Journal Home > Volume 15 , Issue 10

Electronic doped quantum dots (Ed-QDs), by heterovalent cations doping, have held promise for future device concepts in optoelectronic and spin-based technologies due to their broadband Stokes-shifted luminescence, enhanced electrical transport and tailored magnetic behavior. Considering their scale-up requirement and the low yielding of several current colloidal synthesis methods, a stable and efficient bulk synthesis strategy must be developed. Microreactors have long been recognized as an effective platform for producing nanomaterials and fabricating large-scale structures. Here, we chose microreactor platform for continuous synthesis of Ed-QDs in the air at low temperatures. By original reverse cation exchange reaction mechanism together with varying the kinetic conditions of microreactor platform, such as liquid flow rate, the Ag doped CdS (CdS:Ag) Ed-QDs with higher yield have been synthesized successfully due to the continuous synthesis advantages with a high degree of size selectivity. Enabled by microreactor engineering simulation, this research not only provides a new synthetic method towards scale-up production but also enables to improve chemical mass production of similar functional QDs for optical devices, bio-imaging and innovative information processing applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Microreactor platform for continuous synthesis of electronic doped quantum dots

Show Author's information Yuxi Li1Yanbin Li2Xinyuan Li1,3( )Tailei Hou1Chen Qiao1Yunpeng Tai1Xiaole Gu1Di Zhao1,3Le Sang3( )Jiatao Zhang1,3( )
Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China
School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 102488, China

Abstract

Electronic doped quantum dots (Ed-QDs), by heterovalent cations doping, have held promise for future device concepts in optoelectronic and spin-based technologies due to their broadband Stokes-shifted luminescence, enhanced electrical transport and tailored magnetic behavior. Considering their scale-up requirement and the low yielding of several current colloidal synthesis methods, a stable and efficient bulk synthesis strategy must be developed. Microreactors have long been recognized as an effective platform for producing nanomaterials and fabricating large-scale structures. Here, we chose microreactor platform for continuous synthesis of Ed-QDs in the air at low temperatures. By original reverse cation exchange reaction mechanism together with varying the kinetic conditions of microreactor platform, such as liquid flow rate, the Ag doped CdS (CdS:Ag) Ed-QDs with higher yield have been synthesized successfully due to the continuous synthesis advantages with a high degree of size selectivity. Enabled by microreactor engineering simulation, this research not only provides a new synthetic method towards scale-up production but also enables to improve chemical mass production of similar functional QDs for optical devices, bio-imaging and innovative information processing applications.

Keywords: quantum dots, microreactor, continuous synthesis, scale-up

References(69)

1

Pinchetti, V.; Di, Q. M.; Lorenzon, M.; Camellini, A.; Fasoli, M.; Zavelani-Rossi, M.; Meinardi, F.; Zhang, J. T.; Crooker, S. A.; Brovelli, S. Excitonic pathway to photoinduced magnetism in colloidal nanocrystals with nonmagnetic dopants. Nat. Nanotechnol. 2018, 13, 145–151.

2

Todescato, F.; Minotto, A.; Signorini, R.; Jasieniak J. J.; Bozio, R. Investigation into the heterostructure interface of CdSe-based core-shell quantum dots using surface-enhanced Raman spectroscopy. ACS Nano. 2013, 7, 6649–6657.

3

Yeh, C. W.; Wang, Y. K.; Wu, I. H.; Yang, Y. C.; Chen, P. R.; Chen, H. S. Large stokes shifts over visible-infrared wavelengths from multicore/shell quantum dots for solar-harvesting applications. ACS Appl. Nano Mater. 2022, 5, 3572–3580.

4

Viswanatha, R.; Naveh, D.; Chelikowsky, J. R.; Kronik, L.; Sarma, D. D. Magnetic properties of Fe/Cu codoped ZnO nanocrystals. J. Phys. Chem. Lett. 2012, 3, 2009–2014.

