Journal Home > Volume 15 , Issue 10

Oxygen evolution reaction (OER) plays an important role in many energy conversions and storage technologies, such as water splitting, rechargeable metal air batteries, renewable fuel cells, and electrocatalytic carbon dioxide reduction and nitrogen reduction, but its slow kinetics and high overpotential seriously affect the energy efficiency. Fabrication of high-performance and well-stocked OER catalysts is the key to the large-scale implementation of these energy-related technologies. Two-dimensional (2D) materials get a lot of attention as OER catalysts due to their large specific surface area, abundant active sites, and adjustable structures and compositions. Here, an overview is presented for the latest achievements in design and synthesis of 2D materials (including layered double hydroxides, metal-organic frameworks and their derivatives, covalent-organic frameworks, graphene, and black phosphorus) for the OER, emphasizing novel strategies (including metal/nonmetal doping, defect engineering, interface engineering, lattice strain, and fabrication of heterojunction) for achieving high electrocatalytic activity. Peculiarly, the structure–function relationship is analyzed in detail to gain deeper insight into the reaction mechanism, which is crucial to rational design of more high-performance 2D materials for the OER. Finally, the remaining challenges to improve the OER performance of 2D electrocatalysts are put forward to indicate possible future development of 2D materials.


menu
Abstract
Full text
Outline
About this article

Advances and challenges in two-dimensional materials for oxygen evolution

Show Author's information Tianmi Tang1Saisai Li2Jianrui Sun2Zhenlu Wang1Jingqi Guan1( )
Institute of Physical Chemistry, College of Chemistry, Jilin University, Changchun 130021, China
School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, China

Abstract

Oxygen evolution reaction (OER) plays an important role in many energy conversions and storage technologies, such as water splitting, rechargeable metal air batteries, renewable fuel cells, and electrocatalytic carbon dioxide reduction and nitrogen reduction, but its slow kinetics and high overpotential seriously affect the energy efficiency. Fabrication of high-performance and well-stocked OER catalysts is the key to the large-scale implementation of these energy-related technologies. Two-dimensional (2D) materials get a lot of attention as OER catalysts due to their large specific surface area, abundant active sites, and adjustable structures and compositions. Here, an overview is presented for the latest achievements in design and synthesis of 2D materials (including layered double hydroxides, metal-organic frameworks and their derivatives, covalent-organic frameworks, graphene, and black phosphorus) for the OER, emphasizing novel strategies (including metal/nonmetal doping, defect engineering, interface engineering, lattice strain, and fabrication of heterojunction) for achieving high electrocatalytic activity. Peculiarly, the structure–function relationship is analyzed in detail to gain deeper insight into the reaction mechanism, which is crucial to rational design of more high-performance 2D materials for the OER. Finally, the remaining challenges to improve the OER performance of 2D electrocatalysts are put forward to indicate possible future development of 2D materials.

Keywords: oxygen evolution reaction, layered double hydroxide, metal-organic framework, two-dimensional material, covalent-organic framework

References(304)

1

Yang, A. Z.; Li, T. C.; Jiang, S.; Wang, X. R.; Qiu, X. Y.; Lei, W.; Tang, Y. W. High-density growth of ultrafine PdIr nanowires on graphene: Reducing the graphene wrinkles and serving as efficient bifunctional electrocatalysts for water splitting. Nanoscale 2019, 11, 14561–14568.

2

Wu, X. J.; Feng, B. M.; Li, W.; Niu, Y. L.; Yu, Y. N.; Lu, S. Y.; Zhong, C. Y.; Liu, P. Y.; Tian, Z. Q.; Chen, L. et al. Metal−support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media. Nano Energy 2019, 62, 117–126.

3

Du, Z. G.; Yang, S. B.; Li, S. M.; Lou, J.; Zhang, S. Q.; Wang, S.; Li, B.; Gong, Y. J.; Song, L.; Zou, X. L. et al. Conversion of non-van der Waals solids to 2D transition-metal chalcogenides. Nature 2020, 577, 492–496.

4

Wu, H.; Chen, Z. M.; Wang, Y.; Cao, E. P.; Xiao, F.; Chen, S.; Du, S. C.; Wu, Y. Q.; Ren, Z. Y. Regulating the allocation of N and P in codoped graphene via supramolecular control to remarkably boost hydrogen evolution. Energy Environ. Sci. 2019, 12, 2697–2705.

5

Levinas, R.; Tsyntsaru, N.; Cesiulis, H. Insights into electrodeposition and catalytic activity of MoS2 for hydrogen evolution reaction electrocatalysis. Electrochim. Acta 2019, 317, 427–436.

6

Liu, Z. P.; Zhao, L.; Liu, Y. H.; Gao, Z. C.; Yuan, S. S.; Li, X. T.; Li, N.; Miao, S. D. Vertical nanosheet array of 1T phase MoS2 for efficient and stable hydrogen evolution. Appl. Catal. B 2019, 246, 296–302.

7

Zhang, L. N.; Wu, L. L.; Li, J.; Lei, J. L. Electrodeposition of amorphous molybdenum sulfide thin film for electrochemical hydrogen evolution reaction. BMC Chem. 2019, 13, 88.

8

Xie, Q. X.; Zhou, D. J.; Li, P. S.; Cai, Z.; Xie, T. H.; Gao, T. F.; Chen, R. D.; Kuang, Y.; Sun, X. M. Enhancing oxygen evolution reaction by cationic surfactants. Nano Res. 2019, 12, 2302–2306.

9

Najafi, L.; Bellani, S.; Oropesa-Nuñez, R.; Martín-García, B.; Prato, M.; Bonaccorso, F. Single-/few-layer graphene as long-lasting electrocatalyst for hydrogen evolution reaction. ACS Appl. Energy Mater. 2019, 2, 5373–5379.

10

Wang, W. C.; Zhu, S.; Cao, Y. N.; Tao, Y.; Li, X.; Pan, D. L.; Phillips, D. L.; Zhang, D. Q.; Chen, M.; Li, G. S. et al. Edge-enriched ultrathin MoS2 embedded yolk–shell TiO2 with boosted charge transfer for superior photocatalytic H2 evolution. Adv. Funct. Mater. 2019, 29, 1901958.

11

Ding, Y.; Cao, K. W.; He, J. W.; Li, F. M.; Huang, H.; Chen, P.; Chen, Y. Nitrogen-doped graphene aerogel-supported ruthenium nanocrystals for pH-universal hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 1535–1543.

12

Xue, Q.; Bai, X. Y.; Zhao, Y.; Li, Y. N.; Wang, T. J.; Sun, H. Y.; Li, F. M.; Chen, P.; Jin, P. J.; Yin, S. B. et al. Au core−PtAu alloy shell nanowires for formic acid electrolysis. J. Energy Chem. 2022, 65, 94–102.

13

Guan, J. Q.; Bai, X.; Tang, T. M. Recent progress and prospect of carbon-free single-site catalysts for the hydrogen and oxygen evolution reactions. Nano Res. 2022, 15, 818–837.

14

Zhang, Q. Q.; Guan, J. Q. Applications of atomically dispersed oxygen reduction catalysts in fuel cells and zinc-air batteries. Energy Environ. Mater. 2021, 4, 307–335.

15

Lopes, P. P.; Chung, D. Y.; Rui, X.; Zheng, H.; He, H. Y.; Martins, P. F. B. D.; Strmcnik, D.; Stamenkovic, V. R.; Zapol, P.; Mitchell, J. F. et al. Dynamically stable active sites from surface evolution of perovskite materials during the oxygen evolution reaction. J. Am. Chem. Soc. 2021, 143, 2741–2750.

16

Li, S. S.; Gao, Y. Q.; Li, N.; Ge, L.; Bu, X. H.; Feng, P. Y. Transition metal-based bimetallic MOFs and MOF-derived catalysts for electrochemical oxygen evolution reaction. Energy Environ. Sci. 2021, 14, 1897–1927.

17

Feng, C.; Faheem, M. B.; Fu, J.; Xiao, Y. Q.; Li, C. L.; Li, Y. B. Fe-based electrocatalysts for oxygen evolution reaction: Progress and perspectives. ACS Catal. 2020, 10, 4019–4047.

18

Tahir, M.; Pan, L.; Idrees, F.; Zhang, X. W.; Wang, L.; Zou, J. J.; Wang, Z. L. Electrocatalytic oxygen evolution reaction for energy conversion and storage: A comprehensive review. Nano Energy 2017, 37, 136–157.

19

Busch, M.; Halck, N. B.; Kramm, U. I.; Siahrostami, S.; Krtil, P.; Rossmeisl, J. Beyond the top of the volcano? —A unified approach to electrocatalytic oxygen reduction and oxygen evolution. Nano Energy 2016, 29, 126–135.

20

Zhang, C. L.; Wang, B. W.; Shen, X. C.; Liu, J. W.; Kong, X. K.; Chuang, S. S. C.; Yang, D.; Dong, A. G.; Peng, Z. M. A nitrogen-doped ordered mesoporous carbon/graphene framework as bifunctional electrocatalyst for oxygen reduction and evolution reactions. Nano Energy 2016, 30, 503–510.

21

Zhu, C. Z.; Fu, S. F.; Shi, Q. R.; Du, D.; Lin, Y. H. Single-atom electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 13944–13960.

22

Kong, X. K.; Xu, K.; Zhang, C. L.; Dai, J.; Oliaee, S. N.; Li, L. Y.; Zeng, X. C.; Wu, C. Z.; Peng, Z. M. Free-standing two-dimensional Ru nanosheets with high activity toward water splitting. ACS Catal. 2016, 6, 1487–1492.

23

Cherevko, S.; Geiger, S.; Kasian, O.; Kulyk, N.; Grote, J. P.; Savan, A.; Shrestha, B. R.; Merzlikin, S.; Breitbach, B.; Ludwig, A. et al. Oxygen and hydrogen evolution reactions on Ru, RuO2, Ir, and IrO2 thin film electrodes in acidic and alkaline electrolytes: A comparative study on activity and stability. Catal. Today 2016, 262, 170–180.

24

Huo, J. M.; Wang, Y.; Meng, J.; Zhao, X. Y.; Zhai, Q. G.; Jiang, Y. C.; Hu, M. C.; Li, S. N.; Chen, Y. π···π interaction directed 2D FeNi-LDH nanosheets from 2D Hofmann-MOFs for the oxygen evolution reaction. J. Mater. Chem. A 2022, 10, 1815–1820.

25

Han, L.; Dong, S. J.; Wang, E. K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction. Adv. Mater. 2016, 28, 9266–9291.

26

Seitz, L. C.; Dickens, C. F.; Nishio, K.; Hikita, Y.; Montoya, J.; Doyle, A.; Kirk, C.; Vojvodic, A.; Hwang, H. Y.; Norskov, J. K. et al. A highly active and stable IrOx/SrIrO3 catalyst for the oxygen evolution reaction. Science 2016, 353, 1011–1014.

27

Ma, C. L.; Sun, W.; Zaman, W. Q.; Zhou, Z. H.; Zhang, H.; Shen, Q. C.; Cao, L. M.; Yang, J. Lanthanides regulated the amorphization-crystallization of IrO2 for outstanding OER performance. ACS Appl. Mater. Interfaces 2020, 12, 34980–34989.

28

Over, H. Fundamental studies of planar single-crystalline oxide model electrodes (RuO2, IrO2) for acidic water splitting. ACS Catal. 2021, 11, 8848–8871.

29

Qin, Y. C.; Yang, M.; Deng, C. F.; Shen, W.; He, R. X.; Li, M. Theoretical insight into single Rh atoms anchored on N-doped γ-graphyne as an excellent bifunctional electrocatalyst for the OER and ORR: Electronic regulation of graphitic nitrogen. Nanoscale 2021, 13, 5800–5808.

30

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

31

Nicolosi, V.; Chhowalla, M.; Kanatzidis, M. G.; Strano, M. S.; Coleman, J. N. Liquid exfoliation of layered materials. Science 2013, 340, 1226419.

32

Yang, W. L.; Zhang, X. D.; Xie, Y. Advances and challenges in chemistry of two-dimensional nanosheets. Nano Today 2016, 11, 793–816.

