Journal Home > Volume 15 , Issue 10

It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction (ORR) catalysts for practical proton exchange membrane fuel cells (PEMFCs). Herein, we achieve novel porous nanocomposites of PtCu3 nanoalloys-embedded in the PWOx matrix (PtCu3@PWOx), which has an oxygen container feature. The PtCu3@PWOx/C exhibits an ultrahigh mass activity (MA) of 3.94 A·mgPt−1 for ORR, which is 26.3 times as high as the commercial Pt/C and the highest value ever reported for PtCu-based binary system. Theoretical calculations reveal that the compressive strain and d-band center downshift of Pt intrinsically contribute to the excellent ORR performance. In H2-air PEMFCs at room temperature, furthermore, the PtCu3@PWOx/C delivers a high power density (218.6 mW·cm−2), much superior to commercial Pt/C (131.6 mW·cm−2). In H2-O2 PEMFCs, PtCu3@PWOx/C outputs a maximum power density of 420.1 mW·cm−2. This work provides an effective idea for designing oxygen-storing ORR catalysts used for practical room-temperature H2-air fuel cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

PtCu3 nanoalloy@porous PWOx composites with oxygen container function as efficient ORR electrocatalysts advance the power density of room-temperature hydrogen-air fuel cells

Show Author's information Rui Chen1Tie Shu2Fengling Zhao1Yongfei Li2Xiaotong Yang1Jingwei Li3Daliang Zhang3Li-Yong Gan2,4( )Ke Xin Yao2,3( )Qiang Yuan1( )
State-Local Joint Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Multi-scale Porous Materials Center, Institute of Advanced Interdisciplinary Studies & School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing 401331, China

Abstract

It is challenging and desirable to construct Pt-based nanocomposites with oxygen storage function as efficient oxygen reduction reaction (ORR) catalysts for practical proton exchange membrane fuel cells (PEMFCs). Herein, we achieve novel porous nanocomposites of PtCu3 nanoalloys-embedded in the PWOx matrix (PtCu3@PWOx), which has an oxygen container feature. The PtCu3@PWOx/C exhibits an ultrahigh mass activity (MA) of 3.94 A·mgPt−1 for ORR, which is 26.3 times as high as the commercial Pt/C and the highest value ever reported for PtCu-based binary system. Theoretical calculations reveal that the compressive strain and d-band center downshift of Pt intrinsically contribute to the excellent ORR performance. In H2-air PEMFCs at room temperature, furthermore, the PtCu3@PWOx/C delivers a high power density (218.6 mW·cm−2), much superior to commercial Pt/C (131.6 mW·cm−2). In H2-O2 PEMFCs, PtCu3@PWOx/C outputs a maximum power density of 420.1 mW·cm−2. This work provides an effective idea for designing oxygen-storing ORR catalysts used for practical room-temperature H2-air fuel cells.

Keywords: oxygen reduction reaction, porous composite, platinum-copper alloy, oxygen container, hydrogen-air fuel cell

References(69)

1

Wang, X. Q.; Li, Z. J.; Qu, Y. T.; Yuan, T. W.; Wang, W. Y.; Wu, Y. E.; Li, Y. D. Review of metal catalysts for oxygen reduction reaction: From nanoscale engineering to atomic design. Chem. 2019, 5, 1486–1511.

2

Sun, Y. Y.; Polani, S.; Luo, F.; Ott, S.; Strasser, P.; Dionigi, F. Advancements in cathode catalyst and cathode layer design for proton exchange membrane fuel cells. Nat. Commun. 2021, 12, 5984.

3

Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K. Understanding catalytic activity trends in the oxygen reduction reaction. Chem. Rev. 2018, 118, 2302–2312.

4

Zhang, J. W.; Yuan, Y. L.; Gao, L.; Zeng, G. M.; Li, M. F.; Huang, H. W. Stabilizing Pt-based electrocatalysts for oxygen reduction reaction: Fundamental understanding and design strategies. Adv. Mater. 2021, 33, 2006494.

5

Shi, Y. F.; Lyu, Z. H.; Zhao, M.; Chen, R. H.; Nguyen, Q. N.; Xia, Y. N. Noble-metal nanocrystals with controlled shapes for catalytic and electrocatalytic applications. Chem. Rev. 2021, 121, 649–735.

