchi, T.; Shi, Z. W.; Jung, J. et al. Evidence of a gate-tunable Mott insulator in a trilayer graphene moiré superlattice. Nat. Phys. 2019, 15, 237–241.
Regan, E. C.; Wang, D. Q.; Jin, C. H.; Utama, M. I. B.; Gao, B. N.; Wei, X.; Zhao, S. H.; Zhao, W. Y.; Zhang, Z. C.; Yumigeta, K. et al. Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices. Nature 2020, 579, 359–363.
Zheng, Z. R.; Ma, Q.; Bi, Z.; de la Barrera, S.; Liu, M. H.; Mao, N. N.; Zhang, Y.; Kiper, N.; Watanabe, K.; Taniguchi, T. et al. Unconventional ferroelectricity in moiré heterostructures. Nature 2020, 588, 71–76.
Ulstrup, S.; Koch, R. J.; Singh, S.; McCreary, K. M.; Jonker, B. T.; Robinson, J. T.; Jozwiak, C.; Rotenberg, E.; Bostwick, A.; Katoch, J. et al. Direct observation of minibands in a twisted graphene/WS2 bilayer. Sci. Adv. 2020, 6, eaay6104.
Zhang, L.; Zhang, Z.; Wu, F. C.; Wang, D. Q.; Gogna, R.; Hou, S. C.; Watanabe, K.; Taniguchi, T.; Kulkarni, K.; Kuo, T. et al. Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers. Nat. Commun. 2020, 11, 5888.
Sung, J.; Zhou, Y.; Scuri, G.; Zólyomi, V.; Andersen, T. I.; Yoo, H.; Wild, D. S.; Joe, A. Y.; Gelly, R. J.; Heo, H. et al. Broken mirror symmetry in excitonic response of reconstructed domains in twisted MoSe2/MoSe2 bilayers. Nat. Nanotechnol. 2020, 15, 750–754.
Tang, Y. H.; Li, L. Z.; Li, T. X.; Xu, Y.; Liu, S.; Barmak, K.; Watanabe, K.; Taniguchi, T.; MacDonald, A. H.; Shan, J. et al. Simulation of Hubbard model physics in WSe2/WS2 moiré superlattices. Nature 2020, 579, 353–358.
Li, H.; Papadakis, R.; Hussain, T.; Karton, A.; Liu, J. W. Moiré patterns arising from bilayer graphone/graphene superlattice. Nano Res. 2020, 13, 1060–1064.
Cai, L.; Duan, H. L.; Liu, Q. H.; Wang, C.; Tan, H.; Hu, W.; Hu, F. C.; Sun, Z. H.; Yan, W. S. Ultrahigh-temperature ferromagnetism in MoS2 Moiré superlattice/graphene hybrid heterostructures. Nano Res. 2021, 14, 4182–4187.
Chen, Y. Z.; Cao, B. C.; Sun, C.; Wang, Z. D.; Zhou, H. Z.; Wang, L. J.; Zhu, H. M. Controlling exciton-exciton annihilation in WSe2 bilayers via interlayer twist. Nano Res. 2022, 15, 4661–4667.
Yin, Y.; Wang, G. Y.; Liu, C.; Huang, H. L.; Chen, J. Y.; Liu, J. Y.; Guan, D. D.; Wang, S. Y.; Li, Y.; Liu, C. H. et al. Moiré-pattern-modulated electronic structures in Sb2Te3/graphene heterostructure. Nano Res. 2022, 15, 1115–1119.
Liu, Y. P.; Zeng, C.; Yu, J.; Zhong, J. H.; Li, B.; Zhang, Z. W.; Liu, Z. W.; Wang, Z. M.; Pan, A. L.; Duan, X. D. Moiré superlattices and related moiré excitons in twisted van der Waals heterostructures. Chem. Soc. Rev. 2021, 50, 6401–6422.
Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50.