33

Huang, J.; Li, Y.; Huang, R. K.; He, C. T.; Gong, L.; Hu, Q.; Wang, L. S.; Xu, Y. T.; Tian, X. Y.; Liu, S. Y. et al. Electrochemical exfoliation of pillared-layer metal-organic framework to boost the oxygen evolution reaction. Angew. Chem., Int. Ed. 2018, 57, 4632–4636.

34

Ortiz, D. G.; Pochat-Bohatier, C.; Cambedouzou, J.; Bechelany, M.; Miele, P. Exfoliation of hexagonal boron nitride (h-BN) in liquide phase by ion intercalation. Nanomaterials 2018, 8, 716.

35

Rafiq, M.; Hu, X. Z.; Ye, Z. L.; Qayum, A.; Xia, H.; Hu, L. S.; Lu, F. S.; Chu, P. K. Recent advances in structural engineering of 2D hexagonal boron nitride electrocatalysts. Nano Energy 2022, 91, 106661.

36

Sun, M. M.; Dong, J. C.; Lv, Y.; Zhao, S. Q.; Meng, C. X.; Song, Y. J.; Wang, G. X.; Li, J. F.; Fu, Q.; Tian, Z. Q. et al. Pt@h-BN core–shell fuel cell electrocatalysts with electrocatalysis confined under outer shells. Nano Res. 2018, 11, 3490–3498.

37

Wang, Y. H.; Liu, L. Z.; Ma, T. Y.; Zhang, Y. H.; Huang, H. W. 2D graphitic carbon nitride for energy conversion and storage. Adv. Funct. Mater. 2021, 31, 2102540.

38

Yin, T.; Long, L. Y.; Tang, X.; Qiu, M.; Liang, W. Y.; Cao, R.; Zhang, Q. Z.; Wang, D. H.; Zhang, H. Advancing applications of black phosphorus and BP-analog materials in photo/electrocatalysis through structure engineering and surface modulation. Adv. Sci. 2020, 7, 2001431.

39

Wang, X.; Raghupathy, R. K. M.; Querebillo, C. J.; Liao, Z. Q.; Li, D. Q.; Lin, K.; Hantusch, M.; Sofer, Z.; Li, B. H.; Zschech, E. et al. Interfacial covalent bonds regulated electron-deficient 2D black phosphorus for electrocatalytic oxygen reactions. Adv. Mater. 2021, 33, 2008752.

40

Lee, M. K.; Shokouhimehr, M.; Kim, S. Y.; Jang, H. W. Two-dimensional metal-organic frameworks and covalent-organic frameworks for electrocatalysis: Distinct merits by the reduced dimension. Adv. Energy Mater. 2022, 12, 2003990.

41

Li, Z. D.; Attanayake, N. H.; Blackburn, J. L.; Miller, E. M. Carbon dioxide and nitrogen reduction reactions using 2D transition metal dichalcogenide (TMDC) and carbide/nitride (MXene) catalysts. Energy Environ. Sci. 2021, 14, 6242–6286.

42
ChengJ. L.WangD. S. 2D materials modulating layered double hydroxides for electrocatalytic water splittingChin. J. Catal.2022431380139810.1016/S1872-2067(21)63987-6

Cheng, J. L.; Wang, D. S. 2D materials modulating layered double hydroxides for electrocatalytic water splitting. Chin. J. Catal. 2022, 43, 1380–1398.

43

Chen, W. B.; Wang, C. S.; Su, S. B.; Wang, H.; Cai, D. D. Synthesis of ZIF-9(III)/Co LDH layered composite from ZIF-9(I) based on controllable phase transition for enhanced electrocatalytic oxygen evolution reaction. Chem. Eng. J. 2021, 414, 128784.

44

Vikraman, D.; Hussain, S.; Karuppasamy, K.; Feroze, A.; Kathalingam, A.; Sanmugam, A.; Chun, S. H.; Jung, J.; Kim, H. S. Engineering the novel MoSe2-Mo2C hybrid nanoarray electrodes for energy storage and water splitting applications. Appl. Catal. B 2020, 264, 118531.

45

Zhang, L.; Khan, K.; Zou, J. F.; Zhang, H.; Li, Y. C. Recent advances in emerging 2D material-based gas sensors: Potential in disease diagnosis. Adv. Mater. Interfaces 2019, 6, 1901329.

46

Munteanu, R. E.; Moreno, P. S.; Bramini, M.; Gáspár, S. 2D materials in electrochemical sensors for in vitro or in vivo use. Anal. Bioanal. Chem. 2021, 413, 701–725.

47

Neema, P. M.; Tomy, A. M.; Cyriac, J. Chemical sensor platforms based on fluorescence resonance energy transfer (FRET) and 2D materials. TrAC Trends Anal. Chem. 2020, 124, 115797.

48

Chen, J. H.; Pu, H. H.; Hersam, M. C.; Westerhoff, P. Molecular engineering of 2D nanomaterial field-effect transistor sensors: Fundamentals and translation across the innovation spectrum. Adv. Mater. 2022, 34, 2106975.

49

Kim, Y.; Lee, S.; Song, J. G.; Ko, K. Y.; Woo, W. J.; Lee, S. W.; Park, M.; Lee, H.; Lee, Z.; Choi, H. et al. 2D transition metal dichalcogenide heterostructures for p- and n-type photovoltaic self-powered gas sensor. Adv. Funct. Mater. 2020, 30, 2003360.

50

Evans, A. M.; Bradshaw, N. P.; Litchfield, B.; Strauss, M. J.; Seckman, B.; Ryder, M. R.; Castano, I.; Gilmore, C.; Gianneschi, N. C.; Mulzer, C. R. et al. High-sensitivity acoustic molecular sensors based on large-area, spray-coated 2D covalent organic frameworks. Adv. Mater. 2020, 32, 2004205.

51

Kumar, R.; Liu, X. H.; Zhang, J.; Kumar, M. Room-temperature gas sensors under photoactivation: From metal oxides to 2D materials. Nano-Micro Lett. 2020, 12, 164.

52

Li, S. S.; Sun, J. R.; Guan, J. Q. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin. J. Catal. 2021, 42, 511–556.

53

Tang, L.; Meng, X. G.; Deng, D. H.; Bao, X. H. Confinement catalysis with 2D materials for energy conversion. Adv. Mater. 2019, 31, 1901996.

54

Fan, F. R.; Wang, R. X.; Zhang, H.; Wu, W. Z. Emerging beyond-graphene elemental 2D materials for energy and catalysis applications. Chem. Soc. Rev. 2021, 50, 10983–11031.

55
2D early transition metal carbides (MXenes) forcatalysisSmall201915180473610.1002/smll.201804736

Li, Z.; Wu, Y. 2D early transition metal carbides (MXenes) for catalysis. Small 2019, 15, 1804736.

56

Liu, D. Q.; Barbar, A.; Najam, T.; Javed, M. S.; Shen, J.; Tsiakaras, P.; Cai, X. K. Single noble metal atoms doped 2D materials for catalysis. Appl. Catal. B 2021, 297, 120389.

57
HeardC. J.ČejkaJ.OpanasenkoM.NachtigallP.CentiG.PerathonerS. 2D oxide nanomaterials to address the energy transition and catalysisAdv. Mater.201931180171210.1002/adma.201801712

Heard, C. J.; Čejka, J.; Opanasenko, M.; Nachtigall, P.; Centi, G.; Perathoner, S. 2D oxide nanomaterials to address the energy transition and catalysis. Adv. Mater. 2019, 31, 1801712.

58

Wang, H.; Chen, J. M.; Lin, Y. P.; Wang, X. H.; Li, J. M.; Li, Y.; Gao, L. J.; Zhang, L. B.; Chao, D. L.; Xiao, X. et al. Electronic modulation of non-van der waals 2D electrocatalysts for efficient energy conversion. Adv. Mater. 2021, 33, 2008422.

59

Bie, C. B.; Cheng, B.; Fan, J. J.; Ho, W.; Yu, J. G. Enhanced solar-to-chemical energy conversion of graphitic carbon nitride by two-dimensional cocatalysts. EnergyChem 2021, 3, 100051.

60
WangZ. Q.QiL.ZhengZ. Q.XueY. R.LiY. L. 2D graphdiyne: A rising star on the horizon of energy conversionChem. Asian J.2021163259327110.1002/asia.202100858

Wang, Z. Q.; Qi, L.; Zheng, Z. Q.; Xue, Y. R.; Li, Y. L. 2D graphdiyne: A rising star on the horizon of energy conversion. Chem. Asian J. 2021, 16, 3259–3271.

61

Zheng, Y.; Li, X. X.; Pi, C. R.; Song, H.; Gao, B.; Chu, P. K.; Huo, K. F. Recent advances of two-dimensional transition metal nitrides for energy storage and conversion applications. FlatChem 2020, 19, 100149.

62

Liao, F. F.; Zhao, X.; Yang, G. Y.; Cheng, Q. H.; Mao, L.; Chen, L. Y. Recent advances on two-dimensional NiFe-LDHs and their composites for electrochemical energy conversion and storage. J. Alloys Compd. 2021, 872, 159649.

63

Wang, Y. M.; Feng, W.; Chen, Y. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chin. Chem. Lett. 2020, 31, 937–946.

64

Di, S. H.; Qian, Y. H.; Wang, L.; Li, Z. Biofunctionalization of graphene and its two-dimensional analogues and synthesis of biomimetic materials: A review. J. Mater. Sci. 2022, 57, 3085–3113.

65
OuyangJ.RaoS. Y.LiuR. C.WangL. Q.ChenW.TaoW.KongN. 2D materials-based nanomedicine: From discovery to applicationsAdv. Drug Delivery Rev.202218511426810.1016/j.addr.2022.114268

Ouyang, J.; Rao, S. Y.; Liu, R. C.; Wang, L. Q.; Chen, W.; Tao, W.; Kong, N. 2D materials-based nanomedicine: From discovery to applications. Adv. Drug Delivery Rev. 2022, 185, 114268.

66

Lu, B. B.; Zhu, Z. Y.; Ma, B. Y.; Wang, W.; Zhu, R. S.; Zhang, J. H. 2D MXene nanomaterials for versatile biomedical applications: Current trends and future prospects. Small 2021, 17, 2100946.

67

Huang, H.; Feng, W.; Chen, Y. Two-dimensional biomaterials: Material science, biological effect and biomedical engineering applications. Chem. Soc. Rev. 2021, 50, 11381–11485.

68
WangX. J.HanX. J.LiC. Z.ChenZ.HuangH.ChenJ. D.WuC. S.FanT. J.LiT. Z.HuangW. C. 2D materials for bone therapyAdv. Drug Delivery Rev.202117811397010.1016/j.addr.2021.113970

Wang, X. J.; Han, X. J.; Li, C. Z.; Chen, Z.; Huang, H.; Chen, J. D.; Wu, C. S.; Fan, T. J.; Li, T. Z.; Huang, W. C. et al. 2D materials for bone therapy. Adv. Drug Delivery Rev. 2021, 178, 113970.

69

Hu, R.; Liao, G. C.; Huang, Z. Y.; Qiao, H.; Liu, H. T.; Shu, Y. Q.; Wang, B.; Qi, X. Recent advances of monoelemental 2D materials for photocatalytic applications. J. Hazard. Mater. 2021, 405, 124179.

70

Zheng, Y. S.; Sun, F. Z.; Han, X.; Xu, J. L.; Bu, X. H. Recent progress in 2D metal-organic frameworks for optical applications. Adv. Opt. Mater. 2020, 8, 2000110.

71

Zhang, A. J.; Wang, Z. H.; Ouyang, H.; Lyu, W. H.; Sun, J. X.; Cheng, Y.; Fu, B. Recent progress of two-dimensional materials for ultrafast photonics. Nanomaterials 2021, 11, 1778.

72
WangF. K.PeiK.LiY.LiH. Q.ZhaiT. Y. 2D homojunctions for electronics and optoelectronicsAdv. Mater.202133200530310.1002/adma.202005303

Wang, F. K.; Pei, K.; Li, Y.; Li, H. Q.; Zhai, T. Y. 2D homojunctions for electronics and optoelectronics. Adv. Mater. 2021, 33, 2005303.