6

Huang, L.; Zaman, S.; Wang, Z. T.; Niu, H. T.; You, B.; Xia, B. Y. Synthesis and application of platinum-based hollow nanoframes for direct alcohol fuel cells. Acta Phys. Chim. Sin. 2021, 37, 2009035.

7

Zhu, E. B.; Xue, W.; Wang, S. Y.; Yan, X. C.; Zhou, J. X.; Liu, Y.; Cai, J.; Liu, E. S.; Jia, Q. Y.; Duan, X. F. et al. Enhancement of oxygen reduction reaction activity by grain boundaries in platinum nanostructures. Nano Res. 2020, 13, 3310–3314.

8

Zhao, F. L.; Zheng, L. R.; Yuan, Q.; Yang, X. T.; Zhang, Q. H.; Xu, H.; Guo, Y. L.; Yang, S.; Zhou, Z. Y.; Gu, L. et al. Ultrathin PdAuBiTe nanosheets as high-performance oxygen reduction catalysts for a direct methanol fuel cell device. Adv. Mater. 2021, 33, 2103383.

9

Li, J. R.; Sharma, S.; Liu, X. M.; Pan, Y. T.; Spendelow, J. S.; Chi, M. F.; Jia, Y. K.; Zhang, P.; Cullen, D. A.; Xi, Z. et al. Hard-magnet L10-CoPt nanoparticles advance fuel cell catalysis. Joule 2019, 3, 124–135.

10

Luo, L. X.; Fu, C. H.; Wu, A. M.; Zhuang, Z. C.; Zhu, F. J.; Jiang, F. L.; Shen, S. Y.; Cai, X. Y.; Kang, Q.; Zheng, Z. F. et al. Hydrogen-assisted scalable preparation of ultrathin Pt shells onto surfactant-free and uniform Pd nanoparticles for highly efficient oxygen reduction reaction in practical fuel cells. Nano Res. 2022, 15, 1892–1900.

11

Tian, X. L.; Lu, X. F.; Xia, B. Y.; Lou, X. W. Advanced electrocatalysts for the oxygen reduction reaction in energy conversion technologies. Joule 2020, 4, 45–68.

12

Xia, Y. N.; Campbell, C. T.; Cuenya, B. R.; Mavrikakis, M. Introduction: Advanced materials and methods for catalysis and electrocatalysis by transition metals. Chem. Rev. 2021, 121, 563–566.

13

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

14

Ott, S.; Orfanidi, A.  ; Schmies, H.; Anke, B.; Nong, H. N.; Hübner, J.; Gernert, U.; Gliech, M.; Lerch, M.; Strasser, P. Ionomer distribution control in porous carbon-supported catalyst layers for high-power and low Pt-loaded proton exchange membrane fuel cells. Nat. Mater. 2020, 19, 77–85.

15

Garlyyev, B.; Watzele, S.; Fichtner, J.; Michalička, J.; Schökel, A.; Senyshyn, A.; Perego, A.; Pan, D. J.; El-Sayed, H. A.; Macak, J. M. et al. Electrochemical top-down synthesis of C-supported Pt nanoparticles with controllable shape and size: Mechanistic insights and application. Nano Res. 2021, 14, 2762–2769.

16

Song, J. J.; Yang, Y. X.; Liu, S. J.; Li, L.; Yu, N.; Fan, Y. T.; Chen, Z. M.; Kuai, L.; Geng, B. Y. Dispersion and support dictated properties and activities of Pt/metal oxide catalysts in heterogeneous CO oxidation. Nano Res. 2021, 14, 4841–4847.

17

Long, P.; Du, S. Q.; Liu, Q.; Tao, L.; Peng, C.; Wang, T. H.; Gu, K. Z.; Xie, C.; Zhang, Y. Q.; Chen, R. et al. Fluorination-enabled interface of PtNi electrocatalysts for high-performance high-temperature proton exchange membrane fuel cells. Sci. China Mater. 2022, 65, 904–912.