5

Saha A.; Viswanatha, R. Magnetism at the interface of magnetic oxide and nonmagnetic semiconductor quantum dots. ACS Nano 2017, 11, 3347–3354.

6

Gui, J.; Ji, M. W.; Liu, J. J.; Xu, M.; Zhang, J. T.; Zhu, H. S. Phosphine-Initiated cation exchange for precisely tailoring composition and properties of semiconductor nanostructures: Old concept, new applications. Angew. Chem. , Int. Ed. 2015, 127, 3754–3758.

7

Pietryga, J. M.; Park, Y. S.; Lim, J.; Fidler, A. F.; Bae, W. K.; Brovelli, S.; Klimov, V. I. Spectroscopic and device aspects of nanocrystal quantum dots. Chem. Rev. 2016, 116, 10513–10622.

8

Hou, X. Q.; Qin, H. Y.; Peng, X. G. Enhancing dielectric screening for auger suppression in CdSe/CdS quantum dots by epitaxial growth of ZnS shell. Nano Lett. 2021, 21, 3871–3878.

9

Li, X. Y.; Rong, H. P.; Zhang, J. T.; Wang D. S.; Li, Y. D. Modulating the local coordination environment of single-atom catalysts for enhanced catalytic performance. Nano Res. 2020, 13, 1842–1855.

10

Jia, W.; Wu, Y. E.; Chen, Y. F.; He, D. S.; Li, J. P.; Wang, Y.; Wang, Z.; Zhu, W.; Chen, C.; Peng, Q. et al. Interface-induced formation of onion-like alloy nanocrystals by defects engineering. Nano Res. 2016, 9, 584–592.

11

Wang, Y.; Zheng, X. B.; Wang, D. S. Design concept for electrocatalysts. Nano Res. 2022, 15, 1730–1752.

12

Xiong, Y.; Sun, W. M.; Han, Y. H.; Xin, P. Y.; Zheng, X. S.; Yan, W. S.; Dong, J. C.; Zhang, J.; Wang, D. S.; Li, Y. D. Cobalt single atom site catalysts with ultrahigh metal loading for enhanced aerobic oxidation of ethylbenzene. Nano Res. 2021, 14, 2418–2423.

13

Panfil, Y. E.; Oded, M.; Banin, U. Colloidal quantum nanostructures: Emerging materials for display applications. Angew. Chem. , Int. Ed. 2018, 57, 4274–4295.

14

Rainò, G.; Becker, M. A.; Bodnarchuk, M. I.; Mahrt, R. F.; Kovalenko, M. V.; Stöferle, T. Superfluorescence from lead halide perovskite quantum dot superlattices. Nature 2018, 563, 671–675.

15

Moon, H.; Lee, C.; Lee, W.; Kim, J.; Chae, H. Stability of quantum dots, quantum dot films, and quantum dot light-emitting diodes for display applications. Adv. Mater. 2019, 31, 1804294.

16

Jalalah, M.; Al-Assiri, M. S.; Park, J. G. One-pot gram-scale, eco-friendly, and cost-effective synthesis of CuGaS2/ZnS nanocrystals as efficient UV-harvesting down-converter for photovoltaics. Adv. Energy Mater. 2018, 8, 1703418.

17

Bao, S.; Yu, H. Y.; Gao, G. Y.; Zhu, H. Y.; Wang, D. S.; Zhu, P. F.; Wang, G. F. Rare-earth single atom based luminescent composite nanomaterials: Tunable full-color single phosphor and applications in WLEDs. Nano Res. 2022, 15, 3594–3605.

18

Sun, Z. J.; Wu, Q. Q.; Wang, S.; Cao, F.; Wang, Y. M.; Li, L. F.; Wang, H. H.; Kong, L. M.; Yan, L. M.; Yang, X. Y. Suppressing the cation exchange at the core/shell interface of InP quantum dots by a selenium shielding layer enables efficient green light-emitting diodes. ACS Appl. Mater. Interfaces 2022, 14, 15401–15406.

