Journal Home > Volume 15 , Issue 10

Triboelectric interfaces have already been extensively researched in the area of human–machine interaction owing to their self-sustainability, low cost, easy manufacturing, and diverse configurations. However, some limitations (e.g., a large number of electrodes, multiple lines, and chunks) observed in previous works hinder the further development of human–machine interaction applications. Herein, a triboelectric encoding interface is proposed by designing the reverse polarity of the tribo-layers to encode the triboelectric output signals. Owing to the inversion of the tribo-layers and the number of strip electrodes, this encoding method can realize multipurpose interactive commands by using fewer electrodes and a simple structure only in one macroscopic triboelectric device, which greatly reduces the size of the device as well as the influence of external factors on the coded signal output. As a demonstration, a ring with the patterned triboelectric interface (15 mm × 20 mm) achieves slide presentation and remote electric device control. In addition, the triboelectric sensor has good sensitivity (1.55 V/N) and durability (> 30,000 cycles). This new encoding mode shows the high applicability of the operation mode in diversified interactive applications, which provides more design strategies for intelligent control.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Multimode human–machine interface using a single-channel and patterned triboelectric sensor

Show Author's information Zhiping Feng1Qiang He1Xue Wang1Jing Liu1Jing Qiu1Yufen Wu2( )Jin Yang1( )
Department of Optoelectronic Engineering, Key Laboratory of Optoelectronic Technology and Systems Ministry of Education, Chongqing University, Chongqing 400044, China
College of Physics and Electronic Engineering, Chongqing Normal University, Chongqing, 401331, China

Abstract

Triboelectric interfaces have already been extensively researched in the area of human–machine interaction owing to their self-sustainability, low cost, easy manufacturing, and diverse configurations. However, some limitations (e.g., a large number of electrodes, multiple lines, and chunks) observed in previous works hinder the further development of human–machine interaction applications. Herein, a triboelectric encoding interface is proposed by designing the reverse polarity of the tribo-layers to encode the triboelectric output signals. Owing to the inversion of the tribo-layers and the number of strip electrodes, this encoding method can realize multipurpose interactive commands by using fewer electrodes and a simple structure only in one macroscopic triboelectric device, which greatly reduces the size of the device as well as the influence of external factors on the coded signal output. As a demonstration, a ring with the patterned triboelectric interface (15 mm × 20 mm) achieves slide presentation and remote electric device control. In addition, the triboelectric sensor has good sensitivity (1.55 V/N) and durability (> 30,000 cycles). This new encoding mode shows the high applicability of the operation mode in diversified interactive applications, which provides more design strategies for intelligent control.

Keywords: nanostructure, triboelectric sensor, human–machine interfaces, smart control, single electrode

References(46)

1

Huang, Y.; Fan, X. Y.; Chen, S. C.; Zhao, N. Emerging technologies of flexible pressure sensors: Materials, modeling, devices, and manufacturing. Adv. Funct. Mater. 2019, 29, 1808509.

2

Wang, X. D.; Dong, L.; Zhang, H. L.; Yu, R. M.; Pan, C. F.; Wang, Z. L. Recent progress in electronic skin. Adv. Sci. (Weinh.) 2015, 2, 1500169.

3

Singh, H. P.; Kumar, P. Developments in the human machine interface technologies and their applications: A review. J. Med. Eng. Technol. 2021, 45, 552–573.

4

Heng, W. Z.; Solomon, S.; Gao, W. Flexible electronics and devices as human–machine interfaces for medical robotics. Adv. Mater. 2022, 34, 2107902.

5

Zhao, X.; Askari, H.; Chen, J. Nanogenerators for smart cities in the era of 5G and internet of things. Joule 2021, 5, 1391–1431.

6

Esposito, D.; Andreozzi, E.; Gargiulo, G. D.; Fratini, A.; D'Addio, G.; Naik, G. R.; Bifulco, P. A piezoresistive array armband with reduced number of sensors for hand gesture recognition. Front. Neurorobot. 2019, 13, 114.

7

Wang, J.; Xu, J. M.; Chen, T.; Song, L. L.; Zhang, Y. L.; Lin, Q. H.; Wang, M. J.; Wang, F. X.; Ma, N. H.; Sun, L. N. Wearable human–machine interface based on the self-healing strain sensors array for control interface of unmanned aerial vehicle. Sens. Actuat. A:Phys. 2021, 321, 112583.

