AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery

Xing Chen1Jie Pu2Xuhui Hu3Le An1Jianjun Jiang1( )Yujun Li1( )
School of Mechanical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi’an 710072, China
College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
Show Author Information

Graphical Abstract

Three-dimensional (3D) defect-rich nanofiber electrodes with excellent bifunctional electrocatalytic performance were synthesized. The synergistic effect from the irregular hollow CoFe nanospheres and defect-rich carbon boosts the bifunctional electrocatalytic activity, endowing Zn-air battery with high power density and energy density.

Abstract

Zn-air batteries with high energy density and safety have acquired enormous attention, while the practical application is hindered by the sluggish kinetics of the oxygen evolution reaction (OER) and the oxygen reduction reaction (ORR). In this work, a three-dimensional (3D) defect-rich bifunctional electrocatalyst (CoFe/N CNFs) comprising irregular hollow CoFe nanospheres in N-doped carbon nanofibers is presented, which is fabricated from CoFe ZIFs-derived (ZIF: zeolitic-imidazolate framework) polymer nanofibers precursor. The CoFe ZIFs with tunable particle size and composition are constructed using a confined synthesis strategy. Moreover, the Kirkendall diffusion process is available for forming the irregular hollow CoFe nanospheres, and the decomposition of polyvinylpyrrolidone (PVP) results in forming the defective carbon nanofibers, which provide more efficient active sites and enhance the electrocatalytic properties toward both OER and ORR. The optimized CoFe/N CNFs exhibit superior bifunctional activities, outperforming that of the benchmark Pt/C + RuO2 catalyst. As a result, the CoFe/N CNFs as an air-cathode endow the rechargeable Zn-air battery with an excellent power density of 149 mW·cm−2, energy density of 875 Wh·kg−1, and cycling stability. This work provides a new strategy to develop bifunctional electrocatalysts with desired nanostructure and regulated performance toward energy applications.

Electronic Supplementary Material

Download File(s)
12274_2022_4563_MOESM1_ESM.pdf (4.7 MB)

References

1

Liu, X. M.; Zhao, L. L.; Xu, H. R.; Huang, Q. S.; Wang, Y. Q.; Hou, C. X.; Hou, Y. Y.; Wang, J.; Dang, F.; Zhang, J. T. Tunable cationic vacancies of cobalt oxides for efficient electrocatalysis in Li-O2 batteries. Adv. Energy Mater. 2020, 10, 2001415.

2

Zhang, B.; Wang, L.; Cao, Z.; Kozlov, S. M.; de Arquer, F. P. G.; Dinh, C. T.; Li, J.; Wang, Z. Y.; Zheng, X. L.; Zhang, L. S. et al. High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics. Nat. Catal. 2020, 3, 985–992.

3

Pu, J.; Cao, Q. H.; Gao, Y.; Yang, J.; Cai, D. M.; Chen, X.; Tang, X. W.; Fu, G. W.; Pan, Z. H.; Guan, C. Ultrafast-charging quasi-solid-state fiber-shaped zinc-ion hybrid supercapacitors with superior flexibility. J. Mater. Chem. A. 2021, 9, 17292–17299.

4

Jiang, H. L.; He, Q.; Li, X. Y.; Su, X. Z.; Zhang, Y. K.; Chen, S. M.; Zhang, S.; Zhang, G. Z.; Jiang, J.; Luo, Y. et al. Tracking structural self-reconstruction and identifying true active sites toward cobalt oxychloride precatalyst of oxygen evolution reaction. Adv. Mater. 2019, 31, 1805127.

5

Zhou, J.; Wang, Y.; Su, X. Z.; Gu, S. Q.; Liu, R. D.; Huang, Y. B.; Yan, S.; Li, J. Electrochemically accessing ultrathin Co (oxy)-hydroxide nanosheets and operando identifying their active phase for the oxygen evolution reaction. Energy Environ. Sci. 2019, 12, 739–746.

