AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

A novel method for the synthesis of carbon dots assisted by free radicals

Xinyue Zhou1Kebing Yi1Yeling Yang1Guohua Xie2( )Xinghu Ji1( )Zhike He1( )
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Free radicals assisted synthesis of carbon dots for white electroluminescence (white carbon dots (WCD)) and cell staining (red CDs (RCD2)).

Abstract

Carbon dots (CDs) have gradually become a widely favored type of fluorescent nanomaterials with unlimited and promising applications. This work reports a means of breaking the shackle of method to develop new red and white CDs by introducing free radicals. The resulting white emissive CDs in this strategy are employed to demonstrate electroluminescent white-light-emitting diodes (WLEDs) and achieve a record-high external quantum efficiency (0.95%) of one-step-produced white CDs (WCD)-LEDs, which dramatically simplifies the whole fabrication processes of WLEDs. With additional passivation treatment, the red CDs (RCD2) with excellent properties such as N and S co-doping, bright (quantum yield = 49%) and stable photoluminescence (PL), large positive zeta potential (+20.5 mV), and two-photon fluorescence are obtained. Such RCD2 are used for rapid staining (5 min) of yeast cells. The two CDs synthesized via this method have outstanding performance in different aspects, which provides new promise of CDs for further functionalization and applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4567_MOESM1_ESM.pdf (915.9 KB)

References

1

Baker, S. N.; Baker, G. A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem., Int. Ed. 2010, 49, 6726–6744.

2

Ambrosi, A.; Chua, C. K.; Bonanni, A.; Pumera, M. Electrochemistry of graphene and related materials. Chem. Rev. 2014, 114, 7150–7188.

3

Jiang, K.; Wang, Y. H.; Gao, X. L.; Cai, C. Z.; Lin, H. W. Facile, quick, and gram-scale synthesis of ultralong-lifetime room-temperature-phosphorescent carbon dots by microwave irradiation. Angew. Chem., Int. Ed. 2018, 57, 6216–6220.

4

Wang, D. W.; Su, D. S. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591.

5

Han, Y.; Tang, B. J.; Wang, L.; Bao, H.; Lu, Y. H.; Guan, C. T.; Zhang, L.; Le, M. Y.; Liu, Z.; Wu, M. H. Machine-learning-driven synthesis of carbon dots with enhanced quantum yields. ACS Nano 2020, 14, 14761–14768.

6

Bai, Y.; Wang, Y.; Cao, L. P.; Jiang, Y. J.; Li, Y. F.; Zou, H. Y.; Zhan, L.; Huang, C. Z. Self-targeting carbon quantum dots for peroxynitrite detection and imaging in live cells. Anal. Chem. 2021, 93, 16466–16473.

7
ZhangY. Q.LiuK. X.YuJ. K.ChenH. F.FuR.ZhuS. Q.ChenZ. Q.WangS. P.LuS. Y. Single stain hyperspectral imaging for accurate fungal pathogens identification and quantificationNano Res.2022156399640610.1007/s12274-021-3776-2

Zhang, Y. Q.; Liu, K. X.; Yu, J. K.; Chen, H. F.; Fu, R.; Zhu, S. Q.; Chen, Z. Q.; Wang, S. P.; Lu, S. Y. Single stain hyperspectral imaging for accurate fungal pathogens identification and quantification. Nano Res. 2022, 15, 6399–6406.

8

Sun, Q. H.; Zhou, Z. X.; Qiu, N. S.; Shen, Y. Q. Rational design of cancer nanomedicine: Nanoproperty integration and synchronization. Adv. Mater. 2017, 29, 1606628.

9

Sheng, J. P.; Zhang, L.; Deng, L.; Han, Y. J.; Wang, L. Q.; He, H. C.; Liu, Y. N. Fabrication of dopamine enveloped WO3−x quantum dots as single-NIR laser activated photonic nanodrug for synergistic photothermal/photodynamic therapy against cancer. Chem. Eng. J. 2020, 383, 123071.

