Journal Home > Volume 15 , Issue 10

High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~ 9% and ~ 25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~ 9% (20% Yb3+) to ~ 7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~ 7 % (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Yb- and Er concentration dependence of the upconversion luminescence of highly doped NaYF4:Yb,Er/NaYF4:Lu core/shell nanocrystals prepared by a water-free synthesis

Show Author's information Christian Würth1Bettina Grauel1Monika Pons1Florian Frenzel1Philipp Rissiek2Kerstin Rücker1Markus Haase1( )Ute Resch-Genger1( )
Federal Institute for Materials Research and Testing (BAM), Division Biophotonics, Richard-Willstaetter-Str. 11, 12489 Berlin, Germany
Institut für Chemie Neuer Materialien, Fachbereich Biologie/Chemie, Universität Osnabrück, Barbarastraße 7, 49076 Osnabrück, Germany

Abstract

High sensitizer and activator concentrations have been increasingly examined to improve the performance of multi-color emissive upconversion (UC) nanocrystals (UCNC) like NaYF4:Yb,Er and first strategies were reported to reduce concentration quenching in highly doped UCNC. UC luminescence (UCL) is, however, controlled not only by dopant concentration, yet by an interplay of different parameters including size, crystal and shell quality, and excitation power density (P). Thus, identifying optimum dopant concentrations requires systematic studies of UCNC designed to minimize additional quenching pathways and quantitative spectroscopy. Here, we quantify the dopant concentration dependence of the UCL quantum yield (ΦUC) of solid NaYF4:Yb,Er/NaYF4:Lu upconversion core/shell nanocrystals of varying Yb3+ and Er3+ concentrations (Yb3+ series: 20%‒98% Yb3+; 2% Er3+; Er3+ series: 60% Yb3+; 2%‒40% Er3+). To circumvent other luminescence quenching processes, an elaborate synthesis yielding OH-free UCNC with record ΦUC of ~ 9% and ~ 25 nm core particles with a thick surface shell were used. High Yb3+ concentrations barely reduce ΦUC from ~ 9% (20% Yb3+) to ~ 7% (98% Yb3+) for an Er3+ concentration of 2%, thereby allowing to strongly increase the particle absorption cross section and UCNC brightness. Although an increased Er3+ concentration reduces ΦUC from ~ 7 % (2% Er3+) to 1% (40%) for 60% Yb3+. Nevertheless, at very high P (> 1 MW/cm2) used for microscopic studies, highly Er3+-doped UCNC display a high brightness because of reduced saturation. These findings underline the importance of synthesis control and will pave the road to many fundamental studies of UC materials.

Keywords: core/shell nanoparticles, concentration quenching, highly doped upconversion nanocrystals, upconversion luminescence efficiency, Er, NaYF4:Yb

References(54)

1

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. , Int. Ed. 2011, 50, 5808–5829.

2

Chen, G. Y.; Ågren, H.; Ohulchanskyy, T. Y.; Prasad, P. N. Light upconverting core-shell nanostructures: Nanophotonic control for emerging applications. Chem. Soc. Rev. 2015, 44, 1680–1713.

3

Resch-Genger, U.; Gorris, H. H. Perspectives and challenges of photon-upconversion nanoparticles - Part I: Routes to brighter particles and quantitative spectroscopic studies. Analy. Bioanal. Chem. 2017, 409, 5855–5874.

4

Himmelstoss, S. F.; Hirsch, T. A critical comparison of lanthanide based upconversion nanoparticles to fluorescent proteins, semiconductor quantum dots, and carbon dots for use in optical sensing and imaging. Methods Appl. Fluoresc. 2019, 7, 022002.

5

Wilhelm, S. Perspectives for upconverting nanoparticles. ACS Nano 2017, 11, 10644–10653.

6

Zhou, J. J.; Leaño, J. L. Jr; Liu, Z. Y.; Jin, D. Y.; Wong, K. L.; Liu, R. S.; Bünzli, J. C. G. Impact of lanthanide nanomaterials on photonic devices and smart applications. Small 2018, 14, 1801882.

7

Qin, X.; Xu, J. H.; Wu, Y. M.; Liu, X. G. Energy-transfer editing in lanthanide-activated upconversion nanocrystals: A toolbox for emerging applications. ACS Cent. Sci. 2019, 5, 29–42.

8

Chen, S.; Weitemier, A. Z.; Zeng, X.; He, L. M.; Wang, X. Y.; Tao, Y. Q.; Huang, A. J. Y.; Hashimotodani, Y.; Kano, M.; Iwasaki, H. et al. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science 2018, 359, 679–684.