6

Chong, L.; Wen, J. G.; Kubal, J.; Sen, F. G.; Zou, J. X.; Greeley, J.; Chan, M.; Barkholtz, H.; Ding, W. J.; Liu, D. J. Ultralow-loading platinum-cobalt fuel cell catalysts derived from imidazolate frameworks. Science 2018, 362, 1276–1281.

7

Guan, C.; Sumboja, A.; Wu, H. J.; Ren, W. N.; Liu, X. M.; Zhang, H.; Liu, Z. L.; Cheng, C. W.; Pennycook, S. J.; Wang, J. Hollow Co3O4 nanosphere embedded in carbon arrays for stable and flexible solid-state zinc-air batteries. Adv. Mater. 2017, 29, 1704117.

8

Jin, H. H.; Zhou, H.; Ji, P. X.; Zhang, C. T.; Luo, J. H.; Zeng, W. H.; Hu, C. X.; He, D. P.; Mu, S. ZIF-8/LiFePO4 derived Fe-NP Co-doped carbon nanotube encapsulated Fe2P nanoparticles for efficient oxygen reduction and Zn-air batteries. Nano Res. 2020, 13, 818–823.

9

Zhang, Z. Y.; Tan, Y. Y.; Zeng, T.; Yu, L. Y.; Chen, R. Z.; Cheng, N. C.; Mu, S. C.; Sun, X. L. Tuning the dual-active sites of ZIF-67 derived porous nanomaterials for boosting oxygen catalysis and rechargeable Zn-air batteries. Nano Res. 2021, 14, 2353–2362.

10

Zheng, H. Z.; Ma, F.; Yang, H. C.; Wu, X. G.; Wang, R.; Jia, D. L.; Wang, Z. X.; Lu, N. D.; Ran, F.; Peng, S. L. Mn, N co-doped Co nanoparticles/porous carbon as air cathode for highly efficient rechargeable Zn-air batteries. Nano Res. 2022, 15, 1942–1948.

11

Shang, H. S.; Zhou, X. Y.; Dong, J. C.; Li, A.; Zhao, X.; Liu, Q. H.; Lin, Y.; Pei, J. J.; Li, Z.; Jiang, Z. L. et al. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity. Nat. Commun. 2020, 11, 3049.

12

Cai, P. W.; Huang, J. H.; Chen, J. X.; Wen, Z. H. Oxygen-containing amorphous cobalt sulfide porous nanocubes as high-activity electrocatalysts for the oxygen evolution reaction in an alkaline/neutral medium. Angew. Chem. 2017, 129, 4936–4939.

13

Zhao, S. L.; Tan, C. H.; He, C. T.; An, P. F.; Xie, F.; Jiang, S.; Zhu, Y. F.; Wu, K. H.; Zhang, B. W.; Li, H. J. et al. Structural transformation of highly active metal-organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 2020, 5, 881–890.

14

Wu, M. J.; Zhang, G. X.; Wu, M. H.; Prakash, J.; Sun, S. H. Rational design of multifunctional air electrodes for rechargeable Zn-air batteries: Recent progress and future perspectives. Energy Storage Mater. 2019, 21, 253–286.

15

Wang, X. T.; Ouyang, T.; Wang, L.; Zhong, J. H.; Liu, Z. Q. Surface reorganization on electrochemically-induced Zn-Ni-Co spinel oxides for enhanced oxygen electrocatalysis. Angew. Chem. 2020, 132, 6554–6561.

16

Han, X. P.; Zhang, W.; Ma, X. Y.; Zhong, C.; Zhao, N. Q.; Hu, W. B.; Deng, Y. D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution. Adv. Mater. 2019, 31, 1808281.

17

Chen, X.; Pu, J.; Hu, X. H.; Yao, Y. C.; Dou, Y. B.; Jiang, J. J.; Zhang, W. J. Janus hollow nanofiber with bifunctional oxygen electrocatalyst for rechargeable Zn-air battery. Small 2022, 18, 2200578.