18

Greeley, J.; Stephens, I. E. L.; Bondarenko, A. S.; Johansson, T. P.; Hansen, H. A.; Jaramillo, T. F.; Rossmeisl, J.; Chorkendorff, I.; Nørskov, J. K. Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat. Chem. 2009, 1, 552–556.

19

Lei, W. J.; Li, M. G.; He, L.; Meng, X.; Mu, Z. J.; Yu, Y. S.; Ross, F. M.; Yang, W. W. A general strategy for bimetallic Pt-based nano-branched structures as highly active and stable oxygen reduction and methanol oxidation bifunctional catalysts. Nano Res. 2020, 13, 638–645.

20

Liang, Y. Y.; Lei, H.; Wang, S. J.; Wang, Z. L.; Mai, W. J. Pt/Zn heterostructure as efficient air-electrocatalyst for long-life neutral Zn-air batteries. Sci. China Mater. 2021, 64, 1868–1875.

21

Huang, L.; Zaman, S.; Tian, X. L.; Wang, Z. T.; Fang, W. S.; Xia, B. Y. Advanced platinum-based oxygen reduction electrocatalysts for fuel cells. Acc. Chem. Res. 2021, 54, 311–322.

22

Stamenkovic, V. R.; Mun, B. S.; Arenz, M.; Mayrhofer, K. J. J.; Lucas, C. A.; Wang, G. F.; Ross, P. N.; Markovic, N. M. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces. Nat. Mater. 2007, 6, 241–247.

23

Wang, P. T.; Shao, Q.; Huang, X. Q. Updating Pt-Based electrocatalysts for practical fuel cells. Joule 2018, 2, 2514–2516.

24

Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G. F.; Ross, P. N.; Lucas, C. A.; Markovic, N. M. Improved oxygen reduction activity on Pt3Ni (111) via increased surface site availability. Science 2007, 315, 493–497.

25

Wang, D. L.; Xin, H. L.; Hovden, R.; Wang, H. S.; Yu, Y. C.; Muller, D. A.; DiSalvo1, F. J.; Abruña, H. D. Structurally ordered intermetallic platinum-cobalt core–shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat. Mater. 2013, 12, 81–87.

26

Kong, F. P.; Ren, Z. H.; Banis, M. N.; Du, L.; Zhou, X.; Chen, G. Y.; Zhang, L.; Li, J. J.; Wang, S. Z.; Li, M. S. et al. Active and stable Pt-Ni alloy octahedra catalyst for oxygen reduction via near-surface atomical engineering. ACS Catal. 2020, 10, 4205–4214.

27

Chaudhari, N. K.; Hong, Y. J.; Kim, B.; Choi, S. I.; Lee, K. Pt-Cu based nanocrystals as promising catalysts for various electrocatalytic reactions. J. Mater. Chem. A. 2019, 7, 17183–17203.

28

Yan, W. J.; Zhang, D. P.; Zhang, Q. X.; Sun, Y.; Zhang, S. X.; Du, F.; Jin, X. Synthesis of PtCu-based nanocatalysts: Fundamentals and emerging challenges in energy conversion. J. Energy Chem. 2022, 64, 583–606.

29

Hannagan, R. T.; Giannakakis, G.; Flytzani-Stephanopoulos, M.; Sykes, E. C. H. Single-atom alloy catalysis. Chem. Rev. 2020, 120, 12044–12088.

30

Kim, H. Y.; Kwon, T.; Ha, Y.; Jun, M.; Baik, H.; Jeong, H. Y.; Kim, H.; Lee, K.; Joo, S. H. Intermetallic PtCu nanoframes as efficient oxygen reduction electrocatalysts. Nano Lett. 2020, 20, 7413–7421.

31

Guo, N. K.; Xue, H.; Bao, A.; Wang, Z. H.; Sun, J.; Song, T. S.; Ge, X.; Zhang, W.; Huang, K. K.; He, F. et al. Achieving superior electrocatalytic performance by surface copper vacancy defects during electrochemical etching process. Angew. Chem., Int. Ed. 2020, 59, 13778–13784.

