AI Chat Paper
Note: Please note that the following content is generated by AMiner AI. SciOpen does not take any responsibility related to this content.
{{lang === 'zh_CN' ? '文章概述' : 'Summary'}}
{{lang === 'en_US' ? '中' : 'Eng'}}
Chat more with AI
Article Link
Collect
Submit Manuscript
Show Outline
Outline
Show full outline
Hide outline
Outline
Show full outline
Hide outline
Research Article

Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries

Yuanchang Li§Zhenfang Zhou§Yong LiZhonghua Zhang( )Xiaosong GuoJing LiuChangming MaoZhenjiang LiGuicun Li( )
College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China

§ Yuanchang Li and Zhenfang Zhou contributed equally to this work.

Show Author Information

Graphical Abstract

VSe2−x presents stronger adsorption towards lithium polysulfides due to selenium vacancies and shows the bidirectional catalysis towards the sulfur redox reactions.

Abstract

Heterostructures composed of oxides and sulfides (nitrides or carbides) show great potential as sulfur host additives because of the strong adoptability of oxides and catalytic capability of sulfides towards the notorious lithium polysulfides (LiPSs). However, the migration and conversion pathway of LiPSs is seriously confined at a localized interface with inadequate active sites. In this work, the introduction of selenium vacancies into VSe2−x has been demonstrated to successfully synergize the adsorbability and catalytic reactions of LiPSs at an integrated functional surface. The N-doped carbon nanosheets-assembled flower architectures embedded with selenium vacancy-rich VSe2−x and partial vanadium oxides have been controllably synthesized and employed as the cathode additives for lithium-sulfur (Li-S) batteries. Both the experiments and first-principle calculations reveal their strong adsorption to LiPSs and their bidirectional catalytic functionality towards the conversion between S8 and Li2S. As expected, the charge and discharge kinetics of VSe2−x containing sulfur cathodes is fundamentally improved (an outstanding rate capabilitiy with 693.7 mAh·g−1 at 2 C, a remarkable long-term cyclability within 1,000 cycles at 2 C with S loading 2.27 mg·cm−2, and an excellent areal capacity with 3.44 mAh·cm−2 within 100 cycles at 0.5 C). This work presents an effective resolution to couple the adsorbability and catalytic reactions of LiPSs at the material design perspective, and the insights on bidirectional catalytic functionality are of vital to develop functional materials for advanced Li-S batteries.

Electronic Supplementary Material

Download File(s)
12274_2022_4552_MOESM1_ESM.pdf (1.3 MB)

References

1

Zhou, G. M.; Yang, A. K.; Gao, G. P.; Yu, X. Y.; Xu, J. W.; Liu, C. W.; Ye, Y. S.; Pei, A.; Wu, Y.; Peng, Y. C. et al. Supercooled liquid sulfur maintained in three-dimensional current collector for high-performance Li-S batteries. Sci. Adv. 2020, 6, eaay5098.

2

Yang, A. K.; Zhou, G. M.; Kong, X.; Vilá, R. A.; Pei, A.; Wu, Y. C.; Yu, X. Y.; Zheng, X. L.; Wu, C. L.; Liu, B. F. et al. Electrochemical generation of liquid and solid sulfur on two-dimensional layered materials with distinct areal capacities. Nat. Nanotechnol. 2020, 15, 231–237.

3

Ye, J. C.; Chen, J. J.; Yuan, R. M.; Deng, D. R.; Zheng, M. S.; Cronin, L.; Dong, Q. F. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters. J. Am. Chem. Soc. 2018, 140, 3134–3138.

4

Tsao, Y.; Lee, M.; Miller, E. C.; Gao, G. P.; Park, J.; Chen, S. C.; Katsumata, T.; Tran, H.; Wang, L. W.; Toney, M. F. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries. Joule 2019, 3, 872–884.

5

Wang, L.; Liu, S. K.; Hu, J.; Zhang, X. N.; Li, X.; Zhang, G. H.; Li, Y. J.; Zheng, C. M.; Hong, X. B.; Duan H. G. Tailoring polysulfide trapping and kinetics by engineering hollow carbon bubble nanoreactors for high-energy Li-S pouch cells. Nano Res. 2021, 14, 1355–1363.

6

Hu, A. J.; Zhou, M. J.; Lei, T. Y.; Hu, Y.; Du, X. C.; Gong, C. H.; Shu, C. Z.; Long, J. P.; Zhu, J.; Chen, W. et al. Optimizing redox reactions in aprotic lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2002180.