9

Shikha, S.; Salafi, T.; Cheng, J. T.; Zhang, Y. Versatile design and synthesis of nano-barcodes. Chem. Soc. Rev. 2017, 46, 7054–7093.

10

Goldschmidt, J. C.; Fischer, S. Upconversion for photovoltaics - a review of materials, devices and concepts for performance enhancement. Adv. Opt. Mater. 2015, 3, 510–535.

11

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

12

Tan, M. L.; Monks, M. J.; Huang, D. X.; Meng, Y. J.; Chen, X. W.; Zhou, Y.; Lim, S. F.; Würth, C.; Resch-Genger, U.; Chen, G. Y. Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies. Nanoscale 2020, 12, 10592–10599.

13

Gargas, D. J.; Chan, E. M.; Ostrowski, A. D.; Aloni, S.; Altoe, M. V. P.; Barnard, E. S.; Sanii, B.; Urban, J. J.; Milliron, D. J.; Cohen, B. E. et al. Engineering bright sub-10-nm upconverting nanocrystals for single-molecule imaging. Nat. Nanotechnol. 2014, 9, 300–305.

14

Würth, C.; manley, P.; voigt, R.; ahiboz, D.; becker, C.; resch-genger, U. Metasurface enhanced sensitized photon upconversion: Toward highly efficient low power upconversion applications and nanoscale e-field sensors. Nano Lett. 2020, 20, 6682–6689.

15

Würth, C.; Kaiser, M.; Wilhelm, S.; Grauel, B.; Hirsch, T.; Resch-Genger, U. Excitation power dependent population pathways and absolute quantum yields of upconversion nanoparticles in different solvents. Nanoscale 2017, 9, 4283–4294.

16

Blasse, G. Luminescence of inorganic solids: From isolated centres to concentrated systems. Prog. Solid State Chem. 1988, 18, 79–171.

17
MuhrV. WurthC. KraftM. BuchnerM. BaeumnerA. J. Resch-GengerU. HirschT. Particle-size-dependent forster resonance energy transfer from upconversion nanoparticles to organic dyesAnal. Chem.2017894868487410.1021/acs.analchem.6b04662

Muhr, V.; Wurth, C.; Kraft, M.; Buchner, M.; Baeumner, A. J.; Resch-Genger, U.; Hirsch, T. Particle-size-dependent forster resonance energy transfer from upconversion nanoparticles to organic dyes. Anal. Chem. 2017, 89, 4868–4874.

18

Wang, Z. J.; Meijerink, A. Concentration quenching in upconversion nanocrystals. J. Phys. Chem. C 2018, 122, 26298–26306.

19

Chen, G. Y.; Ohulchanskyy, T. Y.; Kumar, R.; Ågren, H.; Prasad, P. N. Ultrasmall monodisperse NaYF4: Yb3+/Tm3+ nanocrystals with enhanced near-infrared to near-infrared upconversion photoluminescence. ACS Nano 2010, 4, 3163–3168.

20

Gao, D. L.; Zhang, X. Y.; Chong, B.; Xiao, G. Q.; Tian, D. P. Simultaneous spectra and dynamics processes tuning of a single upconversion microtube through Yb3+ doping concentration and excitation power. Phys. Chem. Chem. Phys. 2017, 19, 4288–4296.

21

Podhorodecki, A.; Krajnik, B.; Golacki, L. W.; Kostiv, U.; Pawlik, G.; Kaczmarek, M.; Horak, D. Percolation limited emission intensity from upconverting NaYF4: Yb3+, Er3+ nanocrystals-a single nanocrystal optical study. Nanoscale 2018, 10, 21186–21196.

22

Shen, B.; Cheng, S. M.; Gu, Y. Y.; Ni, D. R.; Gao, Y. L.; Su, Q. Q.; Feng, W.; Li, F. Y. Revisiting the optimized doping ratio in core/shell nanostructured upconversion particles. Nanoscale 2017, 9, 1964–1971.

23
Ma, C. S. ; Xu, X. X. ; Wang, F. ; Zhou, Z. G. ; Liu, D. M. ; Zhao, J. B. ; Guan, M. ; Lang, C. I. ; Jin, D. Y. Optimal sensitizer concentration in single upconversion nanocrystals. Nano Lett. 2017, 17, 2858–2864.
DOI
24

Liu, Q.; Zhang, Y. X.; Peng, C. S.; Yang, T. S.; Joubert, L. M.; Chu, S. Single upconversion nanoparticle imaging at sub-10 W·cm–2 irradiance. Nat. Photonics 2018, 12, 548–553.