32

Gatalo, M.; Ruiz-Zepeda, F.; Hodnik, N.; Dražić, G.; Bele, M.; Gaberšček, M. Insights into thermal annealing of highly-active PtCu3/C oxygen reduction reaction electrocatalyst: An in-situ heating transmission electron microscopy study. Nano Energy 2019, 63, 103892.

33

Luo, S. P.; Tang, M.; Shen, P. K.; Ye, S. Y. Atomic-scale preparation of octopod nanoframes with high-index facets as highly active and stable catalysts. Adv. Mater. 2017, 29, 1601687.

34

Park, J.; Kabiraz, M. K.; Kwon, H.; Park, S.; Baik, H.; Choi, S. I.; Lee, K. Radially phase segregated PtCu@PtCuNi dendrite@frame nanocatalyst for the oxygen reduction reaction. ACS Nano 2017, 11, 10844–10851.

35

Li, W. Q.; Hu, Z. Y.; Zhang, Z. W.; Wei, P.; Zhang, J. N.; Pu, Z. H.; Zhu, J. W.; He, D. P.; Mu, S. C.; Van Tendeloo, G. Nano-single crystal coalesced PtCu nanospheres as robust bifunctional catalyst for hydrogen evolution and oxygen reduction reactions. J. Catal. 2019, 375, 164–170.

36

Ahn, C. Y.; Park, J. E.; Kim, S.; Kim, O. H.; Hwang, W.; Her, M.; Kang, S. Y.; Park, S.; Kwon, O. J.; Park, H. S. et al. Differences in the electrochemical performance of Pt-based catalysts used for polymer electrolyte membrane fuel cells in liquid half- and full-cells. Chem. Rev. 2021, 121, 15075–15140.

37

Choi, J.; Lee, Y. J.; Park, D.; Jeong, H.; Shin, S.; Yun, H.; Lim, J.; Han, J. H.; Kim, E. J.; Jeon, S. S. et al. Highly durable fuel cell catalysts using crosslinkable block copolymer-based carbon supports with ultralow Pt loadings. Energy Environ. Sci. 2020, 13, 4921–4929.

38

Yarlagadda, V.; Carpenter, M. K.; Moylan, T. E.; Kukreja, R. S.; Koestner, R.; Gu, W. B.; Thompson, L.; Kongkanand, A. Boosting fuel cell performance with accessible carbon mesopores. ACS Energy Lett. 2018, 3, 618–621.

39

Lee, Y. J.; Kim, H. E.; Lee, E.; Lee, J.; Shin, S.; Yun, H.; Kim, E. J.; Jung, H.; Ham, H. C.; Kim, B. J. et al. Ultra-low Pt loaded porous carbon microparticles with controlled channel structure for high-performance fuel cell catalysts. Adv. Energy Mater. 2021, 11, 2102970.

40

Qin, Y. C.; Zhang, W. L.; Guo, K.; Liu, X. B.; Liu, J. Q.; Liang, X. Y.; Wang, X. P.; Gao, D. W.; Gan, L. Y.; Zhu, Y. T. et al. Fine-tuning intrinsic strain in penta-twinned Pt-Cu-Mn nanoframes boosts oxygen reduction catalysis. Adv. Funct. Mater. 2020, 30, 1910107.

41

Fang, D. H.; Wan, L.; Jiang, Q. K.; Zhang, H. J.; Tang, X. J.; Qin, X. P.; Shao, Z. G.; Wei, Z. D. Wavy PtCu alloy nanowire networks with abundant surface defects enhanced oxygen reduction reaction. Nano Res. 2019, 12, 2766–2773.

42

Wang, D. D.; Chen, Z. W.; Huang, Y. C.; Li, W.; Wang, J.; Lu, Z. L.; Gu, K. Z.; Wang, T. H.; Wu, Y. J.; Chen, C. et al. Tailoring lattice strain in ultra-fine high-entropy alloys for active and stable methanol oxidation. Sci. China Mater. 2021, 64, 2454–2466.

43

Lu, B. A.; Sheng, T.; Tian, N.; Zhang, Z. C.; Xiao, C.; Cao, Z. M.; Ma, H. B.; Zhou, Z. Y.; Sun, S. G. Octahedral PtCu alloy nanocrystals with high performance for oxygen reduction reaction and their enhanced stability by trace Au. Nano Energy 2017, 33, 65–71.