10

Li, H. T.; He, X. D.; Kang, Z. H.; Huang, H.; Liu, Y.; Liu, J. L.; Lian, S. Y.; Tsang, C. H. A.; Yang, X. B.; Lee, S. T. Water-soluble fluorescent carbon quantum dots and photocatalyst design. Angew. Chem. , Int. Ed. 2010, 49, 4430–4434.

11

Yuan, F. L.; Yuan, T.; Sui, L. Z.; Wang, Z. B.; Xi, Z. F.; Li, Y. C.; Li, X. H.; Fan, L. Z.; Tan, Z. A.; Chen, A. M. et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs. Nat. Commun. 2018, 9, 2249.

12

Shi, Y. X.; Wang, Z. B.; Meng, T.; Yuan, T.; Ni, R. H.; Li, Y. C.; Li, X. H.; Zhang, Y.; Tan, Z. A.; Lei, S. B. et al. Red phosphorescent carbon quantum dot organic framework-based electroluminescent light-emitting diodes exceeding 5% external quantum efficiency. J. Am. Chem. Soc. 2021, 143, 18941–18951.

13

Han, Y. Q.; Huang, X. L.; Liu, J. H.; Ni, J. X.; Bai, Y. B.; Zhao, B.; Han, S. Y.; Zhang, C. L. Seeking eye protection from biomass: Carbon dot-based optical blocking films with adjustable levels of blue light blocking. J. Colloid Interface Sci. 2022, 617, 44–52.

14

Zhang, X. Y.; Zeng, Q. S.; Xiong, Y.; Ji, T. J.; Wang, C.; Shen, X. Y.; Lu, M.; Wang, H. R.; Wen, S. P.; Zhang, Y. et al. Energy level modification with carbon dot interlayers enables efficient perovskite solar cells and quantum dot based light-emitting diodes. Adv. Funct. Mater. 2020, 30, 1910530.

15

Bartolomei, B.; Dosso, J.; Prato, M. New trends in nonconventional carbon dot synthesis. Trends Chem. 2021, 3, 943–953.

16

Yu, J. K.; Yong, X.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Theoretical understanding of structure–property relationships in luminescence of carbon dots. J. Phys. Chem. Lett. 2021, 12, 7671–7687.

17

Wang, B. Y.; Song, H. Q.; Qu, X. L.; Chang, J. B.; Yang, B.; Lu, S. Y. Carbon dots as a new class of nanomedicines: Opportunities and challenges. Coord. Chem. Rev. 2021, 442, 214010.

18

Yi, S. Z.; Deng, S. M.; Guo, X. L.; Pang, C. C.; Zeng, J. Y.; Ji, S. C.; Liang, H.; Shen, X. C.; Jiang, B. P. Red emissive two-photon carbon dots: Photodynamic therapy in combination with real-time dynamic monitoring for the nucleolus. Carbon 2021, 182, 155–166.

19

Jiang, L.; Ding, H. Z.; Xu, M. S.; Hu, X. L.; Li, S. L.; Zhang, M. Z.; Zhang, Q.; Wang, Q. Y.; Lu, S. Y.; Tian, Y. P. et al. UV–vis–NIR full-range responsive carbon dots with large multiphoton absorption cross sections and deep-red fluorescence at nucleoli and in vivo. Small 2020, 16, 2000680.

20

Wang, L.; Li, W. T.; Yin, L. Q.; Liu, Y. J.; Guo, H. Z.; Lai, J. W.; Han, Y.; Li, G.; Li, M.; Zhang, J. H. et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, eabb6772.

21

Wang, F.; Chen, Y. H.; Liu, C. Y.; Ma, D. G. White light-emitting devices based on carbon dots’ electroluminescence. Chem. Commun. 2011, 47, 3502–3504.

22

Wang, Z. B.; Jiang, N. Z.; Liu, M. L.; Zhang, R. D.; Huang, F.; Chen, D. Q. Bright electroluminescent white-light-emitting diodes based on carbon dots with tunable correlated color temperature enabled by aggregation. Small 2021, 17, 2104551.