8

Zhang, H. J.; Han, W. Q.; Xu, K.; Zhang, Y.; Lu, Y. F.; Nie, Z. T.; Du, Y. H.; Zhu, J. X.; Huang, W. Metallic sandwiched-aerogel hybrids enabling flexible and stretchable intelligent sensor. Nano Lett. 2020, 20, 3449–3458.

9

Zhao, S. F.; Ran, W. H.; Wang, D. P.; Yin, R. Y.; Yan, Y. X.; Jiang, K.; Lou, Z.; Shen, G. Z. 3D dielectric layer enabled highly sensitive capacitive pressure sensors for wearable electronics. ACS Appl. Mater. Interfaces 2020, 12, 32023–32030.

10

Zulfiqar, M. H.; Hassan, M. U.; Zubair, M.; Mehmood, M. Q.; Riaz, K. Pencil-on-paper-based touchpad for ecofriendly and reusable human–machine interface. IEEE Sens. Lett. 2021, 5, 5500604.

11

Deng, W. L.; Yang, T.; Jin, L.; Yan, C.; Huang, H. C.; Chu, X.; Wang, Z. X.; Xiong, D.; Tian, G.; Gao, Y. Y. et al. Cowpea-structured PVDF/ZnO nanofibers based flexible self-powered piezoelectric bending motion sensor towards remote control of gestures. Nano Energy 2019, 55, 516–525.

12

Gong, S. B.; Zhang, B. W.; Zhang, J. X.; Wang, Z. L.; Ren, K. L. Biocompatible poly(lactic acid)-based hybrid piezoelectric and electret nanogenerator for electronic skin applications. Adv. Funct. Mater. 2020, 30, 1908724.

13

Wang, H. S.; Hong, S. K.; Han, J. H.; Jung, Y. H.; Jeong, H. K.; Im, T. H.; Jeong, C. K.; Lee, B. Y.; Kim, G.; Yoo, C. D. et al. Biomimetic and flexible piezoelectric mobile acoustic sensors with multiresonant ultrathin structures for machine learning biometrics. Sci. Adv. 2021, 7, eabe5683.

14

He, Q.; Wu, Y. F.; Feng, Z. P.; Sun, C. C.; Fan, W. J.; Zhou, Z. H.; Meng, K. Y.; Fan, E. D.; Yang, J. Triboelectric vibration sensor for a human–machine interface built on ubiquitous surfaces. Nano Energy 2019, 59, 689–696.

15

Zhou, Z. H.; Chen, K.; Li, X. S.; Zhang, S. L.; Wu, Y. F.; Zhou, Y. H.; Meng, K. Y.; Sun, C. C.; He, Q.; Fan, W. J. et al. Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays. Nat. Electron. 2020, 3, 571–578.

16

Dong, B. W.; Shi, Q. F.; Yang, Y. Q.; Wen, F.; Zhang, Z. X.; Lee, C. Technology evolution from self-powered sensors to AIoT enabled smart homes. Nano Energy 2021, 79, 105414.

17

Libanori, A.; Chen, G. R.; Zhao, X.; Zhou, Y. H.; Chen, J. Smart textiles for personalized healthcare. Nat. Electron. 2022, 5, 142–156.

18

Ding, X. C.; Zhong, W. B.; Jiang, H. Q.; Li, M. F.; Chen, Y. L.; Lu, Y.; Ma, J.; Yadav, A.; Yang, L. Y.; Wang, D. Highly accurate wearable piezoresistive sensors without tension disturbance based on weaved conductive yarn. ACS Appl. Mater. Interfaces 2020, 12, 35638–35646.

19

Cao, M. H.; Fan, S. Q.; Qiu, H. W.; Su, D. L.; Li, L.; Su, J. CB nanoparticles optimized 3D wearable graphene multifunctional piezoresistive sensor framed by loofah sponge. ACS Appl. Mater. Interfaces 2020, 12, 36540–36547.

20

Mishra, R. B.; El-Atab, N.; Hussain, A. M.; Hussain, M. M. Recent progress on flexible capacitive pressure sensors: From design and materials to applications. Adv. Mater. Technol. 2021, 6, 2001023.

21

Jiang, P. P.; Qin, H. L.; Dai, J.; Yu, S. H.; Cong, H. P. Ultrastretchable and self-healing conductors with double dynamic network for omni-healable capacitive strain sensors. Nano Lett. 2022, 22, 1433–1442.