73

Yu, H. H.; Cao, Z. H.; Zhang, Z.; Zhang, X. K.; Zhang, Y. Flexible electronics and optoelectronics of 2D van der Waals materials. Int. J. Miner. Metall. Mater. 2022, 29, 671–690.

74

Pham, P. V.; Bodepudi, S. C.; Shehzad, K.; Liu, Y.; Xu, Y.; Yu, B.; Duan, X. F. 2D heterostructures for ubiquitous electronics and optoelectronics: Principles, opportunities, and challenges. Chem. Rev. 2022, 122, 6514–6613.

75

Xie, J. F.; Zhang, X. D.; Xie, Y. Preferential microstructure design of two-dimensional electrocatalysts for boosted oxygen evolution reaction. ChemCatChem 2019, 11, 4662–4670.

76

Zhang, W.; Zhou, K. Ultrathin two-dimensional nanostructured materials for highly efficient water oxidation. Small 2017, 13, 1700806.

77

Yang, C.; Cai, W. J.; Yu, B. B.; Qiu, H.; Li, M. L.; Zhu, L. W.; Yan, Z.; Hou, L.; Wang, Y. Y. Performance enhancement of oxygen evolution reaction through incorporating bimetallic electrocatalysts in two-dimensional metal-organic frameworks. Catal. Sci. Technol. 2020, 10, 3897–3903.

78

Tang, T. M.; Wang, Z. L.; Guan, J. Q. A review of defect engineering in two-dimensional materials for electrocatalytic hydrogen evolution reaction. Chin. J. Catal. 2022, 43, 636–678.

79

Kim, S. C.; Islam, S.; Hwang, S. J. Application of exfoliated inorganic nanosheets for strongly-coupled hybrid photocatalysts. Sol. RRL 2018, 2, 1800092.

80

Oh, S. M.; Patil, S. B.; Jin, X. Y.; Hwang, S. J. Recent applications of 2D inorganic nanosheets for emerging energy storage system. Chem.—Eur. J. 2018, 24, 4757–4773.

81

Ma, R. Z.; Liu, Z. P.; Li, L.; Iyi, N.; Sasaki, T. Exfoliating layered double hydroxides in formamide: A method to obtain positively charged nanosheets. J. Mater. Chem. 2006, 16, 3809–3813.

82

Lee, J. M.; Kang, B.; Jo, Y. K.; Hwang, S. J. Organic intercalant-free liquid exfoliation route to layered metal-oxide nanosheets via the control of electrostatic interlayer interaction. ACS Appl. Mater. Interfaces 2019, 11, 12121–12132.

83

Feng, X.; Ding, X. S.; Jiang, D. L. Covalent organic frameworks. Chem. Soc. Rev. 2012, 41, 6010–6022.

84

Stock, N.; Biswas, S. Synthesis of metal-organic frameworks (MOFs): Routes to various MOF topologies, morphologies, and composites. Chem. Rev. 2012, 112, 933–969.

85

Huang, Y. J.; Liang, J.; Wang, C.; Yin, S. J.; Fu, W. Y.; Zhu, H. W.; Wan, C. L. Hybrid superlattices of two-dimensional materials and organics. Chem. Soc. Rev. 2020, 49, 6866–6883.

86

Qin, C. L.; Fan, A. X.; Zhang, X.; Wang, S. Q.; Yuan, X. L.; Dai, X. P. Interface engineering: Few-layer MoS2 coupled to a NiCo-sulfide nanosheet heterostructure as a bifunctional electrocatalyst for overall water splitting. J. Mater. Chem. A 2019, 7, 27594–27602.

87

Chen, Z. L.; Xu, H. B.; Ha, Y.; Li, X. Y.; Liu, M.; Wu, R. B. Two-dimensional dual carbon-coupled defective nickel quantum dots towards highly efficient overall water splitting. Appl. Catal. B 2019, 250, 213–223.

88

Niyitanga, T.; Jeong, H. K. Hydrogen and oxygen evolution reactions of molybdenum disulfide synthesized by hydrothermal and plasma method. J. Electroanal. Chem. 2019, 849, 113383.

89

Shah, S. A.; Shen, X. P.; Xie, M. H.; Zhu, G. X.; Ji, Z. Y.; Zhou, H. B.; Xu, K. Q.; Yue, X. Y.; Yuan, A. H.; Zhu, J. et al. Nickel@nitrogen-doped carbon@MoS2 nanosheets: An efficient electrocatalyst for hydrogen evolution reaction. Small 2019, 15, 1804545.

90

Chen, J. D.; Zheng, F.; Zhang, S. J.; Fisher, A.; Zhou, Y.; Wang, Z. Y.; Li, Y. Y.; Xu, B. B.; Li, J. T.; Sun, S. G. Interfacial interaction between FeOOH and Ni-Fe LDH to modulate the local electronic structure for enhanced OER electrocatalysis. ACS Catal. 2018, 8, 11342–11351.

91

Ye, X. Q.; Fan, J. C.; Min, Y. L.; Shi, P. H.; Xu, Q. J. Synergistic effects of Co/CoO nanoparticles on imine-based covalent organic frameworks for enhanced OER performance. Nanoscale 2021, 13, 14854–14865.

92

Li, H. H.; Tan, M. Y.; Huang, C.; Luo, W. P.; Yin, S. F.; Yang, W. J. Co2(OH)3Cl and MOF mediated synthesis of porous Co3O4/NC nanosheets for efficient OER catalysis. Appl. Surf. Sci. 2021, 542, 148739.

93

Chen, Y. Z.; Pang, W. K.; Bai, H. H.; Zhou, T. F.; Liu, Y. N.; Li, S.; Guo, Z. P. Enhanced structural stability of nickel-cobalt hydroxide via intrinsic pillar effect of metaborate for high-power and long-life supercapacitor electrodes. Nano Lett. 2017, 17, 429–436.

94
LvL.YangZ. X.ChenK.WangC. D.XiongY. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to applicationAdv. Energy Mater.20199180335810.1002/aenm.201803358

Lv, L.; Yang, Z. X.; Chen, K.; Wang, C. D.; Xiong, Y. J. 2D layered double hydroxides for oxygen evolution reaction: From fundamental design to application. Adv. Energy Mater. 2019, 9, 1803358.

95

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun’Ko, Y. K. et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568.

96

Lukowski, M. A.; Daniel, A. S.; Meng, F.; Forticaux, A.; Li, L. S.; Jin, S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J. Am. Chem. Soc. 2013, 135, 10274–10277.

97

Benabdallah, I.; Kara, A.; Benaissa, M. Exfoliation and re-aggregation mechanisms of black phosphorus: A molecular dynamics study. Appl. Surf. Sci. 2020, 507, 144826.

98

Hu, W. H.; Han, G. Q.; Dai, F. N.; Liu, Y. R.; Shang, X.; Dong, B.; Chai, Y. M.; Liu, Y. Q.; Liu, C. G. Effect of pH on the growth of MoS2 (002) plane and electrocatalytic activity for HER. Int. J. Hydrogen Energy 2016, 41, 294–299.

99

De-Mello, G. B.; Smith, L.; Rowley-Neale, S. J.; Gruber, J.; Hutton, S. J.; Banks, C. E. Surfactant-exfoliated 2D molybdenum disulphide (2D-MoS2): The role of surfactant upon the hydrogen evolution reaction. RSC Adv. 2017, 7, 36208–36213.

100

Le, T. H.; Oh, Y.; Kim, H.; Yoon, H. Exfoliation of 2D materials for energy and environmental applications. Chem.—Eur. J. 2020, 26, 6360–6401.

101

Song, F.; Hu, X. L. Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis. Nat. Commun. 2014, 5, 4477.

102

Shen, J.; Zhang, P.; Xie, R. S.; Chen, L.; Li, M. T.; Li, J. P.; Ji, B. Q.; Hu, Z. Y.; Li, J. J.; Song, L. X. et al. Controlled self-assembled nife layered double hydroxides/reduced graphene oxide nanohybrids based on the solid-phase exfoliation strategy as an excellent electrocatalyst for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2019, 11, 13545–13556.

103

Wang, Y. Y.; Zhang, Y. Q.; Liu, Z. J.; Xie, C.; Feng, S.; Liu, D. D.; Shao, M. F.; Wang, S. Y. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts. Angew. Chem., Int. Ed. 2017, 56, 5867–5871.

104

Xing, J.; Chen, J. F.; Li, Y. H.; Yuan, W. T.; Zhou, Y.; Zheng, L. R.; Wang, H. F.; Hu, P.; Wang, Y.; Zhao, H. J. et al. Stable isolated metal atoms as active sites for photocatalytic hydrogen evolution. Chem.—Eur. J. 2014, 20, 2138–2144.

105

Qiao, B. T.; Lin, J.; Wang, A. Q.; Chen, Y.; Zhang, T.; Liu, J. Y. Highly active Au1/Co3O4 single-atom catalyst for CO oxidation at room temperature. Chin. J. Catal. 2015, 36, 1505–1511.

106

Zhang, K.; Wang, W. H.; Kuai, L.; Geng, B. Y. A facile and efficient strategy to gram-scale preparation of composition-controllable Ni-Fe LDHs nanosheets for superior OER catalysis. Electrochim. Acta 2017, 225, 303–309.

107

Gao, R.; Yan, D. P. Fast formation of single-unit-cell-thick and defect-rich layered double hydroxide nanosheets with highly enhanced oxygen evolution reaction for water splitting. Nano Res. 2018, 11, 1883–1894.

108

Zhou, Y.; Zhang, W. B.; Hu, J. L.; Li, D.; Yin, X.; Gao, Q. S. Inherent oxygen vacancies boost surface reconstruction of ultrathin Ni-Fe layered-double-hydroxides toward efficient electrocatalytic oxygen evolution. ACS Sustainable Chem. Eng. 2021, 9, 7390–7399.

109

Arif, M.; Yasin, G.; Shakeel, M.; Fang, X. Y.; Gao, R.; Ji, S. F.; Yan, D. P. Coupling of bifunctional CoMn-layered double hydroxide@graphitic C3N4 nanohybrids towards efficient photoelectrochemical overall water splitting. Chem. Asian J. 2018, 13, 1045–1052.

110

Li, R.; Xu, J. S.; Ba, J. W.; Li, Y. R.; Liang, C. H.; Tang, T. Facile synthesis of nanometer-sized NiFe layered double hydroxide/nitrogen-doped graphite foam hybrids for enhanced electrocatalytic oxygen evolution reactions. Int. J. Hydrogen Energy 2018, 43, 7956–7963.

111

Zhang, W.; Wu, Y. Z.; Qi, J.; Chen, M. X.; Cao, R. A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 2017, 7, 1602547.

112

Li, W. J.; Xue, S.; Watzele, S.; Hou, S. J.; Fichtner, J.; Semrau, A. L.; Zhou, L. J.; Welle, A.; Bandarenka, A. S.; Fischer, R. A. Advanced bifunctional oxygen reduction and evolution electrocatalyst derived from surface-mounted metal-organic frameworks. Angew. Chem., Int. Ed. 2020, 59, 5837–5843.

113

Bera, K.; Karmakar, A.; Kumaravel, S.; Sankar, S. S.; Madhu, R.; Dhandapani, H. N.; Nagappan, S.; Kundu, S. Vanadium-doped nickel cobalt layered double hydroxide: A high-performance oxygen evolution reaction electrocatalyst in alkaline medium. Inorg. Chem. 2022, 61, 4502–4512.

114

Kashale, A. A.; Yi, C. H.; Cheng, K. Y.; Guo, J. S.; Pan, Y. H.; Chen, I. W. P. Binder-free heterostructured NiFe2O4/NiFe LDH nanosheet composite electrocatalysts for oxygen evolution reactions. ACS Appl. Energy Mater. 2020, 3, 10831–10840.

115

Sankar, S. S.; Keerthana, G.; Manjula, K.; Sharad, J. H.; Kundu, S. Electrospun Fe-incorporated ZIF-67 nanofibers for effective electrocatalytic water splitting. Inorg. Chem. 2021, 60, 4034–4046.