7

Yan, X. J.; Guo, W. Q.; Li, W. D.; Li, G. L.; Yue, Z. J.; Liu, J.; Peng, H. R.; Yin, Z. M.; Zhang, Z. H.; Mao, C. M. et al. Coupling highly dispersed Sb2S3 nanodots with nitrogen/sulfur dual-doped porous carbon nanosheets for efficient immobilization and catalysis of polysulfides conversion. Chem. Eng. J. 2021, 420, 127688.

8

Pang, Q.; Shyamsunder, A.; Narayanan, B.; Kwok, C. Y.; Curtiss, L. A.; Nazar, L. F. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li-S batteries. Nat. Energy 2018, 3, 783–791.

9

Lei, T. Y.; Chen, W.; Lv, W. Q.; Huang, J. W.; Zhu, J.; Chu, J. W.; Yan, C. Y.; Wu, C. Y.; Yan, Y. C.; He, W. D. et al. Inhibiting polysulfide shuttling with a graphene composite separator for highly robust lithium-sulfur batteries. Joule 2018, 2, 2091–2104.

10

Liu, B. R.; Taheri, M.; Torres, J. F.; Fusco, Z.; Lu, T.; Liu, Y.; Tsuzuki, T.; Yu, G. H.; Tricoli, A. Janus conductive/insulating microporous ion-sieving membranes for stable Li-S batteries. ACS Nano 2020, 14, 13852–13864.

11

Zhang, F.; Guo, X.; Xiong, P.; Zhang, J. Q.; Song, J. J.; Yan, K.; Gao, X. C.; Liu, H.; Wang, G. X. Interface engineering of MXene composite separator for high-performance Li-Se and Na-Se batteries. Adv. Energy Mater. 2020, 10, 2000446.

12

Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. 2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries. Nat. Nanotechnol. 2018, 13, 337–344.

13

Pang, Q.; Kwok, C. Y.; Kundu, D.; Liang, X.; Nazar, L. F. Lightweight metallic MgB2 mediates polysulfide redox and promises high-energy-density lithium-sulfur batteries. Joule 2019, 3, 136–148.

14

Zhou, J. B.; Liu, X. J.; Zhu, L. Q.; Zhou, J.; Guan, Y.; Chen, L.; Niu, S. W.; Cai, J. Y.; Sun, D.; Zhu, Y. C. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry. Joule 2018, 2, 2681–2693.

15

Li, Y. C.; Li, W. D.; Yan, X. J.; Zhou, Z. F.; Guo, X. S.; Liu, J.; Mao, C. M.; Zhang, Z. H.; Li, G. C. Terminal sulfur atoms formation via defect engineering strategy to promote the conversion of lithium polysulfides. J. Mater. Sci. Technol. 2022, 103, 221–231.

16

Chen, H.; Zhou, G. M.; Boyle, D.; Wan, J. Y.; Wang, H. X.; Lin, D. C.; Mackanic, D.; Zhang, Z. W.; Kim, S. C.; Lee, H. R. et al. Electrode design with integration of high tortuosity and sulfur-philicity for high-performance lithium-sulfur battery. Matter 2020, 2, 1605–1620.

17

Wang, Z. K.; Ji, H. Q.; Zhou, L. Z.; Shen, X. W.; Gao, L. H.; Liu, J.; Yang, T. Z.; Qian, T.; Yan, C. L. All-liquid-phase reaction mechanism enabling cryogenic Li-S batteries. ACS Nano 2021, 15, 13847–13856.

18

Li, W. D.; Wang, D. Z.; Song, Z. H.; Gong Z. J.; Guo, X. S.; Liu, J.; Zhang, Z. H.; Li, G. C. Carbon confinement synthesis of interlayer-expanded and sulfur-enriched MoS2+x nanocoating on hollow carbon spheres for advanced Li-S batteries. Nano Res. 2019, 12, 2908–2917.

19

Wang, T.; Zhu, J.; Wei, Z. X.; Yang, H. G.; Ma, Z. L.; Ma, R. F.; Zhou, J.; Yang, Y. H.; Peng, L. L.; Fei, H. L. et al. Bacteria-derived biological carbon building robust Li-S batteries. Nano Lett. 2019, 19, 4384–4390.

20

Ye, C.; Jiao, Y.; Jin, H. Y.; Slattery, A. D.; Davey, K.; Wang, H. H.; Qiao, S. Z. 2D MoN-VN heterostructure to regulate polysulfides for highly efficient lithium-sulfur batteries. Angew. Chem., Int. Ed. 2018, 57, 16703–16707.

21

Zhang, B.; Luo, C.; Deng, Y. Q.; Huang, Z. J.; Zhou, G. M.; Lv, W.; He, Y. B.; Wan, Y.; Kang, F. Y.; Yang, Q. H. Optimized catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv. Energy Mater. 2020, 10, 2000091.