19

Park, Y. S.; Roh, J.; Diroll, B. T.; Schaller, R. D.; Klimov, V. I. Colloidal quantum dot lasers. Nat. Rev. Mater. 2021, 6, 382–401.

20

Saha, A.; Kumar, G.; Pradhan, S.; Dash, G.; Viswanatha, R.; Konstantatos, G. Visible-blind ZnMgO colloidal quantum dot downconverters expand Silicon CMOS sensors spectral coverage into ultraviolet and enable UV-band discrimination. Adv. Mater. 2022, 34, 2109498.

21

Zhang, M.; Xin, X.; Feng, Y. Q.; Zhang, J. H.; Lv, H. J.; Yang, G. Y. Coupling Ni-substituted polyoxometalate catalysts with water-soluble CdSe quantum dots for ultraefficient photogeneration of hydrogen under visible light. Appl. Catal. B Environ. 2022, 303, 120893.

22

Meinardi, F.; Bruni, F.; Brovelli, S. Luminescent solar concentrators for building-integrated photovoltaics. Nat. Rev. Mater. 2017, 2, 17072.

23

Zhu, M. B.; Li, Y. X.; Tian, S. Q.; Xie, Y.; Zhao, X. J.; Gong, X. Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators. J. Colloid Interface Sci. 2019, 534, 509–517.

24

Zhao, H. G.; Benetti, D.; Tong, X.; Zhang, H.; Zhou, Y. F.; Liu, G. J.; Ma, D. L.; Sun, S. H.; Wang, Z. M.; Wang, Y. Q. et al. Efficient and stable tandem luminescent solar concentrators based on carbon dots and perovskite quantum dots. Nano Energy 2018, 50, 756–765.

25

Niu, G. D.; Ruditskiy, A.; Vara, M.; Xia, Y. N. Toward continuous and scalable production of colloidal nanocrystals by switching from batch to droplet reactors. Chem. Soc. Rev. 2015, 44, 5806–5820.

26

Santana, J. S.; Skrabalak, S. E. Continuous flow routes toward designer metal nanocatalysts. Adv. Energy Mater. 2020, 10, 1902051.

27

Chen, B. K.; Pradhan, N.; Zhong, H. Z. From large-scale synthesis to lighting device applications of ternary I-III-VI semiconductor nanocrystals: Inspiring greener material emitters. J. Phys. Chem. Lett. 2018, 9, 435–445.

28

Lignos, I.; Maceiczyk, R.; Demello, A. J. Microfluidic technology: Uncovering the mechanisms of nanocrystal nucleation and growth. Acc. Chem. Res. 2017, 50, 1248–1257.

29

Shi, H. Y.; Song, B.; Chen, R. Z.; Zhang, Q.; Hu, G. Y.; Li, J.; Wang, J. H.; Meng, X. Y.; Wang, H. Y.; He, Y. Microfluidic-enabled ambient-temperature synthesis of ultrasmall bimetallic nanoparticles. Nano Res. 2022, 15, 248–254.

30

Song, W. T.; Wang Y. M.; Wang, B.; Yao, Y. F.; Wang, W. G.; Wu, J. H.; Shen, Q.; Luo, W. J.; Zou, Z. G. Super stable CsPbBr3@SiO2 tumor imaging reagent by stress- response encapsulation. Nano Res. 2020, 13, 795–801.

31

Sui, J. S.; Yan, J. Y.; Wang, K.; Luo, G. S. Efficient synthesis of lithium rare-earth tetrafluoride nanocrystals via a continuous flow method. Nano Res. 2020, 13, 2837–2846.

32

Cheng, Y.; Ling, S. D.; Geng, Y. H.; Wang, Y. D.; Xu, J. H. Microfluidic synthesis of quantum dots and their applications in bio-sensing and bio-imaging. Nanoscale Adv. 2021, 3, 2180–2195.