116

Xu, Y. Y.; Cao, H. Z.; Xue, Y. Q.; Li, B.; Cai, W. H. Liquid-phase exfoliation of graphene: An overview on exfoliation media, techniques, and challenges. Nanomaterials 2018, 8, 942.

117

Ahmed, Z.; Krishankant; Rai, R.; Kumar, R.; Maruyama, T.; Bera, C.; Bagchi, V. Unraveling a graphene exfoliation technique analogy in the making of ultrathin nickel-iron oxyhydroxides@nickel foam to promote the OER. ACS Appl. Mater. Interfaces 2021, 13, 55281–55291.

118

Li, J. P.; Zhang, P.; Zhao, X. L.; Chen, L.; Shen, J.; Li, M. T.; Ji, B. Q.; Song, L. X.; Wu, Y. P.; Liu, D. Structure-controlled Co-Al layered double hydroxides/reduced graphene oxide nanomaterials based on solid-phase exfoliation technique for supercapacitors. J. Colloid Interface Sci. 2019, 549, 236–245.

119

Hu, Q.; Huang, X. W.; Wang, Z. Y.; Li, G. M.; Han, Z.; Yang, H. P.; Ren, X. Z.; Zhang, Q. L.; Liu, J. H.; He, C. X. Unconventionally fabricating defect-rich NiO nanoparticles within ultrathin metal-organic framework nanosheets to enable high-output oxygen evolution. J. Mater. Chem. A 2020, 8, 2140–2146.

120

Zhuang, L. Z.; Ge, L.; Liu, H. L.; Jiang, Z. R.; Jia, Y.; Li, Z. H.; Yang, D. J.; Hocking, R. K.; Li, M. R.; Zhang, L. Z. et al. A surfactant-free and scalable general strategy for synthesizing ultrathin two-dimensional metal-organic framework nanosheets for the oxygen evolution reaction. Angew. Chem., Int. Ed. 2019, 58, 13565–13572.

121

Wen, Y. Y.; Wei, Z. T.; Liu, J. H.; Li, R.; Wang, P.; Zhou, B.; Zhang, X.; Li, J.; Li, Z. X. Synergistic cerium doping and MXene coupling in layered double hydroxides as efficient electrocatalysts for oxygen evolution. J. Energy Chem. 2021, 52, 412–420.

122

Zhang, X.; Wan, K.; Subramanian, P.; Xu, M. W.; Luo, J. S.; Fransaer, J. Electrochemical deposition of metal-organic framework films and their applications. J. Mater. Chem. A 2020, 8, 7569–7587.

123

Song, S. W.; Yu, L.; Hadjiev, V. G.; Zhang, W. Y.; Wang, D. Z.; Xiao, X.; Chen, S.; Zhang, Q. Y.; Ren, Z. F. New way to synthesize robust and porous Ni1−xFex layered double hydroxide for efficient electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2019, 11, 32909–32916.

124

Li, R. P.; Li, Y.; Yang, P. X.; Wang, D.; Xu, H.; Wang, B.; Meng, F.; Zhang, J. Q.; An, M. Z. Electrodeposition: Synthesis of advanced transition metal-based catalyst for hydrogen production via electrolysis of water. J. Energy Chem. 2021, 57, 547–566.

125

Xu, H.; Shang, H. Y.; Wang, C.; Du, Y. K. Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord. Chem. Rev. 2020, 418, 213374.

126

Liu, W.; Zhang, H. X.; Li, C. M.; Wang, X.; Liu, J. Q.; Zhang, X. W. Non-noble metal single-atom catalysts prepared by wet chemical method and their applications in electrochemical water splitting. J. Energy Chem. 2020, 47, 333–345.

127

Cai, Z. Y.; Liu, B. L.; Zou, X. L.; Cheng, H. M. Chemical vapor deposition growth and applications of two-dimensional materials and their heterostructures. Chem. Rev. 2018, 118, 6091–6133.

128

Jung, S. Y.; Kang, S.; Kim, K. M.; Mhin, S.; Kim, J. C.; Kim, S. J.; Enkhtuvshin, E.; Choi, S.; Han, H. Sulfur-incorporated nickel-iron layered double hydroxides for effective oxygen evolution reaction in seawater. Appl. Surf. Sci. 2021, 568, 150965.

129

Rafai, S.; Qiao, C.; Wang, Z. T.; Cao, C. B.; Mahmood, T.; Naveed, M.; Younas, W.; Khalid, S. Cobalt phosphide ultrathin and freestanding sheets prepared through microwave chemical vapor deposition: A highly efficient oxygen evolution reaction catalyst. ChemElectroChem 2019, 6, 5469–5478.

130

Sirisomboonchai, S.; Li, S. S.; Yoshida, A.; Li, X. M.; Samart, C.; Abudula, A.; Guan, G. Q. Fabrication of NiO microflake@NiFe-LDH nanosheet heterostructure electrocatalysts for oxygen evolution reaction. ACS Sustainable Chem. Eng. 2019, 7, 2327–2334.

131

Roy, S.; Mari, S.; Sai, M. K.; Sarma, S. C.; Sarkar, S.; Peter, S. C. Highly efficient bifunctional oxygen reduction/evolution activity of a non-precious nanocomposite derived from a tetrazine-COF. Nanoscale 2020, 12, 22718–22734.

132

Zhuang, G. L.; Gao, Y. F.; Zhou, X.; Tao, X. Y.; Luo, J. M.; Gao, Y. J.; Yan, Y. L.; Gao, P. Y.; Zhong, X.; Wang, J. G. ZIF-67/COF-derived highly dispersed Co3O4/N-doped porous carbon with excellent performance for oxygen evolution reaction and Li-ion batteries. Chem. Eng. J. 2017, 330, 1255–1264.

133

Zhang, B. W.; Zhu, C. Q.; Wu, Z. S.; Stavitski, E.; Lui, Y. H.; Kim, T. H.; Liu, H.; Huang, L.; Luan, X. C.; Zhou, L. et al. Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett. 2020, 20, 136–144.

134

Kim, J. S.; Kim, B.; Kim, H.; Kang, K. Recent progress on multimetal oxide catalysts for the oxygen evolution reaction. Adv. Energy Mater. 2018, 8, 1702774.

135

Shan, J. Q.; Zheng, Y.; Shi, B. Y.; Davey, K.; Qiao, S. Z. Regulating electrocatalysts via surface and interface engineering for acidic water electrooxidation. ACS Energy Lett. 2019, 4, 2719–2730.

136
LiM. T.ZhangL. P.XuQ.NiuJ. J.XiaZ. H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerationsJ. Catal.2014314667210.1016/j.jcat.2014.03.011

Li, M. T.; Zhang, L. P.; Xu, Q.; Niu, J. J.; Xia, Z. H. N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. J. Catal. 2014, 314, 66–72.

137

Cai, Z. Y.; Bu, X. M.; Wang, P.; Ho, J. C.; Yang, J. H.; Wang, X. Y. Recent advances in layered double hydroxide electrocatalysts for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5069–5089.

138

Zheng, Y.; Jiao, Y.; Vasileff, A.; Qiao, S. Z. The hydrogen evolution reaction in alkaline solution: From theory, single crystal models, to practical electrocatalysts. Angew. Chem., Int. Ed. 2018, 57, 7568–7579.

139

Cheng, X.; Fabbri, E.; Nachtegaal, M.; Castelli, I. E.; El Kazzi, M.; Haumont, R.; Marzari, N.; Schmidt, T. J. Oxygen evolution reaction on La1−xSrxCoO3 perovskites: A combined experimental and theoretical study of their structural, electronic, and electrochemical properties. Chem. Mater. 2015, 27, 7662–7672.

140

Li, P. S.; Wang, M. Y.; Duan, X. X.; Zheng, L. R.; Cheng, X. P.; Zhang, Y. F.; Kuang, Y.; Li, Y. P.; Ma, Q.; Feng, Z. X. et al. Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nat. Commun. 2019, 10, 1711.

141

Wu, G. Y.; Liu, S. C.; Cheng, G. J.; Li, H.; Liu, Y. Ni-Co@carbon nanosheet derived from nickelocene doped Co-BDC for efficient oxygen evolution reaction. Appl. Surf. Sci. 2021, 545, 148975.

142

Zhang, W. D.; Hu, Q. T.; Wang, L. L.; Gao, J.; Zhu, H. Y.; Yan, X. D.; Gu, Z. G. In-situ generated Ni-MOF/LDH heterostructures with abundant phase interfaces for enhanced oxygen evolution reaction. Appl. Catal. B 2021, 286, 119906.

143

Yao, N.; Jia, H. N.; Fan, Z. Y.; Bai, L.; Xie, W.; Cong, H. J.; Chen, S. L.; Luo, W. Nitridation-induced metal-organic framework nanosheet for enhanced water oxidation electrocatalysis. J. Energy Chem. 2022, 64, 531–537.

144

Yao, N.; Fan, Z. Y.; Meng, R.; Jia, H. N.; Luo, W. A cobalt hydroxide coated metal-organic framework for enhanced water oxidation electrocatalysis. Chem. Eng. J. 2021, 408, 127319.

145

Yang, J. L.; Xuan, H. C.; Yang, J. T.; Meng, L. X.; Wang, J.; Liang, X. H.; Li, Y. P.; Han, P. D. Metal-organic framework-derived FeS2/CoNiSe2 heterostructure nanosheets for highly-efficient oxygen evolution reaction. Appl. Surf. Sci. 2022, 578, 152016.

146

Zhang, J. F.; Liu, J. Y.; Xi, L. F.; Yu, Y. F.; Chen, N.; Sun, S. H.; Wang, W. C.; Lange, K. M.; Zhang, B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction. J. Am. Chem. Soc. 2018, 140, 3876–3879.

147

Sun, Y. T.; Ding, S.; Xu, S. S.; Duan, J. J.; Chen, S. Metallic two-dimensional metal-organic framework arrays for ultrafast water splitting. J. Power Sources 2021, 494, 229733.

148

Liu, Y. X.; Wei, Y. N.; Liu, M. H.; Bai, Y. C.; Wang, X. Y.; Shang, S. C.; Du, C. S.; Gao, W. Q.; Chen, J. Y.; Liu, Y. Q. Face-to-face growth of wafer-scale 2D semiconducting MOF films on dielectric substrates. Adv. Mater. 2021, 33, 2007741.

149

Mu, Q. Q.; Zhu, W.; Li, X.; Zhang, C. F.; Su, Y. H.; Lian, Y. B.; Qi, P. W.; Deng, Z.; Zhang, D.; Wang, S. A. et al. Electrostatic charge transfer for boosting the photocatalytic CO2 reduction on metal centers of 2D MOF/rGO heterostructure. Appl. Catal. B 2020, 262, 118144.

150

Bu, L. Z.; Zhang, N.; Guo, S. J.; Zhang, X.; Li, J.; Yao, J. L.; Wu, T.; Lu, G.; Ma, J. Y.; Su, D. et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis. Science 2016, 354, 1410–1414.

151

Wang, Y. Y.; Xie, C.; Zhang, Z. Y.; Liu, D. D.; Chen, R.; Wang, S. Y. In situ exfoliated, N-doped, and edge-rich ultrathin layered double hydroxides nanosheets for oxygen evolution reaction. Adv. Funct. Mater. 2018, 28, 1703363.

152

Islam, S.; Kim, M.; Jin, X. Y.; Oh, S. M.; Lee, N. S.; Kim, H.; Hwang, S. J. Bifunctional 2D superlattice electrocatalysts of layered double hydroxide-transition metal dichalcogenide active for overall water splitting. ACS Energy Lett. 2018, 3, 952–960.

153

Li, Y.; Li, F. M.; Meng, X. Y.; Li, S. N.; Zeng, J. H.; Chen, Y. Ultrathin Co3O4 nanomeshes for the oxygen evolution reaction. ACS Catal. 2018, 8, 1913–1920.

154

Li, Y.; Li, F. M.; Meng, X. Y.; Wu, X. R.; Li, S. N.; Chen, Y. Direct chemical synthesis of ultrathin holey iron doped cobalt oxide nanosheets on nickel foam for oxygen evolution reaction. Nano Energy 2018, 54, 238–250.