22

Song, Y. Z.; Zhao, W.; Kong, L.; Zhang, L.; Zhu, X. Y.; Shao, Y. L.; Ding, F.; Zhang, Q.; Sun, J. Y.; Liu, Z. F. Synchronous immobilization and conversion of polysulfides on a VO2-VN binary host targeting high sulfur load Li-S batteries. Energy Environ. Sci. 2018, 11, 2620–2630.

23

Zhang, L.; Liu, Y. C.; Zhao, Z. D.; Jiang, P. L.; Zhang, T.; Li, M. X.; Pan, S. X.; Tang, T. Y.; Wu, T. Q.; Liu, P. Y. et al. Enhanced polysulfide regulation via porous catalytic V2O3/V8C7 heterostructures derived from metal–organic frameworks toward high-performance Li-S batteries. ACS Nano 2020, 14, 8495–8507.

24

He, J. R.; Bhargav, A.; Manthiram, A. Molybdenum boride as an efficient catalyst for polysulfide redox to enable high-energy-density lithium-sulfur batteries. Adv. Mater. 2020, 32, 2004741.

25

Tian, W. Z.; Xi, B. J.; Gu, Y.; Fu, Q.; Feng, Z. Y.; Feng, J. K.; Xiong, S. L. Bonding VSe2 ultrafine nanocrystals on graphene toward advanced lithium-sulfur batteries. Nano Res. 2020, 13, 2673–2682.

26

Shen, Z. H.; Zhang, Z. L.; Li, M.; Yuan, Y. F.; Zhao, Y.; Zhang, S.; Zhong, C. L.; Zhu, J.; Lu, J.; Zhang, H. G. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries. ACS Nano 2020, 14, 6673–6682.

27

Zou, Y. H.; Gu, Y.; Hui, B.; Yang, X. F.; Liu, H. W.; Chen, S.; Cai, R. S.; Sun, J.; Zhang, X. L.; Yang, D. J. Nitrogen and sulfur vacancies in carbon shell to tune charge distribution of Co6Ni3S8 core and boost sodium storage. Adv. Energy Mater. 2020, 10, 1904147.

28

Yang, Q. F.; Cui, M. N.; Hu, J. L.; Chu, F. L.; Zheng, Y. J.; Liu, J. J.; Li, C. L. Ultrathin defective C–N coating to enable nanostructured Li plating for Li metal batteries. ACS Nano 2020, 14, 1866–1878.

29

Li, Y.; Qian, J.; Zhang, M. H.; Wan, S.; Wang, Z. H.; Li, M. S.; Bai, Y.; An, Q. Y.; Xu, H. J.; Wu, F. et al. Co-construction of sulfur vacancies and heterojunctions in tungsten disulfide to induce fast electronic/ionic diffusion kinetics for sodium-ion batteries. Adv. Mater. 2020, 32, 2005802.

30

Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50.

31

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

32

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

33

Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775.

34

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

35

Li, Y. J.; Wang, W. Y.; Zhang, B.; Fu, L.; Wan, M. T.; Li, G. C.; Cai, Z.; Tu, S. B.; Duan, X. R.; Seh, Z. W. et al. Manipulating redox kinetics of sulfur species using Mott-Schottky electrocatalysts for advanced lithium-sulfur batteries. Nano Lett. 2021, 21, 6656–6663.

36

Hu, A. J.; Chen, W.; Du, X. C.; Hu, Y.; Lei, T. Y.; Wang, H. B.; Xue, L. X.; Li, Y. Y.; Sun, H.; Yan, Y. C. et al. An artificial hybrid interphase for an ultrahigh-rate and practical lithium metal anode. Energy Environ. Sci. 2021, 14, 4115–4124.

37

Ni, L. B.; Yang, G.; Liu, Y.; Wu, Z.; Ma, Z. Y.; Shen, C.; Lv, Z. X.; Wang, Q.; Gong, X. X.; Xie, J. et al. Self-assembled polyoxometalate nanodots as bidirectional cluster catalysts for polysulfide/sulfide redox conversion in lithium-sulfur batteries. ACS Nano 2021, 15, 12222–12236.

38

Yu, B.; Huang, A. J.; Srinivas, K.; Zhang, X. J.; Ma, F.; Wang, X. Q.; Chen, D. J.; Wang, B.; Zhang, W. L.; Wang, Z. G. et al. Outstanding catalytic effects of 1T'-MoTe2 quantum dots@3D graphene in shuttle-free Li-S batteries. ACS Nano 2021, 15, 13279–13288.

39

Ye, Z. Q.; Jiang, Y.; Yang, T. Y.; Li, L.; Wu, F.; Chen, R. J. Engineering catalytic CoSe-ZnSe heterojunctions anchored on graphene aerogels for bidirectional sulfur conversion reactions. Adv. Sci. 2022, 9, 2103456.