18

Cheng, W. R.; Lu, X. F.; Luan, D. Y.; Lou, X. W. NiMn-based bimetal-organic framework nanosheets supported on multi-channel carbon fibers for efficient oxygen electrocatalysis. Angew. Chem., Int. Ed. 2020, 59, 18234–18239.

19

Chen, Y. S.; Zhang, W. H.; Zhu, Z. Y.; Zhang, L. L.; Yang, J. Y.; Chen, H. H.; Zheng, B.; Li, S. et al. Co nanoparticles combined with nitrogen-doped graphitic carbon anchored on carbon fibers as a self-standing air electrode for flexible zinc-air batteries. J. Mater. Chem. A 2020, 8, 7184–7191.

20

Ji, D. X.; Fan, L.; Li, L. L.; Peng, S. J.; Yu, D. S.; Song, J. N.; Ramakrishna, S.; Guo, S. J. Atomically transition metals on self-supported porous carbon flake arrays as binder-free air cathode for wearable zinc-air batteries. Adv. Mater. 2019, 31, 1808267.

21

Zhu, X. F.; Zhang, D. T.; Chen, C. J.; Zhang, Q. R.; Liu, R. S.; Xia, Z. H.; Dai, L. M.; Amal, R.; Lu, X. Y. Harnessing the interplay of Fe-Ni atom pairs embedded in nitrogen-doped carbon for bifunctional oxygen electrocatalysis. Nano Energy 2020, 71, 104597.

22

Han, X. P.; Ling, X. F.; Yu, D. S, ; Xie, D. Y.; Li, L. L.; Peng, S. J.; Zhong, C.; Zhao, N. Q.; Deng, Y. D.; Hu, W. B. Atomically dispersed binary Co-Ni sites in nitrogen-doped hollow carbon nanocubes for reversible oxygen reduction and evolution. Adv. Mater. 2019, 31, 1905622.

23

Li, W.; Wang, D. D.; Zhang, Y. Q.; Tao, L.; Wang, T. H.; Zou, Y. Q.; Wang, Y. Y.; Chen, R.; Wang, S. Y. Defect engineering for fuel-cell electrocatalysts. Adv. Mater. 2020, 32, 1907879.

24

Phan, A.; Doonan, C. J.; Uribe-Romo, F. J.; Knobler, C. B.; O’keeffe, M.; Yaghi, O. M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 2010, 43, 58–67.

25

Wang, Z.; Ang, J. M.; Liu, J.; Ma, X. Y. D.; Kong, J. H.; Zhang, Y. F.; Yan, T.; Lu, X. H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery. Appl. Catal. B: Environ. 2020, 263, 118344.

26

Wang, Z. H.; Jin, H. H.; Meng, T.; Liao, K.; Meng, W. Q.; Yang, J. L.; He, D. P.; Xiong, Y. L.; Mu, S. C. Fe, Cu-coordinated ZIF-derived carbon framework for efficient oxygen reduction reaction and zinc-air batteries. Adv. Funct. Mater. 2018, 28, 1802596.

27

Zou, Z. H.; Wang, T. T.; Zhao, X. H.; Jiang, W. J.; Pan, H. R.; Gao, D. Q.; Xu, C. L. Expediting in-situ electrochemical activation of two-dimensional metal-organic frameworks for enhanced OER intrinsic activity by iron incorporation. ACS Catal. 2019, 9, 7356–7364.

28

López-Cabrelles, J.; Romero, J.; Abellán, G.; Giménez-Marqués, M.; Palomino, M.; Valencia, S.; Rey, F.; Mínguez Espallargas, G. Solvent-free synthesis of ZIFs: A route toward the elusive Fe(II) analogue of ZIF-8. J. Am. Chem. Soc. 2019, 141, 7173–7180.

29

Rettig, S. J.; Storr, A.; Summers, D. A.; Thompson, R. C.; Trotter, J. Transition metal azolates from metallocenes. 2. Synthesis, X-ray structure, and magnetic properties of a three-dimensional polymetallic iron(II) imidazolate complex, a low-temperature weak ferromagnet. J. Am. Chem. Soc. 1997, 119, 8675–8680.