155

Wang, X. L.; Xiao, H.; Li, A.; Li, Z.; Liu, S. J.; Zhang, Q. H.; Gong, Y.; Zheng, L. R.; Zhu, Y. Q.; Chen, C. et al. Constructing NiCo/Fe3O4 heteroparticles within MOF-74 for efficient oxygen evolution reactions. J. Am. Chem. Soc. 2018, 140, 15336–15341.

156

Zhao, Y. F.; Jia, X. D.; Chen, G. B.; Shang, L.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; O’Hare, D.; Zhang, T. R. Ultrafine NiO nanosheets stabilized by TiO2 from monolayer NiTi-LDH precursors: An active water oxidation electrocatalyst. J. Am. Chem. Soc. 2016, 138, 6517–6524.

157

Zhang, W.; Wang, Y.; Zheng, H.; Li, R.; Tang, Y. J.; Li, B. Y.; Zhu, C.; You, L. M.; Gao, M. R.; Liu, Z. et al. Embedding ultrafine metal oxide nanoparticles in monolayered metal-organic framework nanosheets enables efficient electrocatalytic oxygen evolution. ACS Nano 2020, 14, 1971–1981.

158

Liu, R.; Wang, Y. Y.; Liu, D. D.; Zou, Y. Q.; Wang, S. Y. Water-plasma-enabled exfoliation of ultrathin layered double hydroxide nanosheets with multivacancies for water oxidation. Adv. Mater. 2017, 29, 1701546.

159

Cheng, W. R.; Zhao, X.; Su, H.; Tang, F. M.; Che, W.; Zhang, H.; Liu, Q. H. Lattice-strained metal-organic-framework arrays for bifunctional oxygen electrocatalysis. Nat. Energy 2019, 4, 115–122.

160

Chala, S. A.; Tsai, M. C.; Su, W. N.; Ibrahim, K. B.; Duma, A. D.; Yeh, M. H.; Wen, C. Y.; Yu, C. H.; Chan, T. S.; Dai, H. J. et al. Site activity and population engineering of NiRu-layered double hydroxide nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions. ACS Catal. 2019, 9, 117–129.

161

Zhou, W.; Yang, L.; Wang, X.; Zhao, W. L.; Yang, J. X.; Zhai, D.; Sun, L.; Deng, W. Q. In silico design of covalent organic framework-based electrocatalysts. JACS Au 2021, 1, 1497–1505.

162

Joya, K. S.; Sala, X. In situ Raman and surface-enhanced Raman spectroscopy on working electrodes: Spectroelectrochemical characterization of water oxidation electrocatalysts. Phys. Chem. Chem. Phys. 2015, 17, 21094–21103.

163

Deng, Y. L.; Yeo, B. S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy. ACS Catal. 2017, 7, 7873–7889.

164

Sasaki, K.; Wang, J. X.; Naohara, H.; Marinkovic, N.; More, K.; Inada, H.; Adzic, R. R. Recent advances in platinum monolayer electrocatalysts for oxygen reduction reaction: Scale-up synthesis, structure and activity of Pt shells on Pd cores. Electrochim. Acta 2010, 55, 2645–2652.

165

Wang, D. N.; Zhou, J. G.; Hu, Y. F.; Yang, J. L.; Han, N.; Li, Y. G.; Sham, T. K. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation. J. Phys. Chem. C 2015, 119, 19573–19583.

166

Friebel, D.; Louie, M. W.; Bajdich, M.; Sanwald, K. E.; Cai, Y.; Wise, A. M.; Cheng, M. J.; Sokaras, D.; Weng, T. C.; Alonso-Mori, R. et al. Identification of highly active Fe sites in (Ni, Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 2015, 137, 1305–1313.

167

Zhu, W. X.; Liu, L. Z.; Yue, Z. H.; Zhang, W. T.; Yue, X. Y.; Wang, J.; Yu, S. X.; Wang, L.; Wang, J. L. Au Promoted nickel-iron layered double hydroxide nanoarrays: A modular catalyst enabling high-performance oxygen evolution. ACS Appl. Mater. Interfaces 2017, 9, 19807–19814.

168

Yu, J.; Yu, F.; Yuen, M. F.; Wang, C. D. Two-dimensional layered double hydroxides as a platform for electrocatalytic oxygen evolution. J. Mater. Chem. A 2021, 9, 9389–9430.

169

Anantharaj, S.; Karthick, K.; Venkatesh, M.; Simha, T. V. S. V.; Salunke, A. S.; Ma, L.; Liang, H.; Kundu, S. Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 2017, 39, 30–43.

170

Chen, Z. W.; Ju, M.; Sun, M. Z.; Jin, L.; Cai, R. M.; Wang, Z.; Dong, L.; Peng, L. M.; Long, X.; Huang, B. L. et al. TM LDH meets birnessite: A 2D-2D hybrid catalyst with long-term stability for water oxidation at industrial operating conditions. Angew. Chem., Int. Ed. 2021, 60, 9699–9705.

171

Jiang, J.; Zhang, A. L.; Li, L. L.; Ai, L. H. Nickel-cobalt layered double hydroxide nanosheets as high-performance electrocatalyst for oxygen evolution reaction. J. Power Sources 2015, 278, 445–451.

172

Gong, M.; Dai, H. J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts. Nano Res. 2015, 8, 23–39.

173

Fu, L. H.; Cheng, G. Z.; Luo, W. Colloidal synthesis of monodisperse trimetallic IrNiFe nanoparticles as highly active bifunctional electrocatalysts for acidic overall water splitting. J. Mater. Chem. A 2017, 5, 24836–24841.

174

Liu, J.; Wang, J. S.; Zhang, B.; Ruan, Y. J.; Lv, L.; Ji, X.; Xu, K.; Miao, L.; Jiang, J. J. Hierarchical NiCo2S4@NiFe LDH heterostructures supported on nickel foam for enhanced overall-water-splitting activity. ACS Appl. Mater. Interfaces 2017, 9, 15364–15372.

175

Peng, L. S.; Yang, N.; Yang, Y. Q.; Wang, Q.; Xie, X. Y.; Sun-Waterhouse, D.; Shang, L.; Zhang, T. R.; Waterhouse, G. I. N. Atomic cation-vacancy engineering of NiFe-layered double hydroxides for improved activity and stability towards the oxygen evolution reaction. Angew. Chem., Int. Ed. 2021, 60, 24612–24619.

176

Luo, M.; Cai, Z.; Wang, C.; Bi, Y. M.; Qian, L.; Hao, Y. C.; Li, L.; Kuang, Y.; Li, Y. P.; Lei, X. D. et al. Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Res. 2017, 10, 1732–1739.

177

Liu, Q. Y.; Wang, H.; Wang, X. N.; Tong, R.; Zhou, X. L.; Peng, X. N.; Wang, H. B.; Tao, H. L.; Zhang, Z. H. Bifunctional Ni1−xFex layered double hydroxides/Ni foam electrodes for high-efficient overall water splitting: A study on compositional tuning and valence state evolution. Int. J. Hydrogen Energy 2017, 42, 5560–5568.

178

Zeng, L. L.; Yang, L. J.; Lu, J.; Jia, J.; Yu, J. Y.; Deng, Y. Q.; Shao, M. F.; Zhou, W. J. One-step synthesis of Fe-Ni hydroxide nanosheets derived from bimetallic foam for efficient electrocatalytic oxygen evolution and overall water splitting. Chin. Chem. Lett. 2018, 29, 1875–1878.

179

Xie, J. F.; Qu, H. C.; Lei, F. C.; Peng, X.; Liu, W. W.; Gao, L.; Hao, P.; Cui, G. W.; Tang, B. Partially amorphous nickel-iron layered double hydroxide nanosheet arrays for robust bifunctional electrocatalysis. J. Mater. Chem. A 2018, 6, 16121–16129.

180

Zhou, D. J.; Cai, Z.; Bi, Y. M.; Tian, W. L.; Luo, M.; Zhang, Q.; Zhang, Q.; Xie, Q. X.; Wang, J. D.; Li, Y. P. et al. Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Res. 2018, 11, 1358–1368.

181

Si, S.; Hu, H. S.; Liu, R. J.; Xu, Z. X.; Wang, C. B.; Feng, Y. Y. Co-NiFe layered double hydroxide nanosheets as an efficient electrocatalyst for the electrochemical evolution of oxygen. Int. J. Hydrogen Energy 2020, 45, 9368–9379.

182

Jiang, J.; Sun, F. F.; Zhou, S.; Hu, W.; Zhang, H.; Dong, J. C.; Jiang, Z.; Zhao, J. J.; Li, J. F.; Yan, W. S. et al. Atomic-level insight into super-efficient electrocatalytic oxygen evolution on iron and vanadium co-doped nickel (oxy)hydroxide. Nat. Commun. 2018, 9, 2885.

183

Wang, T.; Xu, W. C.; Wang, H. X. Ternary NiCoFe layered double hydroxide nanosheets synthesized by cation exchange reaction for oxygen evolution reaction. Electrochim. Acta 2017, 257, 118–127.

184

Dinh, K. N.; Zheng, P. L.; Dai, Z. F.; Zhang, Y.; Dangol, R.; Zheng, Y.; Li, B.; Zong, Y.; Yan, Q. Y. Ultrathin porous NiFeV ternary layer hydroxide nanosheets as a highly efficient bifunctional electrocatalyst for overall water splitting. Small 2018, 14, 1703257.

185

Wang, Z. L.; Liu, W. J.; Hu, Y. M.; Guan, M. L.; Xu, L.; Li, H. P.; Bao, J.; Li, H. M. Cr-doped CoFe layered double hydroxides: Highly efficient and robust bifunctional electrocatalyst for the oxidation of water and urea. Appl. Catal. B 2020, 272, 118959.

186

Choi, S.; Park, Y.; Yang, H.; Jin, H.; Tomboc, G. M.; Lee, K. Vacancy-engineered catalysts for water electrolysis. CrystEngComm 2020, 22, 1500–1513.

187

Yang, M. Q.; Wang, J.; Wu, H.; Ho, G. W. Noble metal-free nanocatalysts with vacancies for electrochemical water splitting. Small 2018, 14, 1703323.

188

Liu, B.; Wang, Y.; Peng, H. Q.; Yang, R. O.; Jiang, Z.; Zhou, X. T.; Lee, C. S.; Zhao, H. J.; Zhang, W. J. Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 2018, 30, 1803144.

189

Kim, S. H.; Park, Y. S.; Kim, C.; Kwon, I. Y.; Lee, J.; Jin, H.; Lee, Y. S.; Choi, S. M.; Kim, Y. Self-assembly of Ni-Fe layered double hydroxide at room temperature for oxygen evolution reaction. Energy Rep. 2020, 6, 248–254.

190

Zhou, D. J.; Xiong, X. Y.; Cai, Z.; Han, N. N.; Jia, Y.; Xie, Q. X.; Duan, X. X.; Xie, T. H.; Zheng, X. L.; Sun, X. M. et al. Flame-engraved nickel-iron layered double hydroxide nanosheets for boosting oxygen evolution reactivity. Small Methods 2018, 2, 1800083.

191

Wu, C. C.; Li, H. Q.; Xia, Z. X.; Zhang, X. M.; Deng, R. Y.; Wang, S. L.; Sun, G. Q. NiFe layered double hydroxides with unsaturated metal sites via precovered surface strategy for oxygen evolution reaction. ACS Catal. 2020, 10, 11127–11135.

192

Liu, S. X.; Zhang, H. W.; Hu, E. L.; Zhu, T. Y.; Zhou, C. Y.; Huang, Y. C.; Ling, M.; Gao, X. H.; Lin, Z. Boosting oxygen evolution activity of NiFe-LDH using oxygen vacancies and morphological engineering. J. Mater. Chem. A 2021, 9, 23697–23702.

193

Chen, R.; Hung, S. F.; Zhou, D. J.; Gao, J. J.; Yang, C. J.; Tao, H. B.; Yang, H. B.; Zhang, L. P.; Zhang, L. L.; Xiong, Q. H. et al. Layered structure causes bulk NiFe layered double hydroxide unstable in alkaline oxygen evolution reaction. Adv. Mater. 2019, 31, 1903909.