Chen, G. R.; Sharpe, A. L.; Gallagher, P.; Rosen, I. T.; Fox, E. J.; Jiang, L. L.; Lyu, B. S.; Li, H. Y.; Watanabe, K.; Taniguchi, T. et al. Signatures of tunable superconductivity in a trilayer graphene moiré superlattice. Nature 2019, 572, 215–219.
Sharpe, A. L.; Fox, E. J.; Barnard, A. W.; Finney, J.; Watanabe, K.; Taniguchi, T.; Kastner, M. A.; Goldhaber-Gordon, D. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 2019, 365, 605–608.
Qu, L. L.; Lan, D.; Si, L.; Ma, C.; Wang, S. S.; Xu, L. Q.; Zhang, K. X.; Jin, F.; Zhang, Z. X.; Hua, E. D. et al. Asymmetric interfaces and high-TC ferromagnetic phase in La0.67Ca0.33MnO3/SrRuO3 superlattices. Nano Res. 2021, 14, 3621–3628.
Parker, D. E.; Soejima, T.; Hauschild, J.; Zaletel, M. P.; Bultinck, N. Strain-induced quantum phase transitions in magic-angle graphene. Phys. Rev. Lett. 2021, 127, 027601.
Guo, H. L.; Zhang, X.; Lu, G. Moiré excitons in defective van der Waals heterostructures. Proc. Natl. Acad. Sci. USA 2021, 32, e2105468118.
Tran, K.; Moody, G.; Wu, F. C.; Lu, X. B.; Choi, J.; Kim, K.; Rai, A.; Sanchez, D. A.; Quan, J. M.; Singh, A. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 2019, 567, 71–75.
Seyler, K. L.; Rivera, P.; Yu, H. Y.; Wilson, N. P.; Ray, E. L.; Mandrus, D. G.; Yan, J. Q.; Yao, W.; Xu, X. D. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 2019, 567, 66–70.
Zhang, N.; Surrente, A.; Baranowski, M.; Maude, D. K.; Gant, P.; Castellanos-Gomez, A.; Plochocka, P. Moiré intralayer excitons in a MoSe2/MoS2 heterostructure. Nano Lett. 2018, 18, 7651–7657.
Andersen, T. I.; Scuri, G.; Sushko, A.; De Greve, K.; Sung, J.; Zhou, Y.; Wild, D. S.; Gelly, R. J.; Heo, H.; Bérubé, D. et al. Excitons in a reconstructed moiré potential in twisted WSe2/WSe2 homobilayers. Nat. Mater. 2021, 20, 480–487.
Yu, H. Y.; Liu, G. B.; Tang, J. J.; Xu, X. D.; Yao, W. Moiré excitons: From programmable quantum emitter arrays to spin−orbit-coupled artificial lattices. Sci. Adv. 2017, 3, e1701696.
Alexeev, E. M.; Ruiz-Tijerina, D. A.; Danovich, M.; Hamer, M. J.; Terry, D. J.; Nayak, P. K.; Ahn, S.; Pak, S.; Lee, J.; Sohn, J. I. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 2019, 567, 81–86.
Zhao, W. Y.; Regan, E. C.; Wang, D. Q.; Jin, C. H.; Hsieh, S.; Wang, Z. Y.; Wang, J. L.; Wang, Z. L.; Yumigeta, K.; Blei, M. et al. Dynamic tuning of moiré excitons in a WSe2/WS2 heterostructure via mechanical deformation. Nano Lett. 2021, 21, 8910–8916.
Wang, X.; Zhu, J. Y.; Seyler, K. L.; Rivera, P.; Zheng, H. Y.; Wang, Y. Q.; He, M. H.; Taniguchi, T.; Watanabe, K.; Yan, J. Q. et al. Moiré trions in MoSe2/WSe2 heterobilayers. Nat. Nanotechnol. 2021, 16, 1208–1213.