22

Mahapatra, S. D.; Mohapatra, P. C.; Aria, A. I.; Christie, G.; Mishra, Y. K.; Hofmann, S.; Thakur, V. K. Piezoelectric materials for energy harvesting and sensing applications: Roadmap for future smart materials. Adv. Sci. (Weinh.) 2021, 8, 2100864.

23

Fan, F. R.; Tian, Z. Q.; Wang, Z. L. Flexible triboelectric generator. Nano Energy 2012, 1, 328–334.

24

Kim, W. G.; Kim, D. W.; Tcho, I. W.; Kim, J. K.; Kim, M. S.; Choi, Y. K. Triboelectric nanogenerator: Structure, mechanism, and applications. ACS Nano 2021, 15, 258–287.

25

Chen, C. Y.; Chen, L. J.; Wu, Z. Y.; Guo, H. Y.; Yu, W. D.; Du, Z. Q.; Wang, Z. L. 3D double-faced interlock fabric triboelectric nanogenerator for bio-motion energy harvesting and as self-powered stretching and 3D tactile sensors. Mater. Today 2020, 32, 84–93.

26

Chen, G. R.; Xiao, X.; Zhao, X.; Tat, T.; Bick, M.; Chen, J. Electronic textiles for wearable point-of-care systems. Chem. Rev. 2022, 122, 3259–3291.

27

Zhang, S. L.; Bick, M.; Xiao, X.; Chen, G. R.; Nashalian, A.; Chen, J. Leveraging triboelectric nanogenerators for bioengineering. Matter 2021, 4, 845–887.

28

Chen, J. L.; Wen, X. J.; Liu, X.; Cao, J. Q.; Ding, Z. H.; Du, Z. Q. Flexible hierarchical helical yarn with broad strain range for self-powered motion signal monitoring and human–machine interactive. Nano Energy 2021, 80, 105446.

29

Gao, L. X.; Hu, D. L.; Qi, M. K.; Gong, J.; Zhou, H.; Chen, X.; Chen, J. F.; Cai, J.; Wu, L. K.; Hu, N. et al. A double-helix-structured triboelectric nanogenerator enhanced with positive charge traps for self-powered temperature sensing and smart-home control systems. Nanoscale 2018, 10, 19781–19790.

30

Ding, W. B.; Wang, A. C.; Wu, C. S.; Guo, H. Y.; Wang, Z. L. Human–machine interfacing enabled by triboelectric nanogenerators and tribotronics. Adv. Mater. Technol. 2019, 4, 1800487.

31

Hou, C.; Geng, J. J.; Yang, Z.; Tang, T. Y.; Sun, Y. Y.; Wang, F. X.; Liu, H. C.; Chen, T.; Sun, L. N. A delta-parallel-inspired human machine interface by using self-powered triboelectric nanogenerator toward 3D and VR/AR manipulations. Adv. Mater. Technol. 2021, 6, 2000912.

32

Yun, J.; Jayababu, N.; Kim, D. Self-powered transparent and flexible touchpad based on triboelectricity towards artificial intelligence. Nano Energy 2020, 78, 105325.

33

Zhao, G. Q.; Yang, J.; Chen, J.; Zhu, G.; Jiang, Z. D.; Liu, X. Y.; Niu, G. X.; Wang, Z. L.; Zhang, B. Keystroke dynamics identification based on triboelectric nanogenerator for intelligent keyboard using deep learning method. Adv. Mater. Technol. 2019, 4, 1800167.

34

Jeon, S. B.; Park, S. J.; Kim, W. G.; Tcho, I. W.; Jin, I. K.; Han, J. K.; Kim, D.; Choi, Y. K. Self-powered wearable keyboard with fabric based triboelectric nanogenerator. Nano Energy 2018, 53, 596–603.

35

Zhang, B. S.; Tang, Y. J.; Dai, R. R.; Wang, H. Y.; Sun, X. P.; Qin, C.; Pan, Z. F.; Liang, E. J.; Mao, Y. C. Breath-based human–machine interaction system using triboelectric nanogenerator. Nano Energy 2019, 64, 103953.