194

Zhang, X.; Zhao, Y. F.; Zhao, Y. X.; Shi, R.; Waterhouse, G. I. N.; Zhang, T. R. A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv. Energy Mater. 2019, 9, 1900881.

195

Zhao, Z. Y.; Shao, Q.; Xue, J. Y.; Huang, B. L.; Niu, Z.; Gu, H. W.; Huang, X. Q.; Lang, J. P. Multiple structural defects in ultrathin NiFe-LDH nanosheets synergistically and remarkably boost water oxidation reaction. Nano Res. 2022, 15, 310–316.

196

Wu, Y. J.; Yang, J.; Tu, T. X.; Li, W. Q.; Zhang, P. F.; Zhou, Y.; Li, J. F.; Li, J. T.; Sun, S. G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst. Angew. Chem., Int. Ed. 2021, 60, 26829–26836.

197

Wang, Q. X.; Dastafkan, K.; Zhao, C. Design strategies for non-precious metal oxide electrocatalysts for oxygen evolution reactions. Curr. Opin. Electrochem. 2018, 10, 16–23.

198

Ma, W.; Ma, R. Z.; Wang, C. X.; Liang, J. B.; Liu, X. H.; Zhou, K. C.; Sasaki, T. A superlattice of alternately stacked Ni-Fe hydroxide nanosheets and graphene for efficient splitting of water. ACS Nano 2015, 9, 1977–1984.

199

Gong, M.; Li, Y. G.; Wang, H. L.; Liang, Y. Y.; Wu, J. Z.; Zhou, J. G.; Wang, J.; Regier, T.; Wei, F.; Dai, H. J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 2013, 135, 8452–8455.

200

Wang, Y. Z.; Zhou, Y. Y.; Han, M. Z.; Xi, Y. K.; You, H. H.; Hao, X. F.; Li, Z. P.; Zhou, J. S.; Song, D. D.; Wang, D. et al. Environmentally-friendly exfoliate and active site self-assembly: Thin 2D/2D heterostructure amorphous nickel-iron alloy on 2D materials for efficient oxygen evolution reaction. Small 2019, 15, 1805435.

201

Jia, Y.; Zhang, L. Z.; Gao, G. P.; Chen, H.; Wang, B.; Zhou, J. Z.; Soo, M. T.; Hong, M.; Yan, X. C.; Qian, G. R. et al. A heterostructure coupling of exfoliated Ni-Fe hydroxide nanosheet and defective graphene as a bifunctional electrocatalyst for overall water splitting. Adv. Mater. 2017, 29, 1700017.

202

Kong, F. H.; Zhang, W. W.; Sun, L. P.; Huo, L. H.; Zhao, H. Interface electronic coupling in hierarchical FeLDH(FeCo)/Co(OH)2 arrays for efficient electrocatalytic oxygen evolution. ChemSusChem 2019, 12, 3592–3601.

203

Luo, Y.; Wu, Y. H.; Wu, D. H.; Huang, C.; Xiao, D. Z.; Chen, H. Y.; Zheng, S. L.; Chu, P. K. NiFe-layered double hydroxide synchronously activated by heterojunctions and vacancies for the oxygen evolution reaction. ACS Appl. Mater. Interfaces 2020, 12, 42850–42858.

204

Hu, L. Y.; Zeng, X.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Gu, W. L.; Shi, L.; Zhu, C. Z. Interface engineering for enhancing electrocatalytic oxygen evolution of NiFe LDH/NiTe heterostructures. Appl. Catal. B 2020, 273, 119014.

205

Dionigi, F.; Strasser, P. NiFe-based (Oxy)hydroxide catalysts for oxygen evolution reaction in non-acidic electrolytes. Adv. Energy Mater. 2016, 6, 1600621.

206

Yu, M. Z.; Zhou, S.; Wang, Z. Y.; Zhao, J. J.; Qiu, J. S. Boosting electrocatalytic oxygen evolution by synergistically coupling layered double hydroxide with MXene. Nano Energy 2018, 44, 181–190.

207

Han, X. T.; Yu, C.; Yang, J.; Zhao, C. T.; Huang, H. W.; Liu, Z. B.; Ajayan, P. M.; Qiu, J. S. Mass and charge transfer coenhanced oxygen evolution behaviors in CoFe-layered double hydroxide assembled on graphene. Adv. Mater. Interfaces 2016, 3, 1500782.

208

Peng, C. L.; Ran, N.; Wan, G.; Zhao, W. P.; Kuang, Z. Y.; Lu, Z.; Sun, C. J.; Liu, J. J.; Wang, L. Z.; Chen, H. R. Engineering active Fe sites on nickel-iron layered double hydroxide through component segregation for oxygen evolution reaction. ChemSusChem 2020, 13, 811–818.

209

Cao, J. H.; Lei, C. J.; Yang, J.; Cheng, X. D.; Li, Z. J.; Yang, B.; Zhang, X. W.; Lei, L. C.; Hou, Y.; Ostrikov, K. An ultrathin cobalt-based zeolitic imidazolate framework nanosheet array with a strong synergistic effect towards the efficient oxygen evolution reaction. J. Mater. Chem. A 2018, 6, 18877–18883.

210

Hu, L. Y.; Li, M. Y.; Wei, X. Q.; Wang, H. J.; Wu, Y.; Wen, J.; Gu, W. L.; Zhu, C. Z. Modulating interfacial electronic structure of CoNi LDH nanosheets with Ti3C2Tx MXene for enhancing water oxidation catalysis. Chem. Eng. J. 2020, 398, 125605.

211

Li, X. J.; Zhou, J.; Li, X. C.; Xin, M. Y.; Cai, T. H.; Xing, W.; Chai, Y. M.; Xue, Q. Z.; Yan, Z. F. Bifuntional petaloid nickel manganese layered double hydroxides decorated on a freestanding carbon foam for flexible asymmetric supercapacitor and oxygen evolution. Electrochim. Acta 2017, 252, 275–285.

212

Tang, D.; Liu, J.; Wu, X. Y.; Liu, R. H.; Han, X.; Han, Y. Z.; Huang, H.; Liu, Y.; Kang, Z. H. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation. ACS Appl. Mater. Interfaces 2014, 6, 7918–7925.

213

Yin, S. M.; Tu, W. G.; Sheng, Y.; Du, Y. H.; Kraft, M.; Borgna, A.; Xu, R. A highly efficient oxygen evolution catalyst consisting of interconnected nickel-iron-layered double hydroxide and carbon nanodomains. Adv. Mater. 2018, 30, 1705106.

214

Wang, L.; Huang, X. L.; Xue, J. M. Graphitic mesoporous carbon loaded with iron-nickel hydroxide for superior oxygen evolution reactivity. ChemSusChem 2016, 9, 1835–1842.

215

Ni, Y. M.; Yao, L. H.; Wang, Y.; Liu, B.; Cao, M. H.; Hu, C. W. Construction of hierarchically porous graphitized carbon-supported NiFe layered double hydroxides with a core–shell structure as an enhanced electrocatalyst for the oxygen evolution reaction. Nanoscale 2017, 9, 11596–11604.

216

Liu, H. J.; Zhou, J.; Wu, C. Q.; Wang, C. D.; Zhang, Y. K.; Liu, D. B.; Lin, Y. X.; Jiang, H. L.; Song, L. Integrated flexible electrode for oxygen evolution reaction: Layered double hydroxide coupled with single-walled carbon nanotubes film. ACS Sustainable Chem. Eng. 2018, 6, 2911–2915.

217

Wang, Y. Q.; Tao, S.; Lin, H.; Han, S. B.; Zhong, W. H.; Xie, Y. S.; Hu, J.; Yang, S. H. NaBH4 induces a high ratio of Ni3+/Ni2+ boosting OER activity of the NiFe LDH electrocatalyst. RSC Adv. 2020, 10, 33475–33482.

218

Wang, Y. Q.; Tao, S.; Lin, H.; Wang, G. P.; Zhao, K. N.; Cai, R. M.; Tao, K. W.; Zhang, C. X.; Sun, M. Z.; Hu, J. et al. Atomically targeting NiFe LDH to create multivacancies for OER catalysis with a small organic anchor. Nano Energy 2021, 81, 105606.

219

Zhan, T. R.; Liu, X. L.; Lu, S. S.; Hou, W. G. Nitrogen doped NiFe layered double hydroxide/reduced graphene oxide mesoporous nanosphere as an effective bifunctional electrocatalyst for oxygen reduction and evolution reactions. Appl. Catal. B 2017, 205, 551–558.

220

Wang, Q.; Shang, L.; Shi, R.; Zhang, X.; Zhao, Y. F.; Waterhouse, G. I. N.; Wu, L. Z.; Tung, C. H.; Zhang, T. R. NiFe layered double hydroxide nanoparticles on Co,N-codoped carbon nanoframes as efficient bifunctional catalysts for rechargeable zinc-air batteries. Adv. Energy Mater. 2017, 7, 1700467.

221

Tang, C.; Wang, H. S.; Wang, H. F.; Zhang, Q.; Tian, G. L.; Nie, J. Q.; Wei, F. Spatially confined hybridization of nanometer-sized NiFe hydroxides into nitrogen-doped graphene frameworks leading to superior oxygen evolution reactivity. Adv. Mater. 2015, 27, 4516–4522.

222

Côté, A. P.; Benin, A. I.; Ockwig, N. W.; O'Keeffe, M.; Matzger, A. J.; Yaghi, O. M. Porous, crystalline, covalent organic frameworks. Science 2005, 310, 1166–1170.

223

Guo, X. X.; Mao, T. H.; Wang, Z. F.; Cheng, P.; Chen, Y.; Ma, S. Q.; Zhang, Z. J. Fabrication of photoresponsive crystalline artificial muscles based on PEGylated covalent organic framework membranes. ACS Cent. Sci. 2020, 6, 787–794.

224

Bi, S.; Thiruvengadam, P.; Wei, S. C.; Zhang, W.; Zhang, F.; Gao, L. S.; Xu, J. S.; Wu, D. Q.; Chen, J. S.; Zhang, F. Vinylene-bridged two-dimensional covalent organic frameworks via knoevenagel condensation of tricyanomesitylene. J. Am. Chem. Soc. 2020, 142, 11893–11900.

225

Yang, C. H.; Yang, Z. D.; Dong, H.; Sun, N.; Lu, Y.; Zhang, F. M.; Zhang, G. L. Theory-driven design and targeting synthesis of a highly-conjugated basal-plane 2D covalent organic framework for metal-free electrocatalytic OER. ACS Energy Lett. 2019, 4, 2251–2258.

226

Wang, Q. C.; Ji, Y. J.; Lei, Y. P.; Wang, Y. B.; Wang, Y. D.; Li, Y. Y.; Wang, S. Y. Pyridinic-N-dominated doped defective graphene as a superior oxygen electrocatalyst for ultrahigh-energy-density Zn-air batteries. ACS Energy Lett. 2018, 3, 1183–1191.

227

Zhao, X. J.; Pachfule, P.; Li, S.; Langenhahn, T.; Ye, M. Y.; Schlesiger, C.; Praetz, S.; Schmidt, J.; Thomas, A. Macro/microporous covalent organic frameworks for efficient electrocatalysis. J. Am. Chem. Soc. 2019, 141, 6623–6630.

228

Shinde, D. B.; Aiyappa, H. B.; Bhadra, M.; Biswal, B. P.; Wadge, P.; Kandambeth, S.; Garai, B.; Kundu, T.; Kurungot, S.; Banerjee, R. A mechanochemically synthesized covalent organic framework as a proton-conducting solid electrolyte. J. Mater. Chem. A 2016, 4, 2682–2690.

229

Aiyappa, H. B.; Thote, J.; Shinde, D. B.; Banerjee, R.; Kurungot, S. Cobalt-modified covalent organic framework as a robust water oxidation electrocatalyst. Chem. Mater. 2016, 28, 4375–4379.

230

Huang, H.; Li, F. M.; Zhang, Y.; Chen, Y. Two-dimensional graphdiyne analogue Co-coordinated porphyrin covalent organic framework nanosheets as a stable electrocatalyst for the oxygen evolution reaction. J. Mater. Chem. A 2019, 7, 5575–5582.