25

Chan, E. M.; Levy, E. S.; Cohen, B. E. Rationally designed energy transfer in upconverting nanoparticles. Adv. Mater. 2015, 27, 5753–5761.

26

Zhao, J. B.; Jin, D. Y.; Schartner, E. P.; Lu, Y. Q.; Liu, Y. J.; Zvyagin, A. V.; Zhang, L. X.; Dawes, J. M.; Xi, P.; Piper, J. A. et al. Single-nanocrystal sensitivity achieved by enhanced upconversion luminescence. Nat. Nanotechnol. 2013, 8, 729–734.

27

Tian, B. N.; Fernandez-Bravo, A.; Najafiaghdam, H.; Torquato, N. A.; Altoe, M. V. P.; Teitelboim, A.; Tajon, C. A.; Tian, Y.; Borys, N. J.; Barnard, E. S. et al. Low irradiance multiphoton imaging with alloyed lanthanide nanocrystals. Nat. Commun. 2018, 9, 3082.

28

Teitelboim, A.; Tian, B. N.; Garfield, D. J.; Fernandez-Bravo, A.; Gotlin, A. C.; Schuck, P. J.; Cohen, B. E.; Chan, E. M. Energy transfer networks within upconverting nanoparticles are complex systems with collective, robust, and history-dependent dynamics. J. Phys. Chem. C 2019, 123, 2678–2689.

29

Chen, B.; Wang, F. Combating concentration quenching in upconversion nanoparticles. Acc. Chem. Res. 2020, 53, 358–367.

30

Chen, B.; Wang, F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020, 7, 1067–1081.

31

Zhou, B.; Tang, B.; Zhang, C.; Qin, C. Y.; Gu, Z. J.; Ma, Y.; Zhai, T. Y.; Yao, J. N. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 2020, 11, 1174.

32

Sun, L. Y.; Gao, R. Y.; Pan, T. T.; Ai, X. C.; Fu, L. M.; Zhang, J. P. Concentration-regulated photon upconversion and quenching in NaYF4: Yb3+, Er3+ nanocrystals: Nonexponentiality revisited. Nanoscale 2019, 11, 18150–18158.

33

Rabouw, F. T.; Prins, P. T.; Villanueva-Delgado, P.; Castelijns, M.; Geitenbeek, R. G.; Meijerink, A. Quenching pathways in NaYF4: Er3+, Yb3+ upconversion nanocrystals. ACS Nano 2018, 12, 4812–4823.

34

Hossan, Y.; Hor, A.; Luu, Q.; Smith, S. J.; May, P. S.; Berry, M. T. Explaining the nanoscale effect in the upconversion dynamics of β-NaYF4: Yb3+, Er3+ core and core-shell nanocrystals. J. Phys. Chem. C 2017, 121, 16592–16606.

35

Kraft, M.; Würth, C.; Muhr, V.; Hirsch, T.; Resch-Genger, U. Particle-size-dependent upconversion luminescence of NaYF4: Yb, Er nanoparticles in organic solvents and water at different excitation power densities. Nano Res. 2018, 11, 6360–6374.

36

Wei, W.; Zhang, Y.; Chen, R.; Goggi, J.; Ren, N.; Huang, L.; Bhakoo, K. K.; Sun, H. D.; Tan, T. T. Y. Cross relaxation induced pure red upconversion in activator- and sensitizer-rich lanthanide nanoparticles. Chem. Mater. 2014, 26, 5183–5186.

37

Lee, C.; Park, H.; Kim, W.; Park, S. Origin of strong red emission in Er3+-based upconversion materials: Role of intermediate states and cross relaxation. Phys. Chem. Chem. Phys. 2019, 21, 24026–24033.

38
Wen, S. H.; Zhou, J. J.; Zheng, K. Z.; Bednarkiewicz, A.; Liu, X. G.; Jin, D. Y. Advances in highly doped upconversion nanoparticles. Nat. Commun. 2018, 9, 2415.
DOI
39

Zheng, X.; Shikha, S.; Zhang, Y. Elimination of concentration dependent luminescence quenching in surface protected upconversion nanoparticles. Nanoscale 2018, 10, 16447–16454.

40

Kaiser, M.; Würth, C.; Kraft, M.; Hyppänen, I.; Soukka, T.; Resch-Genger, U. Power-dependent upconversion quantum yield of NaYF4: Yb3+, Er3+ nano- and micrometer-sized particles - measurements and simulations. Nanoscale 2017, 9, 10051–10058.