Förg, M.; Baimuratov, A. S.; Kruchinin, S. Y.; Vovk, I. A.; Scherzer, J.; Förste, J.; Funk, V.; Watanabe, K.; Taniguchi, T.; Högele, A. Moiré excitons in MoSe2−WSe2 heterobilayers and heterotrilayers. Nat. Commun. 2021, 12, 1656.
Shi, J.; Li, Y. Z.; Zhang, Z. P.; Feng, W. Q.; Wang, Q.; Ren, S. L.; Zhang, J.; Du, W. N.; Wu, X. X.; Sui, X. Y. et al. Twisted-angle-dependent optical behaviors of intralayer excitons and trions in WS2/WSe2 heterostructure. ACS Photonics 2019, 6, 3082–3091.
Gutiérrez, H. R.; Perea-López, N.; Elías, A. L.; Berkdemir, A.; Wang, B.; Lv, R. T.; López-Urías, F.; Crespi, V. H.; Terrones, H.; Terrones, M. Extraordinary room-temperature photoluminescence in triangular WS2 monolayers. Nano Lett. 2013, 13, 3447–3454.
Sahin, H.; Tongay, S.; Horzum, S.; Fan, W.; Zhou, J.; Li, J.; Wu, J.; Peeters, F. M. Anomalous Raman spectra and thickness-dependent electronic properties of WSe2. Phys. Rev. B 2013, 87, 165409.
Hanbicki, A. T.; Currie, M.; Kioseoglou, G.; Friedman, A. L.; Jonker, B. T. Measurement of high exciton binding energy in the monolayer transition-metal dichalcogenides WS2 and WSe2. Solid State Commun. 2015, 203, 16–20.
Zhao, W. J.; Ghorannevis, Z.; Amara, K. K.; Pang, J. R.; Toh, M.; Zhang, X.; Kloc, C.; Tan, P. H.; Eda, G. Lattice dynamics in mono- and few-layer sheets of WS2 and WSe2. Nanoscale 2013, 5, 9677–9683.
Li, H.; Lu, G.; Wang, Y. L.; Yin, Z. Y.; Cong, C. X.; He, Q. Y.; Wang, L.; Ding, F.; Yu, T.; Zhang, H. Mechanical exfoliation and characterization of single- and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 2013, 9, 1974–1981.
Chiu, M. H.; Li, M. Y.; Zhang, W. J.; Hsu, W. T.; Chang, W. H.; Terrones, M.; Terrones, H.; Li, L. J. Spectroscopic signatures for interlayer coupling in MoS2-WSe2 van der Waals stacking. ACS Nano 2014, 8, 9649–9656.
Wang, K.; Huang, B.; Tian, M. K.; Ceballos, F.; Lin, M. W.; Mahjouri-Samani, M.; Boulesbaa, A.; Puretzky, A. A.; Rouleau, C. M.; Yoon, M. et al. Interlayer coupling in twisted WSe2/WS2 bilayer heterostructures revealed by optical spectroscopy. ACS Nano 2016, 10, 6612–6622.
Xia, J.; Yan, J. X.; Wang, Z. H.; He, Y. M.; Gong, Y. J.; Chen, W. Q.; Sum, T. C.; Liu, Z.; Ajayan, P. M.; Shen, Z. X. Strong coupling and pressure engineering in WSe2−MoSe2 heterobilayers. Nat. Phys. 2021, 17, 92–98.
Dybała, F.; Polak, M. P.; Kopaczek, J.; Scharoch, P.; Wu, K.; Tongay, S.; Kudrawiec, R. Pressure coefficients for direct optical transitions in MoS2, MoSe2, WS2, and WSe2 crystals and semiconductor to metal transitions. Sci. Rep. 2016, 6, 26663.
Wu, F. C.; Lovorn, T.; MacDonald, A. H. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B 2018, 97, 035306.
Wu, F. C.; Lovorn, T.; MacDonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 2017, 118, 147401.