231

Gao, Z.; Gong, L. L.; He, X. Q.; Su, X. M.; Xiao, L. H.; Luo, F. General strategy to fabricate metal-incorporated pyrolysis-free covalent organic framework for efficient oxygen evolution reaction. Inorg. Chem. 2020, 59, 4995–5003.

232

Mondal, S.; Mohanty, B.; Nurhuda, M.; Dalapati, S.; Jana, R.; Addicoat, M.; Datta, A.; Jena, B. K.; Bhaumik, A. A thiadiazole-based covalent organic framework: A metal-free electrocatalyst toward oxygen evolution reaction. ACS Catal. 2020, 10, 5623–5630.

233

Xie, J. F.; Zhang, X. D.; Zhang, H.; Zhang, J. J.; Li, S.; Wang, R. X.; Pan, B. C.; Xie, Y. Intralayered ostwald ripening to ultrathin nanomesh catalyst with robust oxygen-evolving performance. Adv. Mater. 2017, 29, 1604765.

234

Zhao, S. L.; Wang, Y.; Dong, J. C.; He, C. T.; Yin, H. J.; An, P. F.; Zhao, K.; Zhang, X. F.; Gao, C.; Zhang, L. J. et al. Ultrathin metal-organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 2016, 1, 16184.

235

Wang, Y. X.; Zhao, M. T.; Ping, J. F.; Chen, B.; Cao, X. H.; Huang, Y.; Tan, C. L.; Ma, Q. L.; Wu, S. X.; Yu, Y. F. et al. Bioinspired design of ultrathin 2D bimetallic metal-organic-framework nanosheets used as biomimetic enzymes. Adv. Mater. 2016, 28, 4149–4155.

236

Lu, X. F.; Liao, P. Q.; Wang, J. W.; Wu, J. X.; Chen, X. W.; He, C. T.; Zhang, J. P.; Li, G. R.; Chen, X. M. An alkaline-stable, metal hydroxide mimicking metal-organic framework for efficient electrocatalytic oxygen evolution. J. Am. Chem. Soc. 2016, 138, 8336–8339.

237
WangJ.GanL. Y.ZhangW. Y.PengY. C.YuH.YanQ. Y.XiaX. H.WangX. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolutionSci. Adv.20184eaap797010.1126/sciadv.aap7970

Wang, J.; Gan, L. Y.; Zhang, W. Y.; Peng, Y. C.; Yu, H.; Yan, Q. Y.; Xia, X. H.; Wang, X. In situ formation of molecular Ni-Fe active sites on heteroatom-doped graphene as a heterogeneous electrocatalyst toward oxygen evolution. Sci. Adv. 2018, 4, eaap7970.

238

Li, F. L.; Wang, P. T.; Huang, X. Q.; Young, D. J.; Wang, H. F.; Braunstein, P.; Lang, J. P. Large-scale, bottom-up synthesis of binary metal-organic framework nanosheets for efficient water oxidation. Angew. Chem., Int. Ed. 2019, 58, 7051–7056.

239

Hai, G. T.; Jia, X. L.; Zhang, K. Y.; Liu, X.; Wu, Z. Y.; Wang, G. High-performance oxygen evolution catalyst using two-dimensional ultrathin metal-organic frameworks nanosheets. Nano Energy 2018, 44, 345–352.

240

Grimaud, A.; Diaz-Morales, O.; Han, B. H.; Hong, W. T.; Lee, Y. L.; Giordano, L.; Stoerzinger, K. A.; Koper, M. T. M.; Shao-Horn, Y. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 2017, 9, 457–465.

241

Görlin, M.; Chernev, P.; De Araújo, J. F.; Reier, T.; Dresp, S.; Paul, B.; Krähnert, R.; Dau, H.; Strasser, P. Oxygen evolution reaction dynamics, faradaic charge efficiency, and the active metal redox states of Ni-Fe oxide water splitting electrocatalysts. J. Am. Chem. Soc. 2016, 138, 5603–5614.

242

Ji, Q. Q.; Kong, Y.; Wang, C.; Tan, H.; Duan, H. L.; Hu, W.; Li, G. N.; Lu, Y.; Li, N.; Wang, Y. et al. Lattice strain induced by linker scission in metal-organic framework nanosheets for oxygen evolution reaction. ACS Catal. 2020, 10, 5691–5697.

243

Duan, J. J.; Chen, S.; Zhao, C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat. Commun. 2017, 8, 15341.

244

Li, Z. Q.; Yin, L. W. Sandwich-like reduced graphene oxide wrapped MOF-derived ZnCo2O4-ZnO-C on nickel foam as anodes for high performance lithium ion batteries. J. Mater. Chem. A 2015, 3, 21569–21577.

245

Bavykina, A.; Kolobov, N.; Khan, I. S.; Bau, J. A.; Ramirez, A.; Gascon, J. Metal-organic frameworks in heterogeneous catalysis: Recent progress, new trends, and future perspectives. Chem. Rev. 2020, 120, 8468–8535.

246

Meng, J. S.; Liu, X.; Niu, C. J.; Pang, Q.; Li, J. T.; Liu, F.; Liu, Z. A.; Mai, L. Q. Advances in metal-organic framework coatings: Versatile synthesis and broad applications. Chem. Soc. Rev. 2020, 49, 3142–3186.

247

Yang, D. X.; Chen, Y. F.; Su, Z.; Zhang, X. J.; Zhang, W. L.; Srinivas, K. Organic carboxylate-based MOFs and derivatives for electrocatalytic water oxidation. Coord. Chem. Rev. 2021, 428, 213619.

248

Du, J.; Li, F.; Sun, L. C. Metal-organic frameworks and their derivatives as electrocatalysts for the oxygen evolution reaction. Chem. Soc. Rev. 2021, 50, 2663–2695.

249

Qin, X. Y.; Kim, D.; Piao, Y. Z. Metal-organic frameworks-derived novel nanostructured electrocatalysts for oxygen evolution reaction. Carbon Energy 2021, 3, 66–100.

250

Guan, J. Q. Effect of coordination surroundings of isolated metal sites on electrocatalytic performances. J. Power Sources 2021, 506, 230143.

251

Zhang, W. M.; Yao, X. Y.; Zhou, S. N.; Li, X. W.; Li, L.; Yu, Z.; Gu, L. ZIF-8/ZIF-67-derived Co-Nx-embedded 1D porous carbon nanofibers with graphitic carbon-encased Co nanoparticles as an efficient bifunctional electrocatalyst. Small 2018, 14, 1800423.

252

Zhao, J. J.; Hu, H. B.; Wu, M. Z. N-doped-carbon/cobalt-nanoparticle/N-doped-carbon multi-layer sandwich nanohybrids derived from cobalt MOFs having 3D molecular structures as bifunctional electrocatalysts for on-chip solid-state Zn-air batteries. Nanoscale 2020, 12, 3750–3762.

253

Wang, J. M.; Liu, D.; Zhang, L. Z.; Qian, Y. J.; Chen, C.; Wang, L. F.; Lei, W. W. Rational design of 2D super holey metal carboniride leaf-like nanostructure for efficient oxygen electrocatalysis. Carbon 2020, 164, 287–295.

254

Wang, J.; Huang, Z. Q.; Liu, W.; Chang, C. R.; Tang, H. L.; Li, Z. J.; Chen, W. X.; Jia, C. J.; Yao, T.; Wei, S. Q. et al. Design of N-coordinated dual-metal sites: A stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 2017, 139, 17281–17284.

255

Xu, Q. C.; Jiang, H.; Li, Y. H.; Liang, D.; Hu, Y. J.; Li, C. Z. In-situ enriching active sites on co-doped Fe-Co4N@N-C nanosheet array as air cathode for flexible rechargeable Zn-air batteries. Appl. Catal. B 2019, 256, 117893.

256

Gu, X. C.; Ji, Y. G.; Tian, J. Q.; Wu, X.; Feng, L. G. Combined MOF derivation and fluorination imparted efficient synergism of Fe-Co fluoride for oxygen evolution reaction. Chem. Eng. J. 2022, 427, 131576.

257

Zou, Z. H.; Wang, J. L.; Pan, H. R.; Li, J.; Guo, K. L.; Zhao, Y. Q.; Xu, C. L. Enhanced oxygen evolution reaction of defective CoP/MOF-integrated electrocatalyst by partial phosphating. J. Mater. Chem. A 2020, 8, 14099–14105.

258

Liu, G. H.; Li, J. D.; Fu, J.; Jiang, G. P.; Lui, G.; Luo, D.; Deng, Y. P.; Zhang, J.; Cano, Z. P.; Yu, A. P. et al. An oxygen-vacancy-rich semiconductor-supported bifunctional catalyst for efficient and stable zinc-air batteries. Adv. Mater. 2019, 31, 1806761.

259

Deng, Y. P.; Jiang, Y.; Luo, D.; Fu, J.; Liang, R. L.; Cheng, S. B.; Bai, Z. Y.; Liu, Y. S.; Lei, W.; Yang, L. et al. Hierarchical porous double-shelled electrocatalyst with tailored lattice alkalinity toward bifunctional oxygen reactions for metal-air batteries. ACS Energy Lett. 2017, 2, 2706–2712.

260

Lin, Y. F.; Wan, H.; Wu, D.; Chen, G.; Zhang, N.; Liu, X. H.; Li, J. H.; Cao, Y. J.; Qiu, G. Z.; Ma, R. Z. Metal-organic framework hexagonal nanoplates: Bottom−up synthesis, topotactic transformation, and efficient oxygen evolution reaction. J. Am. Chem. Soc. 2020, 142, 7317–7321.

261

Zhu, J. B.; Xiao, M. L.; Li, G. R.; Li, S.; Zhang, J.; Liu, G. H.; Ma, L.; Wu, T. P.; Lu, J.; Yu, A. P. et al. A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries. Adv. Energy Mater. 2020, 10, 1903003.

262

Zhong, Y. T.; Pan, Z. H.; Wang, X. S.; Yang, J.; Qiu, Y. C.; Xu, S. Y.; Lu, Y. T.; Huang, Q. M.; Li, W. S. Hierarchical Co3O4 nano-micro arrays featuring superior activity as cathode in a flexible and rechargeable zinc-air battery. Adv. Sci. 2019, 6, 1802243.

263

Huang, J.; Wu, J. Q.; Shao, B.; Lan, B. L.; Yang, F. J.; Sun, Y.; Tan, X. Q.; He, C. T.; Zhang, Z. Ion-induced delamination of layered bulk metal-organic frameworks into ultrathin nanosheets for boosting the oxygen evolution reaction. ACS Sustainable Chem. Eng. 2020, 8, 10554–10563.

264

Kuang, X.; Luo, Y. C.; Kuang, R.; Wang, Z. L.; Sun, X.; Zhang, Y.; Wei, Q. Metal organic framework nanofibers derived Co3O4-doped carbon-nitrogen nanosheet arrays for high efficiency electrocatalytic oxygen evolution. Carbon 2018, 137, 433–441.

265

Rui, K.; Zhao, G. Q.; Chen, Y. P.; Lin, Y.; Zhou, Q.; Chen, J. Y.; Zhu, J. X.; Sun, W. P.; Huang, W.; Dou, S. X. Hybrid 2D dual-metal-organic frameworks for enhanced water oxidation catalysis. Adv. Funct. Mater. 2018, 28, 1801554.

266

Yue, K. H.; Liu, J. L.; Xia, C. F.; Zhan, K.; Wang, P.; Wang, X. Y.; Yan, Y.; Xia, B. Y. Controllable synthesis of multidimensional carboxylic acid-based NiFe MOFs as efficient electrocatalysts for oxygen evolution. Mater. Chem. Front. 2021, 5, 7191–7198.

267

Li, J. T.; Huang, W. Z.; Wang, M. M.; Xi, S. B.; Meng, J. S.; Zhao, K. N.; Jin, J.; Xu, W. W.; Wang, Z. Y.; Liu, X. et al. Low-crystalline bimetallic metal-organic framework electrocatalysts with rich active sites for oxygen evolution. ACS Energy Lett. 2019, 4, 285–292.