33

Lignos, I.; Stavrakis, S.; Nedelcu, G.; Protesescu, L.; deMello, A. J.; Kovalenko, M. V. Synthesis of cesium lead halide perovskite nanocrystals in a droplet-based microfluidic platform: Fast parametric space mapping. Nano Lett. 2016, 16, 1869–1877.

34
Ji, J. L. ; Li, M. M. ; Chen, Z. W. ; Wang, H. W. ; Jiang, X. N. ; Zhuo, K. ; Liu, Y. ; Yang, X. ; Gu, Z. ; Sang S. B. et al. In situ fabrication of organic electrochemical transistors on a microfluidic chip. Nano Res. 2019, 12, 1943–1951.
DOI
35

Illath, K.; Kar, S.; Gupta, P.; Shinde, A.; Wankhar, S.; Tseng, F. G.; Lim, K. T.; Nagai, M.; Santra, T. S. Microfluidic nanomaterials: From synthesis to biomedical applications. Biomaterials 2022, 280, 121247.

36

Wu, X. J.; Sun, S. Y.; Yu, X. D.; Zhu, X. L.; Xu, M. G.; Wu, G.; Xu, J. H. Review on microfluidic construction of advanced nanomaterials for high-performance energy storage applications. Energy Fuels 2022, 36, 4708–4727.

37

Luo, G. S.; Du, L.; Wang, Y. J.; Wang, K. Recent developments in microfluidic device-based preparation, functionalization, and manipulation of nano- and micro-materials. Particuology 2019, 45, 1–19.

38

Sierra-Pallares, J.; Huddle, T.; García-Serna, J.; Alonso, E.; Fidel, M.; Shvets, I.; Luebben, O.; Cocero, M. J.; Lester, E. Understanding bottom-up continuous hydrothermal synthesis of nanoparticles using empirical measurement and computational simulation. Nano Res. 2016, 9, 3377–3387.

39

Shen, Y.; Weeranoppanant, N.; Xie, L. S.; Chen, Y. M.; Lusardi, R.; Imbrogno, J.; Bawendi, M. G.; Jensen, K. F. Multistage extraction platform for highly efficient and fully continuous purification of nanoparticles. Nanoscale 2017, 9, 7703–7707.

40

Kubendhiran, S.; Bao, Z.; Dave, K.; Liu R. S. Microfluidic synthesis of semiconducting colloidal quantum dots and their applications. ACS Appl. Nano Mater. 2019, 2, 1773–1790.

41

Roberts, E. J.; Karadaghi, L. R.; Wang, L.; Malmstadt, N.; Brutchey R. L. Continuous flow methods of fabricating catalytically active metal nanoparticles. ACS Appl. Mater. Interfaces 2019, 11, 27479–27502.

42

Darr, J. A.; Zhang, J. Y.; Makwana, N. M.; Weng X. L. Continuous hydrothermal synthesis of inorganic nanoparticles: Applications and future directions. Chem. Rev. 2017, 117, 11125–11238.

43
Shen, Y. Abolhasani, M. ; Chen, Y. ; Xie, L. S. ; Yang, L. ; Coley, C. W. ; Bawendi, M. G. ; Jensen, K. F. In-situ microfluidic study of biphasic nanocrystal ligand-exchange reactions using an oscillatory flow reactor. Angew. Chem. , Int. Ed. 2017, 56, 16333–16337.
DOI
44

Wang, J. M.; Song, Y. J. Microfluidic synthesis of nanohybrids. Small 2017, 13, 1604084.

45

Pu, Y.; Cai, F. H.; Wang, D.; Wang, J. X.; Chen, J. F. Colloidal synthesis of semiconductor quantum dots toward large-scale production: A review. Ind. Eng. Chem. Res. 2018, 57, 1790–1802.

46

Antami, K.; Bateni, F.; Ramezani, M.; Hauke, C. E.; Castellano, F. N.; Abolhasani, M. CsPbI3 nanocrystals go with the flow: From formation mechanism to continuous nanomanufacturing. Adv. Funct. Mater. 2022, 32, 2108687.