40

Zeng, J.; Zhang, Z. H.; Guo, X. S.; Li, G. C. A conjugated polyaniline and water co-intercalation strategy boosting zinc-ion storage performances for rose-like vanadium oxide architectures. J. Mater. Chem. A 2019, 7, 21079–21084.

41

Zakharova, G. S.; Thauer, E.; Enyashin, A. N.; Deeg, L. F.; Zhu, Q.; Klingeler, R. V2O3/C composite fabricated by carboxylic acid-assisted sol-gel synthesis as anode material for lithium-ion batteries. J. Sol-Gel Sci. Technol. 2021, 98, 549–558.

42

Li, D.; Wang, X.; Kan, C. M.; He, D. L.; Li, Z. J.; Hao, Q.; Zhao, H. B.; Wu, C. Z.; Jin, C. H.; Cui, X. D. Structural phase transition of multilayer VSe2. ACS Appl. Mater. Interfaces 2020, 12, 25143–25149.

43

Chen, Y. P.; Yang, G.; Zhang, Z. H.; Yang, X. Y.; Hou, W. H.; Zhu, J. J. Polyaniline-intercalated layered vanadium oxide nanocomposites-one-pot hydrothermal synthesis and application in lithium battery. Nanoscale 2010, 2, 2131–2138.

44

Kim, J. K.; Kang, Y. C. Encapsulation of Se into hierarchically porous carbon microspheres with optimized pore structure for advanced Na-Se and K-Se batteries. ACS Nano 2020, 14, 13203–13216.

45

Ma, C.; Zhang, Y. Q.; Feng, Y. M.; Wang N.; Zhou, L. J.; Liang, C. P.; Chen, L. B.; Lai, Y. Q.; Ji, X. B.; Yan, C. L. et al. Engineering Fe–N coordination structures for fast redox conversion in lithium-sulfur batteries. Adv. Mater 2021, 33, 2100171.

46

Jin, Z. S.; Lin, T. N.; Jia, H. F.; Liu, B. Q.; Zhang, Q.; Li, L.; Zhang, L. Y.; Su, Z. M.; Wang, C. G. Expediting the conversion of Li2S2 to Li2S enables high-performance Li-S batteries. ACS Nano 2021, 15, 7318–7327.

47

Huang, S. Z.; Wang, Y.; Hu, J. P.; Lim, Y. V.; Kong, D. Z.; Guo, L.; Kou, Z. K.; Chen, Y. X.; Yang, H. Y. Insitu-grown compressed NiCo2S4 barrier layer for efficient and durable polysulfide entrapment. NPG Asia Mater. 2019, 11, 55.

48

Wu, L. C.; Gu, M. Y.; Feng, Y. H.; Chen, S. H.; Fan, L.; Yu, X. Z.; Guo, K. K.; Zhou, J.; Lu, B. G. Layered superconductor Cu0.11TiSe2 as a high-stable K-cathode. Adv. Funct. Mater. 2022, 32, 2109893.

49

Ge, J. M.; Fan, L.; Rao, A. M.; Zhou, J.; Lu, B. G. Surface-substituted Prussian blue analogue cathode for sustainable potassium-ion batteries. Nat. Sustain. 2022, 5, 225–234.

50

Li, Y. C.; Yan, X. J.; Zhou, Z. F.; Liu, J.; Zhang, Z. H.; Guo, X. S.; Peng, H. R.; Li, G. C. Synergistic coupling between Fe7S8-MoS2 heterostructure and few layers MoS2-embeded N-/P-doping carbon nanocapsule enables superior Li-S battery performances. Appl. Surf. Sci. 2022, 574, 151586.

51

Ci, H. N.; Cai, J. S.; Ma, H.; Shi, Z. X.; Cui, G.; Wang, M. L.; Jin, J.; Wei, N.; Lu, C.; Zhao, W. et al. Defective VSe2-graphene heterostructures enabling in situ electrocatalyst evolution for lithium-sulfur batteries. ACS Nano 2020, 14, 11929–11938.

Nano Research
Pages 7234-7246
Cite this article:
Li Y, Zhou Z, Li Y, et al. Selenium vacancies enable efficient immobilization and bidirectional conversion acceleration of lithium polysulfides for advanced Li-S batteries. Nano Research, 2022, 15(8): 7234-7246. https://doi.org/10.1007/s12274-022-4552-7
Topics:

1678

Views

25

Crossref

23

Web of Science

23

Scopus

0

CSCD

Altmetrics

Received: 05 April 2022
Revised: 06 May 2022
Accepted: 16 May 2022
Published: 03 June 2022
© Tsinghua University Press 2022
Return