44

Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C. F.; Liu, Z. C.; Kaya, S.; Nordlund, D.; Ogasawara, H. et al. Lattice-strain control of the activity in dealloyed core–shell fuel cell catalysts. Nat. Chem. 2010, 2, 454–460.

45

Yang, X. T.; Yao, K. X.; Ye, J. Y.; Yuan, Q.; Zhao, F. L.; Li, Y. F.; Zhou, Z. Y. Interface-rich three-dimensional Au-doped PtBi intermetallics as highly effective anode catalysts for application in alkaline ethylene glycol fuel cells. Adv. Funct. Mater. 2021, 31, 2103671.

46

Zhao, T.; Luo, E. G.; Li, Y.; Wang, X.; Liu, C. P.; Xing, W.; Ge, J. J. Highly dispersed L10-PtZn intermetallic catalyst for efficient oxygen reduction. Sci. China Mater. 2021, 64, 1671–1678.

47

Liu, H. P.; Liu, K.; Zhong, P.; Qi, J.; Bian, J. H.; Fan, Q. K.; Ren, K.; Zheng, H. Q.; Han, L.; Yin, Y. D. et al. Ultrathin Pt-Ag alloy nanotubes with regular nanopores for enhanced electrocatalytic activity. Chem. Mater. 2018, 30, 7744–7751.

48

Zhou, T. P.; Shan, H.; Yu, H.; Zhong, C. A.; Ge, J. K.; Zhang, N.; Chu, W. S.; Yan, W. S.; Xu, Q.; Wu, H. A. et al. Nanopore confinement of electrocatalysts optimizing triple transport for an ultrahigh-power-density zinc-air fuel cell with robust stability. Adv. Mater. 2020, 32, 2003251.

49

Feng, Y.; Cheng, C. Q.; Zou, C. Q.; Zheng, X. L.; Mao, J.; Liu, H.; Li, Z.; Dong, C. K.; Du, X. W. Electroreduction of carbon dioxide in metallic nanopores through a pincer mechanism. Angew. Chem., Int. Ed. 2020, 59, 19297–19303.

50

Shi, S.; Wen, X. L.; Sang, Q. Q.; Yin, S.; Wang, K. L.; Zhang, J.; Hu, M.; Yin, H. M.; He, J.; Ding, Y. Ultrathin nanoporous metal electrodes facilitate high proton conduction for low-Pt PEMFCs. Nano Res. 2021, 14, 2681–2688.

51

Feng, Y. G.; Huang, B. L.; Yang, C. Y.; Shao, Q.; Huang, X. Q. Platinum porous nanosheets with high surface distortion and Pt utilization for enhanced oxygen reduction catalysis. Adv. Funct. Mater. 2019, 29, 1904429.

52

Peng, X. W.; Zhang, L.; Chen, Z. X.; Zhong, L. X.; Zhao, D. K.; Chi, X.; Zhao, X. X.; Li, L. G.; Lu, X. H.; Leng, K. et al. Hierarchically porous carbon plates derived from wood as bifunctional ORR/OER electrodes. Adv. Mater. 2019, 31, 1900341.

53
Kang, Y. Q. ; Wang, J. Q. ; Wei, Y. P. ; Wu, Y. L. ; Xia, D. S. ; Gan, L. Engineering nanoporous and solid core–shell architectures of low-platinum alloy catalysts for high power density PEM fuel cells. Nano Res., in press, https://doi.org/10.1007/s12274-022-4238-1.
DOI
54
Deng, Z. P. ; Wang, X. L. Mechanism investigation of enhanced electrochemical H2O2 production performance on oxygen-rich hollow porous carbon spheres. Nano Res., in press, https://doi.org/10.1007/s12274-022-4095-y.
DOI
55

Li, M. F.; Zhao, Z. P.; Cheng, T.; Fortunelli, A.; Chen, C. Y.; Yu, R.; Zhang, Q. H.; Gu, L.; Merinov, B. V.; Lin, Z. Y. et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 2016, 354, 1414–1419.