23

Wang, X.; Wang, B.; Wang, H. S.; Zhang, T. Y.; Qi, H. H.; Wu, Z. Y.; Ma, Y. R.; Huang, H.; Shao, M. W.; Liu, Y. et al. Carbon-dot-based white-light-emitting diodes with adjustable correlated color temperature guided by machine learning. Angew. Chem., Int. Ed. 2021, 60, 12585–12590.

24

Kwon, W.; Kim, Y. H.; Lee, C. L.; Lee, M.; Choi, H. C.; Lee, T. W.; Rhee, S. W. Electroluminescence from graphene quantum dots prepared by amidative cutting of tattered graphite. Nano Lett. 2014, 14, 1306–1311.

25

Luo, Z. M.; Qi, G. Q.; Chen, K. Y.; Zou, M.; Yuwen, L. H.; Zhang, X. W.; Huang, W.; Wang, L. H. Microwave-assisted preparation of white fluorescent graphene quantum dots as a novel phosphor for enhanced white-light-emitting diodes. Adv. Funct. Mater. 2016, 26, 2739–2744.

26

Li, S.; Li, L.; Tu, H. Y.; Zhang, H.; Silvester, D. S.; Banks, C. E.; Zou, G. Q.; Hou, H. S.; Ji, X. B. The development of carbon dots: From the perspective of materials chemistry. Mater. Today 2021, 51, 188–207.

27

Dong, Y. Q.; Pang, H. C.; Yang, H. B.; Guo, C. X.; Shao, J. W.; Chi, Y. W.; Li, C. M.; Yu, T. Carbon-based dots co-doped with nitrogen and sulfur for high quantum yield and excitation-independent emission. Angew. Chem. Int. Ed. 2013, 52, 7800–7804.

28

Wang, Y.; Kalytchuk, S.; Zhang, Y.; Shi, H. C.; Kershaw, S. V.; Rogach, A. L. Thickness-dependent full-color emission tunability in a flexible carbon dot ionogel. J. Phys. Chem. Lett. 2014, 5, 1412–1420.

29

Kasprzyk, W.; Bednarz, S.; Żmudzki, P.; Galica, M.; Bogdał, D. Novel efficient fluorophores synthesized from citric acid. RSC Adv. 2015, 5, 34795–34799.

30

Wang, B. Y.; Yu, J. K.; Sui, L. Z.; Zhu, S. J.; Tang, Z. Y.; Yang, B.; Lu, S. Y. Rational design of multi-color-emissive carbon dots in a single reaction system by hydrothermal. Adv. Sci. 2021, 8, 2001453.

31

Liu, J.; Liu, Y.; Liu, N. Y.; Han, Y. Z.; Zhang, X.; Huang, H.; Lifshitz, Y.; Lee, S. T.; Zhong, J.; Kang, Z. H. Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 2015, 347, 970–974.

32

Zhang, Q.; Wang, R. Y.; Feng, B. W.; Zhang, X. X.; Ostrikov, K. Photoluminescence mechanism of carbon dots: Triggering high-color-purity red fluorescence emission through edge amino protonation. Nat. Commun. 2021, 12, 6856.

33

Kim, J.; Ouellette, O.; Voznyy, O.; Wei, M. Y.; Choi, J.; Choi, M. J.; Jo, J. W.; Baek, S. W.; Fan, J.; Saidaminov, M. I. et al. Butylamine-catalyzed synthesis of nanocrystal inks enables efficient infrared CQD solar cells. Adv. Mater. 2018, 30, 1803830.

34

Williams, A. T. R.; Winfield, S. A.; Miller, J. N. Relative fluorescence quantum yields using a computer-controlled luminescence spectrometer. Analyst 1983, 108, 1067–1071.

35

Liu, X. F.; He, X. R.; Jiu, T. G.; Yuan, M. J.; Xu, J. L.; Lv, J.; Liu, H. B.; Li, Y. L. Controlled aggregation of functionalized gold nanoparticles with a novel conjugated oligomer. ChemPhysChem 2007, 8, 906–912.