30

Sun, W.; Ma, M. M.; Zhu, M. G.; Xu, K. L.; Xu, T.; Zhu, Y. C.; Qian, Y. T. Chemical buffer layer enabled highly reversible Zn anode for deeply discharging and long-life Zn-air battery. Small 2022, 18, 2106604.

31
HaoX. Q.JiangZ. Q.ZhangB. A.TianX. N.SongC. S.WangL. K.MaiyalaganT.HaoX. G.JiangZ. J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc-air batteriesAdv. Sci.20218200457210.1002/advs.202004572

Hao, X. Q.; Jiang, Z. Q.; Zhang, B. A.; Tian, X. N.; Song, C. S.; Wang, L. K.; Maiyalagan, T.; Hao, X. G.; Jiang, Z. J. N-doped carbon nanotubes derived from graphene oxide with embedment of FeCo nanoparticles as bifunctional air electrode for rechargeable liquid and flexible all-solid-state zinc-air batteries. Adv. Sci. 2021, 8, 2004572.

32

Liang, K.; Coghlan, C. J.; Bell, S. G.; Doonan, C.; Falcaro, P. Enzyme encapsulation in zeolitic imidazolate frameworks: A comparison between controlled co-precipitation and biomimetic mineralisation. Chem. Commun. 2016, 52, 473–476.

33

Ji, D. X.; Peng, S. J.; Fan, L.; Li, L. L.; Qin, X. H.; Ramakrishna, S. Thin MoS2 nanosheets grafted MOFs-derived porous Co-N-C flakes grown on electrospun carbon nanofibers as self-supported bifunctional catalysts for overall water splitting. J. Mater. Chem. A 2017, 5, 23898–23908.

34

Sun, W. Z.; Zhai, X. S.; Zhao, L. Synthesis of ZIF-8 and ZIF-67 nanocrystals with well-controllable size distribution through reverse microemulsions. Chem. Eng. J. 2016, 289, 59–64.

35

Yang, X. F.; Wang, A. Q.; Qiao, B. T.; Li, J.; Liu, J. Y.; Zhang, T. Single-atom catalysts: A new frontier in heterogeneous catalysis. Acc. Chem. Res. 2013, 46, 1740–1748.

36

Wang, X.; Wang, Z. Y.; de Arquer, F. P. G.; Dinh, C. T.; Ozden, A.; Li, Y. C.; Nam, D. H.; Li, J.; Liu, Y. S.; Wicks, J. et al. Efficient electrically powered CO2-to-ethanol via suppression of deoxygenation. Nat. Energy. 2020, 5, 478–486.

37

Jia, Y.; Zhang, L. Z.; Du, A. J.; Gao, G. P.; Chen, J.; Yan, X. C.; Brown, C. L.; Yao, X. D. Defect graphene as a trifunctional catalyst for electrochemical reactions. Adv. Mater. 2016, 28, 9532–9538.

38

Song, P.; Luo, M.; Liu, X. Z.; Xing, W.; Xu, W. L.; Jiang, Z.; Gu, L. Zn single atom catalyst for highly efficient oxygen reduction reaction. Adv. Funct. Mater. 2017, 27, 1700802.

39

Li, Z. H.; He, H. Y.; Cao, H. B.; Sun, S. M.; Diao, W. L.; Gao, D. L.; Lu, P. L.; Zhang, S. S.; Guo, Z.; Li, M. J. et al. Atomic Co/Ni dual sites and Co/Ni alloy nanoparticles in N-doped porous Janus-like carbon frameworks for bifunctional oxygen electrocatalysis. Appl. Catal. B: Environ. 2019, 240, 112–121.

40

Liu, R. L.; Wu, D. Q.; Feng, X. L.; Müllen, K. Bottom-up fabrication of photoluminescent graphene quantum dots with uniform morphology. J. Am. Chem. Soc. 2011, 133, 15221–15223.