47

Bateni, F.; Epps, R. W.; Abdel-Latif, K.; Dargis, R.; Han, S. Y.; Volk, A. A.; Ramezani, M.; Cai, T.; Chen, O.; Abolhasani, M. Ultrafast cation doping of perovskite quantum dots in flow. Matter 2021, 4, 2429–2447.

48

Koryakina, I. G.; Afonicheva, P. K.; Arabuli, K. V.; Evstrapov, A. A.; Timin, A. S.; Zyuzin M. V. Microfluidic synthesis of optically responsive materials for nano- and biophotonics. Adv. Colloid Interface Sci. 2021, 298, 102548.

49

Baek, J.; Shen, Y.; Lignos, I.; Bawendi, M. G.; Jensen, K. F. Multistage microfluidic platform for the continuous synthesis of III-V core/shell quantum dots. Angew. Chem. , Int. Ed. 2018, 130, 11081–11084.

50

Bai, B.; Xu, M.; Li, N.; Chen, W. X.; Liu, J. J.; Liu, J.; Rong, H. P.; Fenske, D.; Zhang, J. T. Semiconductor nanocrystal engineering by applying thiol-and solvent-coordinated cation exchange kinetics. Angew. Chem. , Int. Ed. 2019, 131, 4906–4911.

51

Xu, R. D.; Qiao, C.; Xia, M.; Bai, B.; Li, Y. M.; Liu, J.; Liu, J. J.; Rong, H. P.; Xu, M.; Zhang, J. T. Stable quantum dots/polymer matrix and their versatile 3D printing frameworks. J. Mater. Chem. C 2021, 9, 7194–7199.

52

Di, Q. M.; Zhu, X. Y.; Liu, J.; Zhang, X. B.; Shang, H. S.; Chen, W. X.; Liu, J. J.; Rong, H. P.; Xu, M.; Zhang, J. T. High-performance quantum dots with synergistic doping and oxide shell protection synthesized by cation exchange conversion of ternary-composition nanoparticles. J. Phys. Chem. Lett. 2019, 10, 2606–2615.

53

Li, X. Y.; Su, M. Y.; Wang, Y. C.; Xu, M.; Tong, M. M.; Haigh, S. J.; Zhang, J. T. Telluride nanocrystals with adjustable amorphous shell thickness and core-shell structure modulation by aqueous cation exchange. Inorg. Chem. 2022, 61, 3989–3996.

54

Huang, W. Y.; Xu, M.; Liu, J. J.; Wang, J. Y.; Zhu, Y. B.; Liu, J.; Rong, H. P.; Zhang, J. T. Hydrophilic doped quantum dots "Ink" and their inkjet-printed patterns for dual mode anticounterfeiting by reversible cation exchange mechanism. Adv. Funct. Mater. 2019, 29, 1808762.

55

Liu, J.; Zhang, J. T. Nanointerface chemistry: Lattice-mismatch-directed synthesis and application of hybrid nanocrystals. Chem. Rev. 2020, 120, 2123–2170.

56

Bai, B.; Xu, M.; Li, J. Z.; Zhang, S. P.; Qiao, C.; Liu, J. J.; Zhang, J. T. Dopant diffusion equilibrium overcoming impurity loss of doped QDs for multimode anti-Counterfeiting and encryption. Adv. Funct. Mater. 2021, 31, 2100286.

57

Li, X. Y.; Ji, M. W.; Li, H. B.; Wang, H. Z.; Xu, M.; Rong, H. P.; Wei, J.; Liu, J.; Liu, J. J.; Chen, W. X. et al. Cation/anion exchange reactions toward the syntheses of upgraded nanostructures: Principles and applications. Matter 2020, 2, 554–586.

58

Doh, H.; Hwang, S.; Kim, S. Size-Tunable synthesis of nearly monodisperse Ag2S nanoparticles and size-dependent fate of the crystal structures upon cation exchange to AgInS2 nanoparticles. Chem. Mater. 2016, 28, 8123–8127.