36

Wang, L.; Wu, B.; Li, W. T.; Li, Z.; Zhan, J.; Geng, B. J.; Wang, S. L.; Pan, D. Y.; Wu, M. H. Industrial production of ultra-stable sulfonated graphene quantum dots for Golgi apparatus imaging. J. Mater. Chem. B 2017, 5, 5355–5361.

37

Zhang, Y. Q.; Song, H. Q.; Wang, L.; Yu, J. K.; Wang, B. Y.; Hu, Y. S.; Zang, S. Q.; Yang, B.; Lu, S. Y. Solid-state red laser with a single longitudinal mode from carbon dots. Angew. Chem., Int. Ed. 2021, 60, 25514–25521.

38

Zheng, X. J.; Huang, R. J.; Zhong, C.; Xie, G. H.; Ning, W. M.; Huang, M. L.; Ni, F.; Dias, F. B.; Yang, C. L. Achieving 21% external quantum efficiency for nondoped solution-processed sky-blue thermally activated delayed fluorescence OLEDs by means of multi-(donor/acceptor) emitter with through-space/-bond charge transfer. Adv. Sci. 2020, 7, 1902087.

39

Zeng, W. X.; Zhou, T.; Ning, W. M.; Zhong, C.; He, J. W.; Gong, S. L.; Xie, G. H.; Yang, C. L. Realizing 22.5% external quantum efficiency for solution-processed thermally activated delayed-fluorescence OLEDs with red emission at 622 nm via a synergistic strategy of molecular engineering and host selection. Adv. Mater. 2019, 31, 1901404.

40

Xie, G. H.; Luo, J. J.; Huang, M. L.; Chen, T. H.; Wu, K. L.; Gong, S. L.; Yang, C. L. Inheriting the characteristics of TADF small molecule by side-chain engineering strategy to enable bluish-green polymers with high PLQYs up to 74% and external quantum efficiency over 16% in light-emitting diodes. Adv. Mater. 2017, 29, 1604223.

41

Xiang, Y. P.; Xie, G. H.; Huang, M. L.; Yang, C. L. Photophysics and electroluminescence of red quantum dots diluted in a thermally activated delayed fluorescence host. J. Mater. Chem. C 2019, 7, 13218–13223.

42
Yuan, F. L. ; Wang, Z. B. ; Li, X. H. ; Li, Y. C. ; Tan, Z. A. ; Fan, L. Z. ; Yang, S. H. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes. Adv. Mater. 2017, 29, 1604436.
43

Makarov, N. S.; Drobizhev, M.; Rebane, A. Two-photon absorption standards in the 550–1,600 nm excitation wavelength range. Opt. Express 2008, 16, 4029–4047.

44

Cao, L.; Wang, X.; Meziani, M.; Lu, F. S.; Wang, H. F.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D. et al. Carbon dots for multiphoton bioimaging. J. Am. Chem. Soc. 2007, 129, 11318–11319.

45

Wang, C. K.; Macak, P.; Luo, Y.; Ågren, H. Effects of π centers and symmetry on two-photon absorption cross sections of organic chromophores. J. Chem. Phys. 2001, 114, 9813–9820.

46

Han, G. M.; Zhao, J.; Zhang, R. L.; Tian, X. H.; Liu, Z. J.; Wang, A. D.; Liu, R. Y.; Liu, B. H.; Han, M. Y.; Gao, X. H. et al. Membrane-penetrating carbon quantum dots for imaging nucleic acid structures in live organisms. Angew. Chem., Int. Ed. 2019, 58, 7087–7091.

Nano Research
Pages 9470-9478
Cite this article:
Zhou X, Yi K, Yang Y, et al. A novel method for the synthesis of carbon dots assisted by free radicals. Nano Research, 2022, 15(10): 9470-9478. https://doi.org/10.1007/s12274-022-4567-0
Topics:

904

Views

14

Crossref

12

Web of Science

13

Scopus

0

CSCD

Altmetrics

Received: 05 April 2022
Revised: 12 May 2022
Accepted: 21 May 2022
Published: 28 June 2022
© Tsinghua University Press 2022
Return