41

Homann, C.; Krukewitt, L.; Frenzel, F.; Grauel, B.; Würth, C.; Resch-Genger, U.; Haase, M. NaYF4: Yb, Er/NaYF4 core/shell nanocrystals with high upconversion luminescence quantum Yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769.

42

Hudry, D.; Busko, D.; Popescu, R.; Gerthsen, D.; Abeykoon, A. M. M.; Kübel, C.; Bergfeldt, T.; Richards, B. S. Direct evidence of significant cation intermixing in upconverting core@shell nanocrystals: Toward a new crystallochemical model. Chem. Mater. 2017, 29, 9238–9246.

43

Mondini, S.; Ferretti, A. M.; Puglisi, A.; Ponti, A. PEBBLES and PEBBLEJUGGLER: Software for accurate, unbiased, and fast measurement and analysis of nanoparticle morphology from transmission electron microscopy (TEM) micrographs. Nanoscale 2012, 4, 5356–5372.

44
Rodríguez-Carvajal, J. An introduction to the program FullProf. Saclay: Laboratoire Léon Brillouin (CEA-CNRS), 2001.
45

Cui, X.; Feng, Z.; Jin, Y.; Cao, Y.; Deng, D.; Chu, H.; Cao, S.; Dong, C.; Zhang, J. AutoFP: A GUI for highly automated Rietveld refinement using an expert system algorithm based on FullProf. J. Appl. Cryst. 2015, 48, 1581–1586.

46

Andresen, E.; Wurth, C.; Prinz, C.; Michaelis, M.; Resch-Genger, U. Time-resolved luminescence spectroscopy for monitoring the stability and dissolution behaviour of upconverting nanocrystals with different surface coatings. Nanoscale 2020, 12, 12589–12601.

47

Saleh, M. I.; Rühle, B.; Wang, S.; Radnik, J.; You, Y.; Resch-Genger, U. Assessing the protective effects of different surface coatings on NaYF4: Yb3+, Er3+ upconverting nanoparticles in buffer and DMEM. Sci. Rep. 2020, 10, 19318.

48

Meijer, M. S.; Rojas-Gutierrez, P. A.; Busko, D.; Howard, I. A.; Frenze, F.; Würth, C.; Resch-Genger, U.; Richards, B. S.; Turshatov, A.; Capobianco, J. A. et al. Absolute upconversion quantum yields of blue-emitting LiYF4: Yb3+, Tm3+ upconverting nanoparticles. Phys. Chem. Chem. Phys. 2018, 20, 22556–22562.

49

Frenzel, F.; Würth, C.; Dukhno, O.; Przybilla, F.; Wiesholler, L. M.; Muhr, V.; Hirsch, T.; Mély, Y.; Resch-Genger, U. Multiband emission from single β-NaYF4(Yb, Er) nanoparticles at high excitation power densities and comparison to ensemble studies. Nano Res. 2021, 14, 4107–4115.

50

Johnson, N. J. J.; Korinek, A.; Dong, C. H.; Van Veggel, F. C. J. M. Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068–11071.

51

Talapin, D. V.; Rogach, A. L.; Haase, M.; Weller, H. Evolution of an ensemble of nanoparticles in a colloidal solution: Theoretical study. J. Phys. Chem. B 2001, 105, 12278–12285.

52

Voss, B.; Haase, M. Intrinsic focusing of the particle size distribution in colloids containing nanocrystals of two different crystal phases. ACS Nano 2013, 7, 11242–11254.

53

Würth, C.; Fischer, S.; Grauel, B.; Alivisatos, A. P.; Resch-Genger, U. Quantum yields, surface quenching, and passivation efficiency for ultrasmall core/shell upconverting nanoparticles. J. Am. Chem. Soc. 2018, 140, 4922–4928.

54

Pollnan, M.; Jackson, S. D. Erbium 3-μm fiber lasers. IEEE J. Sel. Top. Quantum Electron. 2001, 7, 30–40.

File
12274_2022_4570_MOESM1_ESM.pdf (4.7 MB)
Publication history
Copyright
Acknowledgements
Rights and permissions

Publication history

Received: 20 April 2022
Revised: 10 May 2022
Accepted: 21 May 2022
Published: 15 June 2022
Issue date: October 2022

Copyright

© The Author(s) 2022

Acknowledgements

Acknowledgements

We thank the German Science Foundation DFG (grants RE 1203/18-1 and HA 1649/7-1) and the EU (COST 1403) for financial support.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Return