268

Gu, X. G.; Zhang, X. Y.; Ma, H. L.; Jia, S. R.; Zhang, P. F.; Zhao, Y. J.; Liu, Q.; Wang, J. G.; Zheng, X. Y.; Lam, J. W. Y. et al. Corannulene-incorporated AIE nanodots with highly suppressed nonradiative decay for boosted cancer phototheranostics in vivo. Adv. Mater. 2018, 30, 1801065.

269

Xu, Y.; Tu, W. G.; Zhang, B. W.; Yin, S. M.; Huang, Y. Z.; Kraft, M.; Xu, R. Nickel nanoparticles encapsulated in few-layer nitrogen-doped graphene derived from metal-organic frameworks as efficient bifunctional electrocatalysts for overall water splitting. Adv. Mater. 2017, 29, 1605957.

270

Shi, X.; Wu, A. P.; Yan, H. J.; Zhang, L.; Tian, C. G.; Wang, L.; Fu, H. G. A “MOFs plus MOFs” strategy toward Co-Mo2N tubes for efficient electrocatalytic overall water splitting. J. Mater. Chem. A 2018, 6, 20100–20109.

271

Hong, W.; Kitta, M.; Xu, Q. Bimetallic MOF-derived FeCo-P/C nanocomposites as efficient catalysts for oxygen evolution reaction. Small Methods 2018, 2, 1800214.

272

Cao, L. M.; Hu, Y. W.; Tang, S. F.; Iljin, A.; Wang, J. W.; Zhang, Z. M.; Lu, T. B. Fe-CoP electrocatalyst derived from a bimetallic prussian blue analogue for large-current-density oxygen evolution and overall water splitting. Adv. Sci. 2018, 5, 1800949.

273

Yan, L. T.; Cao, L.; Dai, P. C.; Gu, X.; Liu, D. D.; Li, L. J.; Wang, Y.; Zhao, X. B. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting. Adv. Funct. Mater. 2017, 27, 1703455.

274

Huang, Z. F.; Song, J. J.; Du, Y. H.; Xi, S. B.; Dou, S.; Nsanzimana, J. M. V.; Wang, C.; Xu, Z. J.; Wang, X. Chemical and structural origin of lattice oxygen oxidation in Co-Zn oxyhydroxide oxygen evolution electrocatalysts. Nat. Energy 2019, 4, 329–338.

275

Zhan, G. W.; Fan, L. L.; Zhao, F. G.; Huang, Z. L.; Chen, B.; Yang, X.; Zhou, S. F. Fabrication of ultrathin 2D Cu-BDC nanosheets and the derived integrated MOF nanocomposites. Adv. Funct. Mater. 2019, 29, 1806720.

276

Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. A metal-organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006.

277

Shao, M. F.; Ning, F. Y.; Zhao, J. W.; Wei, M.; Evans, D. G.; Duan, X. Hierarchical layered double hydroxide microspheres with largely enhanced performance for ethanol electrooxidation. Adv. Funct. Mater. 2013, 23, 3513–3518.

278

Yu, X. W.; Zhang, M.; Yuan, W. J.; Shi, G. Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation. J. Mater. Chem. A 2015, 3, 6921–6928.

279

Liu, Z. B.; Yu, C.; Han, X. T.; Yang, J.; Zhao, C. T.; Huang, H. W.; Qiu, J. S. CoMn layered double hydroxides/carbon nanotubes architectures as high-performance electrocatalysts for the oxygen evolution reaction. ChemElectroChem 2016, 3, 850.

280

Cheng, Y. W.; Zhang, Y. M.; Li, Y.; Dai, J. H.; Song, Y. Hierarchical Ni2P/Cr2CTx (MXene) composites with oxidized surface groups as efficient bifunctional electrocatalysts for overall water splitting. J. Mater. Chem. A 2019, 7, 9324–9334.

281

Xu, J. J.; Zhao, Y. J.; Li, M. Y.; Fan, G. L.; Yang, L.; Li, F. A strong coupled 2D metal-organic framework and ternary layered double hydroxide hierarchical nanocomposite as an excellent electrocatalyst for the oxygen evolution reaction. Electrochim. Acta 2019, 307, 275–284.

282
RodenasT.BeegS.SpanosI.NeugebauerS.GirgsdiesF.Algara-SillerG.SchlekerP. P. M.JakesP.PfänderN.WillingerM. 2D metal organic framework-graphitic carbon nanocomposites as precursors for high-performance O2-evolution electrocatalystsAdv. Energy Mater.20188180240410.1002/aenm.201802404

Rodenas, T.; Beeg, S.; Spanos, I.; Neugebauer, S.; Girgsdies, F.; Algara-Siller, G.; Schleker, P. P. M.; Jakes, P.; Pfänder, N.; Willinger, M. et al. 2D metal organic framework-graphitic carbon nanocomposites as precursors for high-performance O2-evolution electrocatalysts. Adv. Energy Mater. 2018, 8, 1802404.

283

Han, X. T.; Yu, C.; Zhou, S.; Zhao, C. T.; Huang, H. W.; Yang, J.; Liu, Z. B.; Zhao, J. J.; Qiu, J. S. Ultrasensitive iron-triggered nanosized Fe-CoOOH integrated with graphene for highly efficient oxygen evolution. Adv. Energy Mater. 2017, 7, 1602148.

284

Meng, X. Y.; Han, J. X.; Lu, L.; Qiu, G. R.; Wang, Z. L.; Sun, C. W. Fe2+-doped layered double (Ni, Fe) hydroxides as efficient electrocatalysts for water splitting and self-powered electrochemical systems. Small 2019, 15, 1902551.

285

Zhang, D. L.; Mou, H. Y.; Lu, F.; Song, C. X.; Wang, D. B. A novel strategy for 2D/2D NiS/graphene heterostructures as efficient bifunctional electrocatalysts for overall water splitting. Appl. Catal. B 2019, 254, 471–478.

286

Fan, Y. C.; Ida, S.; Staykov, A.; Akbay, T.; Hagiwara, H.; Matsuda, J.; Kaneko, K.; Ishihara, T. Ni-Fe nitride nanoplates on nitrogen-doped graphene as a synergistic catalyst for reversible oxygen evolution reaction and rechargeable Zn-air battery. Small 2017, 13, 1700099.

287

Seh, Z. W.; Fredrickson, K. D.; Anasori, B.; Kibsgaard, J.; Strickler, A. L.; Lukatskaya, M. R.; Gogotsi, Y.; Jaramillo, T. F.; Vojvodic, A. Two-dimensional molybdenum carbide (MXene) as an efficient electrocatalyst for hydrogen evolution. ACS Energy Lett. 2016, 1, 589–594.

288

Ma, T. Y.; Cao, J. L.; Jaroniec, M.; Qiao, S. Z. Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 2016, 55, 1138–1142.

289

Gao, G. P.; O’Mullane, A. P.; Du, A. J. 2D MXenes: A new family of promising catalysts for the hydrogen evolution reaction. ACS Catal. 2017, 7, 494–500.

290

Anasori, B.; Lukatskaya, M. R.; Gogotsi, Y. 2D metal carbides and nitrides (MXenes) for energy storage. Nat. Rev. Mater. 2017, 2, 16098.

291

Tang, Y.; Yang, C. H.; Yang, Y. W.; Yin, X. T.; Que, W. X.; Zhu, J. F. Three dimensional hierarchical network structure of S-NiFe2O4 modified few-layer titanium carbides (MXene) flakes on nickel foam as a high efficient electrocatalyst for oxygen evolution. Electrochim. Acta 2019, 296, 762–770.

292

Hao, C. Y.; Wu, Y.; An, Y. J.; Cui, B. H.; Lin, J. N.; Li, X. N.; Wang, D. H.; Jiang, M. H.; Cheng, Z. X.; Hu, S. Interface-coupling of CoFe-LDH on MXene as high-performance oxygen evolution catalyst. Mater. Today Energy 2019, 12, 453–462.

293

Li, Q.; Zhou, J.; Li, F.; Sun, Z. M. Novel MXene-based hierarchically porous composite as superior electrodes for Li-ion storage. Appl. Surf. Sci. 2020, 530, 147214.

294

Zou, H. Y.; He, B. W.; Kuang, P. Y.; Yu, J. G.; Fan, K. Metal-organic framework-derived nickel-cobalt sulfide on ultrathin MXene nanosheets for electrocatalytic oxygen evolution. ACS Appl. Mater. Interfaces 2018, 10, 22311–22319.

295

Zhao, L.; Dong, B. L.; Li, S. Z.; Zhou, L. J.; Lai, L. F.; Wang, Z. W.; Zhao, S. L.; Han, M.; Gao, K.; Lu, M. et al. Interdiffusion reaction-assisted hybridization of two-dimensional metal-organic frameworks and Ti3C2Tx nanosheets for electrocatalytic oxygen evolution. ACS Nano 2017, 11, 5800–5807.

296

Du, C. F.; Sun, X. L.; Yu, H.; Fang, W.; Jing, Y.; Wang, Y. H.; Li, S. Q.; Liu, X. H.; Yan, Q. Y. V4C3Tx MXene: A promising active substrate for reactive surface modification and the enhanced electrocatalytic oxygen evolution activity. InfoMat 2020, 2, 950–959.

297

Hunt, S. T.; Milina, M.; Alba-Rubio, A. C.; Hendon, C. H.; Dumesic, J. A.; Román-Leshkov, Y. Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 2016, 352, 974–978.

298

Ran, J. R.; Gao, G. P.; Li, F. T.; Ma, T. Y.; Du, A. J.; Qiao, S. Z. Ti3C2 MXene co-catalyst on metal sulfide photo-absorbers for enhanced visible-light photocatalytic hydrogen production. Nat. Commun. 2017, 8, 13907.

299

Shinde, P. V.; Mane, P.; Chakraborty, B.; Rout, C. S. Spinel NiFe2O4 nanoparticles decorated 2D Ti3C2 MXene sheets for efficient water splitting: Experiments and theories. J. Colloid Interface Sci. 2021, 602, 232–241.

300
ZubairM.Ul HassanM. M.MehranM. T.BaigM. M.HussainS.ShahzadF. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A reviewInt. J. Hydrogen Energy2022472794281810.1016/j.ijhydene.2021.10.248

Zubair, M.; Ul Hassan, M. M.; Mehran, M. T.; Baig, M. M.; Hussain, S.; Shahzad, F. 2D MXenes and their heterostructures for HER, OER and overall water splitting: A review. Int. J. Hydrogen Energy 2022, 47, 2794–2818.

301

Lu, Y.; Fan, D. Q.; Chen, Z. P.; Xiao, W. P.; Cao, C. C.; Yang, X. F. Anchoring Co3O4 nanoparticles on MXene for efficient electrocatalytic oxygen evolution. Sci. Bull. 2020, 65, 460–466.

302

Xie, Y. Y.; Yu, H. Z.; Deng, L. M.; Amin, R. S.; Yu, D. S.; Fetohi, A. E.; Maximov, M. Y.; Li, L. L.; El-Khatib, K. M.; Peng, S. J. Anchoring stable FeS2 nanoparticles on MXene nanosheets via interface engineering for efficient water splitting. Inorg. Chem. Front. 2022, 9, 662–669.

303

Bai, K. K.; Fan, J. C.; Shi, P. H.; Min, Y. L.; Xu, Q. J. Directly ball milling red phosphorus and expended graphite for oxygen evolution reaction. J. Power Sources 2020, 456, 228003.

304

Yuan, Z. K.; Li, J.; Yang, M. J.; Fang, Z. S.; Jian, J. H.; Yu, D. S.; Chen, X. D.; Dai, L. M. Ultrathin black phosphorus-on-nitrogen doped graphene for efficient overall water splitting: Dual modulation roles of directional interfacial charge transfer. J. Am. Chem. Soc. 2019, 141, 4972–4979.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 April 2022
Revised: 21 May 2022
Accepted: 24 May 2022
Published: 22 July 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 22075099) and the Education Department of Jilin Province (Nos. JJKH20220967KJ and JJKH20220968CY).

Return