59

Li, L.; Hu, F.; Xu, D. Y.; Shen, S. L.; Wang, Q. B. Metal ion redox potential plays an important role in high-yield synthesis of monodisperse silver nanoparticles. Chem. Commun. 2012, 48, 4728–4730.

60

De Trizio, L.; Manna, L. Forging colloidal nanostructures via cation exchange reactions. Chem. Rev. 2016, 116, 10852–10887.

61

Rao, L. S.; Tang, Y.; Li, Z. T.; Ding, X. R.; Liang, G. W.; Lu, H. G.; Yan, C. M.; Tang, K. R.; Yu, B. H. Efficient synthesis of highly fluorescent carbon dots by microreactor method and their application in Fe3+ ion detection. Mater. Sci. Eng. C 2017, 81, 213–223.

62

Lin, P. C.; Chen, H. B.; Wei, Z.; Lin, Y. R.; Lin, J. H.; Chen, Y.; Cheng, Z. D. Continuous-flow synthesis of doped all-inorganic perovskite nanocrystals enabled by a microfluidic reactor for light-emitting diode application. Sci. China Mater. 2020, 63, 1526–1536.

63

Shao, M.; Yu, Q.; Jing, N.; Cheng, Y.; Wang, D.; Wang, Y. D.; Xu, J. H. Continuous synthesis of carbon dots with full spectrum fluorescence and the mechanism of their multiple color emission. Lab Chip. 2019, 19, 3974–3978.

64

Kershaw, S. V.; Abdelazim, N. M.; Zhao, Y. H.; Susha, A. S.; Zhovtiuk, O.; Teoh, W. Y.; Rogach, A. L. Investigation of the exchange kinetics and surface recovery of CdxHg1–xTe quantum dots during cation exchange using a microfluidic flow reactor. Chem. Mater. 2017, 29, 2756–2768.

65

Zhu, S. W.; Li, X. Y.; Zhang, J. T. Atomically surficial modulation in two-dimensional semiconductor nanocrystals for selective photocatalytic reactions. Front. Chem. 2022, 10, 890287.

66

Wan, X. D.; Liu, J.; Wang, D.; Li, Y. M.; Wang, H. Z.; Pan, R. R.; Zhang, E. H.; Zhang, X. M.; Li, X. Y.; Zhang, J. T. From core-shell to yolk-shell: Keeping the intimately contacted interface for plasmonic metal@semiconductor nanorods toward enhanced near-infrared photoelectrochemical performance. Nano Res. 2020, 13, 1162–1170.

67

Liu, D.; Yan, J. Y.; Wang, K.; Wang Y. D.; Luo, G. S. Continuous synthesis of ultrasmall core-shell upconversion nanoparticles via a flow chemistry method. Nano Res. 2022, 15, 1199–1204.

68

Zhu, D. X.; Zaffalon, M. L.; Zito, J.; Cova, F.; Meinardi, F.; De Trizio, L.; Infante, I.; Brovelli, S.; Manna, L. Sb-doped metal halide nanocrystals: A 0D versus 3D comparison. ACS Energy Lett. 2021, 6, 2283–2292.

69

Ai, Y. J.; Hu, Z. N.; Shao, Z. X.; Qi, L.; Liu, L.; Zhou, J. J.; Sun, H. B.; Liang, Q. L. Egg-like magnetically immobilized nanospheres: A long-lived catalyst model for the hydrogen transfer reaction in a continuous-flow reactor. Nano Res. 2018, 11, 287–299.

File
12274_2022_4571_MOESM1_ESM.pdf (4.9 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 May 2022
Revised: 21 May 2022
Accepted: 21 May 2022
Published: 10 June 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 51872030, 22105116, 21908126, 51631001, 51902023, and 51702016) and Beijing Institute of Technology Research Fund Program for Young Scholars. The authors acknowledge the critical and quantity testing work supported by Beijing Zhongkebaice Technology Service Co., Ltd.

Return