56

Gao, Y.; Kong, D. B.; Liang, J. X.; Han, D. L.; Wang, B.; Yang, Q. H.; Zhi, L. J. Inside-out dual-doping effects on tubular catalysts: Structural and chemical variation for advanced oxygen reduction performance. Nano Res. 2022, 15, 361–367.

57

Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M. et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343.

58

Fidiani, E.; Thirunavukkarasu, G.; Li, Y.; Chiu, Y. L.; Du, S. F. Au integrated AgPt nanorods for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Mater. Chem. A 2021, 9, 5578–5587.

59

Park, C.; Lee, E.; Lee, G.; Tak, Y. Superior durability and stability of Pt electrocatalyst on N-doped graphene-TiO2 hybrid material for oxygen reduction reaction and polymer electrolyte membrane fuel cells. Appl. Catal. B Environ. 2020, 268, 118414.

60

Ahn, S. H.; Klein, M. J.; Manthiram, A. 1D Co- and N-doped hierarchically porous carbon nanotubes derived from bimetallic metal organic framework for efficient oxygen and tri-iodide reduction reactions. Adv. Energy Mater. 2017, 7, 1601979.

61

Peng, L.; Hung, C. T.; Wang, S. W.; Zhang, X. M.; Zhu, X. H.; Zhao, Z. W.; Wang, C. Y.; Tang, Y.; Li, W.; Zhao, D. Y. Versatile nanoemulsion assembly approach to synthesize functional mesoporous carbon nanospheres with tunable pore sizes and architectures. J. Am. Chem. Soc. 2019, 141, 7073–7080.

62

Liang, J.; Zheng, Y.; Chen, J.; Liu, J.; Hulicova-Jurcakova, D.; Jaroniec, M.; Qiao, S. Z. Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 2012, 51, 3892–3896.

63

Wen, Z.; Liu, J.; Li, J. Core/shell Pt/C nanoparticles embedded in mesoporous carbon as a methanol-tolerant cathode catalyst in direct methanol fuel cells. Adv. Mater. 2008, 20, 743–747.

64

Asset, T.; Job, N.; Busby, Y.; Crisci, A.; Martin, V.; Stergiopoulos, V.; Bonnaud, C.; Serov, A.; Atanassov, P.; Chattot, R. et al. Porous hollow PtNi/C electrocatalysts: Carbon support considerations to meet performance and stability requirements. ACS Catal. 2018, 8, 893–903.

65

Chong, L. N.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

66

Zhao, J. J.; Fu, C. H.; Ye, K.; Liang, Z.; Jiang, F. L.; Shen, S. Y.; Zhao, X. R.; Ma L.; Shadike, Z.; Wang, X. M. et al. Manipulating the oxygen reduction reaction pathway on Pt-coordinated motifs. Nat. Commun. 2022, 13, 685.

67

Hammer, B.; Nørskov, J. K. Theoretical surface science and catalysis-calculations and concepts. Adv. Catal. 2000, 45, 71–129.

68

Xu, F.; Cai, S. B.; Lin, B. F.; Yang, L.; Le, H. F.; Mu, S. C. Geometric engineering of porous PtCu nanotubes with ultrahigh methanol oxidation and oxygen reduction capability. Small 2022, 18, 2107387.

69

Tian, X. L.; Zhao, X.; Su, Y. Q.; Wang, L. J.; Wang, H. M.; Dang, D.; Chi, B.; Liu, H. F.; Hensen, E. J. M.; Lou, X. W. et al. Engineering bunched Pt-Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 2019, 366, 850–856.

File
12274_2022_4577_MOESM1_ESM.pdf (2.3 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 April 2022
Revised: 21 May 2022
Accepted: 24 May 2022
Published: 21 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21571038), Foundation of Guizhou Province (No. 2019-5666), Education Department of Guizhou Province (No. 2021312), State Key Laboratory of Coal Mine Disaster Dynamics and Control (Chongqing University, No. 2011DA105287-ZR202101), State Key Laboratory of Physical Chemistry of Solid Surfaces (Xiamen University, No. 202009), and the Open Fund of the Key Lab of Organic Optoelectronics & Molecular Engineering (Tsinghua University). We gratefully acknowledge Analytical and Testing Center of Chongqing University.

Return