41

Pan, J.; Xu, Y. Y.; Yang, H.; Dong, Z. H.; Liu, H. F.; Xia, B. Y. Advanced architectures and relatives of air electrodes in Zn-air batteries. Adv. Sci. 2018, 5, 1700691.

42

Wang, Z. P.; Huang, J. H.; Wang, L.; Liu, Y. Y.; Liu, W. H.; Zhao, S. L.; Liu, Z. Q. Cation-tuning induced d-band center modulation on Co-based spinel oxide for oxygen reduction/evolution reaction. Angew. Chem. 2022, 134, e202114696.

43

Chen, C.; Wang, X. T.; Zhong, J. H.; Liu, J. L.; Waterhouse, G. I. N.; Liu, Z. Q. Epitaxially grown heterostructured SrMn3O6−X-SrMnO3 with high-valence Mn3+/4+ for improved oxygen reduction catalysis. Angew. Chem. 2021, 133, 22214–22221.

44

Su, C. Y.; Cheng, H.; Li, W.; Liu, Z. Q.; Li, N.; Hou, Z. F.; Bai, F. Q.; Zhang, H. X.; Ma, T. Y. Atomic modulation of FeCo-nitrogen-carbon bifunctional oxygen electrodes for rechargeable and flexible all-solid-state zinc-air battery. Adv. Energy Mater. 2017, 7, 1602420.

45

Strickland, K.; Miner, E.; Jia, Q. Y.; Tylus, U.; Ramaswamy, N.; Liang, W. T.; Sougrati, M. T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343.

46

Lu, L. N.; Luo, Y. L.; Liu, H. J.; Chen, Y. X.; Xiao, K.; Liu, Z. Q. Multivalent CoSx coupled with N-doped CNTs/Ni as an advanced oxygen electrocatalyst for zinc-air batteries. Chem. Eng. J. 2022, 427, 132041.

47

Tian, Y. H.; Liu, X. Z.; Xu, L.; Yuan, D.; Dou, Y. H.; Qiu, J. X.; Li, H. N.; Ma, J. M.; Wang, Y.; Su, D. et al. Engineering crystallinity and oxygen vacancies of Co(II) oxide nanosheets for high performance and robust rechargeable Zn-air batteries. Adv. Funct. Mater. 2021, 31, 2101239.

48

Pan, Z. H.; Chen, H.; Yang, J.; Ma, Y. Y.; Zhang, Q. C.; Kou, Z. K.; Ding, X. Y.; Pang, Y. J.; Zhang, L.; Gu, Q. L. et al. CuCo2S4 nanosheets@N-doped carbon nanofibers by sulfurization at room temperature as bifunctional electrocatalysts in flexible quasi-solid-state Zn-air batteries. Adv. Sci. 2019, 6, 1900628.

49

Yang, H. B.; Miao, J. W.; Hung, S. F.; Chen, J. Z.; Tao, H. B.; Wang, X. Z.; Zhang, L. P.; Chen, R.; Gao, J. J.; Chen, H. M. et al. Identification of catalytic sites for oxygen reduction and oxygen evolution in N-doped graphene materials: Development of highly efficient metal-free bifunctional electrocatalyst. Sci. Adv. 2016, 2, e1501122.

Nano Research
Pages 9000-9009
Cite this article:
Chen X, Pu J, Hu X, et al. Confinement synthesis of bimetallic MOF-derived defect-rich nanofiber electrocatalysts for rechargeable Zn-air battery. Nano Research, 2022, 15(10): 9000-9009. https://doi.org/10.1007/s12274-022-4563-4
Topics:

1036

Views

18

Crossref

22

Web of Science

19

Scopus

2

CSCD

Altmetrics

Received: 30 March 2022
Revised: 16 May 2022
Accepted: 19 May 2022
Published: 18 July 2022
© Tsinghua University Press 2022
Return