36

Rana, S. M. S.; Rahman, M. T.; Salauddin, M.; Sharma, S.; Maharjan, P.; Bhatta, T.; Cho, H.; Park, C.; Park, J. Y. Electrospun PVDF-TrFE/MXene nanofiber mat-Based triboelectric nanogenerator for smart home appliances. ACS Appl. Mater. Interfaces 2021, 13, 4955–4967.

37

Pu, X. J.; Tang, Q.; Chen, W. S.; Huang, Z. Y.; Liu, G. L.; Zeng, Q. X.; Chen, J.; Guo, H. Y.; Xin, L. M.; Hu, C. G. Flexible triboelectric 3D touch pad with unit subdivision structure for effective XY positioning and pressure sensing. Nano Energy 2020, 76, 105047.

38

Sun, J. L.; Chang, Y.; Dong, L.; Zhang, K. K.; Hua, Q. L.; Zang, J. H.; Chen, Q. S.; Shang, Y. Y.; Pan, C. F.; Shan, C. X. MXene enhanced self-powered alternating current electroluminescence devices for patterned flexible displays. Nano Energy 2021, 86, 106077.

39

Pu, X. J.; Guo, H. Y.; Tang, Q.; Chen, J.; Feng, L.; Liu, G. L.; Wang, X.; Xi, Y.; Hu, C. G.; Wang, Z. L. Rotation sensing and gesture control of a robot joint via triboelectric quantization sensor. Nano Energy 2018, 54, 453–460.

40

Shi, Q. F.; Lee, C. Self-powered bio-inspired spider-net-coding interface using single-electrode triboelectric nanogenerator. Adv. Sci. (Weinh.) 2019, 6, 1900617.

41

Shi, Q. F.; Zhang, Z. X.; Chen, T.; Lee, C. Minimalist and multi-functional human machine interface (HMI) using a flexible wearable triboelectric patch. Nano Energy 2019, 62, 355–366.

42

Shi, Q. F.; Qiu, C. K.; He, T. Y. Y.; Wu, F.; Zhu, M. L.; Dziuban, J. A.; Walczak, R.; Yuce, M. R.; Lee, C. Triboelectric single-electrode-output control interface using patterned grid electrode. Nano Energy 2019, 60, 545–556.

43

Yoon, H. J.; Ryu, H.; Kim, S. W. Sustainable powering triboelectric nanogenerators: Approaches and the path towards efficient use. Nano Energy 2018, 51, 270–285.

44

Liao, W. Q.; Liu, X. K.; Li, Y. Q.; Xu, X.; Jiang, J.; Lu, S. R.; Bao, D. Q.; Wen, Z.; Sun, X. H. Transparent, stretchable, temperature-stable and self-healing ionogel-based triboelectric nanogenerator for biomechanical energy collection. Nano Res. 2022, 15, 2060–2068.

45

Bai, Z. Q.; He, T. Y. Y.; Zhang, Z. X.; Xu, Y. L.; Zhang, Z. X.; Shi, Q. F.; Yang, Y. Q.; Zhou, B. G.; Zhu, M. L.; Guo, J. S. et al. Constructing highly tribopositive elastic yarn through interfacial design and assembly for efficient energy harvesting and human-interactive sensing. Nano Energy 2022, 94, 106956–106968.

46

Ren, Z. W.; Nie, J. H.; Shao, J. J.; Lai, Q. S.; Wang, L. F.; Chen, J.; Chen, X. Y.; Wang, Z. L. Fully elastic and metal-free tactile sensors for detecting both normal and tangential forces based on triboelectric nanogenerators. Adv. Funct. Mater. 2018, 28, 1802989.

Video
12274_2022_4564_MOESM2_ESM.mp4
12274_2022_4564_MOESM3_ESM.mp4
File
12274_2022_4564_MOESM1_ESM.pdf (1.8 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 31 March 2022
Revised: 14 May 2022
Accepted: 19 May 2022
Published: 18 August 2022
Issue date: October 2022

Copyright

© Tsinghua University Press 2022

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51675069 and 51775070), the Natural Science Foundation of Innovative Research Groups (No cstc2020jcyj-cxttX0005), the Fundamental Research Funds for the Central Universities (Nos. 2018CDQYGD0020 and cqu2018CDHB1A05), the Scientific And Technological Research Program Of Chongqing Municipal Education Commission (No. KJ1703047), and the Natural Science Foundation Projects of Chongqing(Nos. cstc2017shmsA40018 and cstc2018jcyjAX0076).

Return